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ABSTRACT Reliability of high precision linear motion system is one of the main concerns in industrial and
military systems. The performance and repeatability of these systems are influenced by their respective
linear drives and load bearings. A fault in these members severely affects the safe working of overall
system. This paper gives a reliable intelligent approach to detect and classify faults for linear motion systems
based on deep learning methods. Accuracy in faults identification is highly dependent on improved features
extraction. For this purpose, a novel Residual Twin CNN (ResT-CNN) is proposed that uses combination
of 1-D and 2-D CNN in parallel learning which improves features extraction performance; followed by
knowledge base-Remnant-PCA (Kb-Rem-PCA) architecture in combination with multi-class support vector
machine (Mc-SVM). This novel hybrid combination proved very effective in accurate faults identifica-
tion. The performance of proposed methodology was also validated by IMS-UC (Intelligent Maintenance
Systems – University of Cincinnati) public bearing dataset. The results confirm the effectiveness of proposed
scheme in comparison to existing state of the art techniques.

INDEX TERMS Linear motion system, intelligent hybrid scheme, reliability, feature extraction, classifica-
tion accuracy.

I. INTRODUCTION
Linear motion system (LMS) is the most common choice in
precision motion applications, especially where high speed
repeatability is desired under load. LMS covers wide range of
applications including precisionmachining centers, industrial
robots, automatic guided vehicles as well as surface actua-
tion requirements in aerospace industries. LMS incorporates
various subsystems, including power and control drive, actu-
ation drive and linear motion structure. The actuation drive
provides linear motion while carrying thrust loading. Ball
screw (BS) is themost suitable linear actuation drive currently
in practice due to high transmission efficiency, low friction
and less backlash problems. Any degradation in ball screw
drive leads to failure of entire system. These linear drives

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

carry big research potential for automation and aerospace
industries and have gained popularity by researchers working
with precision motion control systems. The utilization of
BS linear drives for high precision applications also needs
additional knowledge of possible failure modes and their
effective investigation, since they have to accomplish critical
tasks.

BS linear drives include servo motor with required speed
reduction gear set and necessary bearings along with ball
screw arrangement as shown in Figure 1. For high speed
actuation drives, ball-screw and load bearings need to be con-
sidered as key components and therefore typical fault modes
for these elements should be examined. Critical fault modes
for these systems available in literature [1] include friction
due to inadequate lubrication in bearings and ball screw,
backlash and channel jamming in ball screw, wear or spall
at bearing and ball screw surface and other structural faults.
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FIGURE 1. Schematic of BS linear actuation drive.

Accurate identification of these faults is of great industrial
concern to ensure system availability and has been considered
by many researchers in the past [1], [2], [4], and [5]. For
this purpose, dedicated monitoring setups are required which
essentially need expertise in electro-mechanics, controls and
intelligent systems. This eventually becomes high resource
solution.

Fault data monitoring for BS linear systems have been
the area of primary concern by various researchers in the
past [2], [3]. For this purpose, system input data was mon-
itored after installing linear motion drive on actual system to
ensure monitoring of reliable data [4]. Data monitoring was
also performed by collecting fault signals using some suitable
experimentation [5]. More specifically, BS linear drives were
explored in many analytical, simulation and experimental
research studies using different approaches.

Mechanical faults identification can be treated as pattern
recognition problem; therefore extraction of appropriate fault
signal features with non-stationary behavior represents mul-
tiple failure pattern characteristics. This signal pattern must
include fault sensitive features; as the performance of intel-
ligent monitoring system is greatly influenced by these fea-
tures. Accurate features extraction, being sensitive to dynam-
ics of mechanical systems, requires high degree of domain
expertise. Due to these concerns, design of appropriate fea-
ture extraction technique is vital for intelligent fault diagnosis
system.

II. BRIEF DETAILS OF PREVIOUS WORK
A number of techniques have been developed that
give model-based engineering solutions and numerical
approaches to solve system diagnosis problems [6]. These
include analytical and experimental approaches [7] to solve
system level problems [8] and diagnostics [9]. These solu-
tions although give reliable results, however, undergo appli-
cation limitation due to customized modeler for each system.
Other methodologies utilize vibration and temperature signal
data measurement by using suitable sensors and applying
different feature extraction techniques for faults identification
in critical elements [10], [11]. Health assessment of BS
drives based on experimental and systematic studies was
also performed for early fault diagnosis [12], [13]. Recently,
the applications of machine learning and deep learning based
intelligent techniques have rapidly increased for mechanical

systems fault diagnosis [14], [15] and different approaches
have been successfully applied for rotating machinery fault
detection [16], bearings fault diagnosis [17] and gears fault
classification [18]. These intelligent techniques work auto-
matically by collecting and processing fault signals to identify
condition of the system. An intelligent feature extraction
technique for combination of faults in rotating machinery
was proposed on the basis of Empirical mode decomposition
(EMD) and Bayesian classifier was applied to diagnose
faults [19]. Other contributions include faults classification
using Support vector machine (SVM) for vibration signal
data [20] and nearest neighbor classifier [21], [22]. In com-
parison to above mentioned machine learning techniques,
deep learning techniques achieve better results, although
its implementation in this area is still developing [23]. For
BS drives data monitoring, a deep learning technique based
on deep belief network (DBN) was performed using multi-
sensor vibration signal data [23]. For motor faults, a lot of
study has already been done previously [24] and will not
be considered here. Among deep learning methods, Con-
volutional Neural Network (CNN) emerged as one of the
most leading technique especially when dealing with more
complex features [25], [26].

The reliable monitoring of BS drives is affected by insuf-
ficient and inappropriate data. The fault signal data from BS
drive system is difficult to collect than from other systems.
This implies that for normal working of linear motion sys-
tems, data collection can be performed by different meth-
ods; however, for different fault modes, sufficient data is not
available. This unbalanced system data distribution affects
the performance of algorithm leading to unsatisfactory results
for minor data set [17]. Additionally, various fault detection
techniques are in practice and have utilized successfully in
different combinations [27]–[29], however, fault classifiers
like Support Vector Machine (SVM) [30], [34] and Back
Propagation Neural Network (BPNN) may sometimes mis-
classify samples because of low domain adaptability.

In order to deal with aforementioned concerns, this paper
proposes data monitoring of BS linear drive using signifi-
cant signal features from position error measurements. These
remarkable features represent changes in system dynamics
due to any upcoming failure. The focus of this work is to
improve signal representation for improved feature extraction
and classification. A novel combination of improved deep
learning and knowledge base systems is proposed that gives
better feature extraction and accurate faults classification
for BS linear drive system. This hybrid arrangement gives
superior performance over other techniques.

The summary of our contributions in this paper are as
follows:
a) Position measurement data was collected for fault-free

and faulty conditions. Faults were induced in BS drive
and load bearing to observe their combined effects on
collected signals.

b) Improved feature extraction with better domain adapt-
ability was achieved using Residual Twin-CNN
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(ResT-CNN) structure, that uses parallel learning
of 1-D and 2-D CNN’s and fusing the extracted
features; followed by knowledge-based Deep PCA
(Kb-Rem-PCA) architecture that ensures distinct fea-
tures reduction resulting in high classification accuracy
using Multi-class Support Vector Machine (Mc-SVM).

c) This novel hybrid scheme was successfully utilized to
detect different faults in BS LMS with improved results
comparable with state of the art techniques.

The remaining sections in this paper are composed as
follows: Section III describes details of our proposed hybrid
methodology. Section IV gives experimentation details that
include testing setup description and details of fault cases.
Section V elaborates the detailed results of our technique
followed by comprehensive discussion in section VI.

III. PROPOSED HYBRID SYSTEM
Mechanical faults in BS LMS, like those stated in Section I,
disturb entire system process and degrade its performance to
great extent. For high precision systems, LMS continuously
undergoes acceleration and deceleration for each travel cycle
between two extremes. This gives variation in position mea-
surements which is affected by system dynamics, axial and
thrust loading and behavior of control system. These remark-
able deviations in position behavior can be well analyzed for
different operation modes. Variation of these signal features
gives an indication of changed mechanical behavior of actua-
tion drive due to any possible fault. Observed measurements
for different fault modes including ball screw (BS) friction,
BS backlash, load bearing (LB) friction and LB roller damage
are shown in Figure 2.

FIGURE 2. Position measurements for different faults of BS linear drive.

Position error measurement was performed for different
load conditions using sinusoidal motion profile to assess the
capability of developed technique. Sinusoidal profile gives
smooth motion transition and was tested with 20mm linear
travel which was completed in 4sec with 1sec waiting time at

position change. Three load scenarios were tested i.e. 600N,
750N & -750N. The tests were performed for both fault and
no-fault (normal) conditions. To get significant number of
observations, the sequence of motion profiles was repeated
3 times for each test. The dataset was generated for each test
with 12 times repetition for each case under study.

Position measurement was conducted for normal function
as well as for different faults as described in Section IV.
The acquired dataset was transformed into 2-D gray image
using CWT technique. This gives an opportunity to utilize
two-dimensional features from collected signal data, and
therefore time-signal can be considered as image feature
set [31].

A. 1-D TO 2-D SIGNAL TRANSFORMATION USING CWT
Different techniques have been utilized for signal to image
transformation including Hilbert-Huang transform [44],
Recurrence plots to transform 1-D signal to 2-D texture
image [45], Wavelet Transformation [49], [50], signal to
gray image conversion using energy values [51], etc. Wavelet
Transform gives time-frequency analysis by decomposing
input signal into a family of wavelet components; each one
with a resolution according to corresponding scale. This
gives high frequency (low time) resolution in low frequency
region and similarly low frequency in high region. Continu-
ous wavelet transform utilizes wavelet functions generated by
translating wavelet function ψq,p (t) with translation param-
eter q and scaling with factor p. The scaled translated and
normalized wavelet is given by

ψq,p (t) =
1
√
p
ψ
t − q
p

p, qεR (1)

Continuous wavelet transform (CWT) of observed func-
tion f(q,p), where f ∈ R is given by [52]

CWf (q, p) =
∫
+∞

−∞

f (t) ˙ψq,p (t) dt (2)

where, ˙ψq,p (t) represents wavelet complex conjugate for
mother function ψq,p (t). It should be noted that CWT is
sensitive to transitions in local occurrence which means time
distant CWT will remain unaffected from local transitions.

Among different mother wavelet functions,Morlet wavelet
has proved its effectiveness for non-stationary signal data
because of transient impulse similarity [53], [55]. Time
domain Morlet wavelet is defined by

ψq,p (t) = cosπ t.e
−β2t2

2 (3)

where, β is the shape factor for mother wavelet. Increase
in β value increases time domain resolution. Morlet CWT
represents improved signal characteristics and gives better
time-frequency resolution. For different scaling parame-
ters, CWT generates different coefficients for signal seg-
ments. Using these coefficients, signal can be expressed as
2-D image. The gray image matrix transformation Ptrans,
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by putting wavelet coefficients, can be represented as

Ptrans (m, n) =
K (m, n)−MinK
MaxK −MinK

∗ 255 (4)

where Max K andMin K are max and min elements of matrix
P. Ptrans gives gray values from 0 to 255. This gives CWT gray
image for original signal as shown in Figure 3.

FIGURE 3. Signal Transformation from 1-D to 2-D using CWT.

B. PROPOSED ResT-CNN ARCHITECTURE
At present, convolutional neural networks (CNNs) are exten-
sively used for fault identification and image recognition
problems. CNN comprises combination of multiple filtering
and classification layers that extract significant features from
data. Filtering stage constitutes a number of convolutional
and pooling layers. Convolutional layer contains multiple
weights (kernels) that provide new feature maps when input
feature is convolved with kernels which are sensitive to cer-
tain features. The function of pooling layer is to minimize
size of feature map without any change in number of feature
maps. The classification stage contains fully connected layer,
a multi stage perceptron, in which high-level features are
extracted and given as input to the final layer, where output
of CNN model is generated. The convolution process can be
expressed mathematically as shown in Eq. (5).

x l(i,j) = K l
i ∗ m

l
(
nj
)
=

W∑
j′=0

K l
i
(
j′
)
ml(j+j

′) (5)

where, K l
i denotes the ith kernel weights for l layer. ml

(
nj
)

shows jth region in l th convolutional layer.W represents width
of kernel and K l

i (j
′) gives jth weight of the kernel.

The output of general model [46] can be given as in Eq. (6):

CNN out =


P (y = 1 | x;W1, b1)
P (y = 2 | x;W2, b2)

. . .

P (y = m | x;Wm, bm)



=
1∑k

j=1 exp (Wjx + bj)


exp (W1x + b1)
exp (W2x + b2)

. . .

exp (Wkx + bk )

 (6)

where, b is the bias of each layer. More literature details are
included in [46].

The mentioned CNN model has been used in various com-
binations to solve engineering problems. For deeper networks
the computation time increases, which creates over-fitting
problems causing a decrease in network accuracy. These
problems were solved by Kaiming He [26] using residual
blocks in deep networks as shown in Figure 4.

FIGURE 4. Original residual learning block.

This paper proposes a novel Residual Twin CNN (ResT-
CNN) architecture inspired from residual learning scheme.
The proposed network combines the benefits of two training
networks 1-D with raw signal data and 2-D with transformed
images in parallel learning. Both networks include residual
connections that improve system performance and extract
fault related strong features.

FIGURE 5. 1-D CNN architecture with residual connections.

1) 1-D CNN ARCHITECTURE WITH RESIDUAL CONNECTIONS
1-D CNN acts directly on raw signal data scaled linearly in
the interval [0, 1]; and becomes input of 1-D CNN. 1∗1 sized
two residual connections are introduced in 1-D network as
shown in Figure 5 to learn high level features by transfer-
ring multiple complex non-linear layers into split functions.
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Additionally, these connections construct input-output iden-
tity mapping, which improves network speed by enabling
information flow across stacked layers. Remaining structure
comprises 1∗12 size first convolutional kernel along with
1∗3 size four successive kernels. The input signal mapping
is required in the interval [0, 1], which was performed using
max-min normalization as per following relation.

x lj |
N−1
1 =

x lj − minx
l

maxx l − minx l
(7)

where, x l gives l th sample in dataset with N-1 samples and
max and min of x l gives maximum and minimum sample
values.

The forward propagation in 1-D network from ay convolu-
tional layer k-1 to the input in layer k is given by

xkl = bkl +
Nk−1∑
j=1

{1DConv
(
nk−1jk ,mk−1j

)
} (8)

where, bkl shows bias of l
th layer, mk−1j gives the output of jth

neuron at layer k − 1, nk−1jk is the kernel from jth neuron at
layer k − 1 to the ith neuron at layer k that computes k th layer
input xkl .

The output feature for weight layerKj is obtained by sliding
convolutional kernel with size 1xl on input feature signal Ki.
The output feature signal y at jth node is given by

yj = Kjxi + b2 (9)

The output of residual learning block will be given by

Out (res) = F
(
xj,Wij

)
+ y = F

(
xj,Wj

)
+ Kjxi + b2 (10)

2) 2-D CNN ARCHITECTURE WITH RESIDUAL CONNECTIONS
An improved 2-D CNN structure is proposed that includes
two residual connections; each comprises a single 3∗3 con-
volutional layer in between coupled 1∗1 convolutional lay-
ers. To minimize high frequency noise effects, a wide size
9∗9 first convolution layer is applied. To make deeper
network and improve input data representation, 3∗3 sized
remaining convolution kernels are selected. At the end of
residual connections, max pooling layer is used to avoid
image data over-smoothing, therefore minimizing the errors
in desired features extraction. Moreover, two Dropout and
FC layers are utilized for better structure adaptability. This
composition makes CNN structure deeper than previously
implemented CNN models.

The output O (res) of residual blocks can be expressed
mathematically as;

O (res) = fr1 (W1.x +W2.x))+ Ores1 + m (x)

= fr
(
W1.x +W1.O′res1 + b1

)
+ m (x) (11)

where, fr being ReLU non-linear activation function. Ores1
and Ores2 shows feature output at first & second residual
structure, obtained by sliding kernel with signal stride. Iden-
titymappingm(x) was added to the first residual block and the

output was passed by ReLU activation function. The second
filter weight W2 was found by the output of first weight
layer O′res1 and gives final output of residual block structure
Figure 6 shows the basic architecture of proposed residual
structure.

FIGURE 6. 2-D CNN residual block structure.

For x data series where x ∈ {x1, x2. . .xm};m being the
signal length, x is the output of signal feature data that learns
the residual function Res(x) in the neural network more easily
without any deterioration thus providing better CNN model
learning and improves the performance of system. The archi-
tecture of developed 2D CNN is shown in Figure 7.

1-D and 2-DCNNswork independently for features extrac-
tion. These features are concatenated before classification
processing for faults identification. For 1-D CNN structure,
the raw signal data was used to train the model. For 2-DCNN,
signal data was transformed to gray image using CWT con-
version. If we assume 1D-CNN features as C1f and 2D-CNN
features as C2f, then the features of concatenation layer (Cf)
can be expressed as;

Cf = C1f ;C2f (12)

These final features were given to the proposed deep PCA
for dimensionality reduction. The fused residual twin CNN
(ResT-CNN) architecture is shown in Figure 8.

C. PROPOSED DEEP KNOWLEDGE-BASE REMNANT PCA
(KB-REM-PCA) ARCHITECTURE
To reduce high dimensionality of features extracted
by ResT-CNN, a deep knowledge-based Remnant PCA
(Kb-Rem-PCA) is proposed that takes the advantage of deep
residual connections in PCA followed by knowledge-based
feature selection technique based on improvements in exist-
ing Rough set theory [36]. This scheme improves classifica-
tion accuracy along with reduction in computation cost.

The existing state of the arts PCA techniques are character-
ized by unsupervised dimensional reduction from extracted
features and are employed in different applications with dif-
ferent combinations [37], [38]. However, these techniques

35140 VOLUME 9, 2021



N. Riaz et al.: Intelligent Hybrid Scheme for Identification of Faults in Industrial Ball Screw Linear Motion Systems

FIGURE 7. 2-D CNN architecture with Residual connections.

FIGURE 8. ResT-CNN architecture.

undergo some limitations that may lead to incompetency
specially for extracting rich features.

The proposed PCA architecture overcomes these limita-
tions easily by utilizing deep multiple feature extraction lay-
ers that transform high level features to low level effectively
with improved algorithm speed as shown in Figure 9. Deep
PCA, however, experiences information loss in each process
layer which gives undesirable results. To cater these effects,
residual connections are added between each successive layer
of deep PCA structure.

Mathematically, for N training set features, I ∈ {i1,
i2, . . . ix} in RN , the dimensions reduction for extracted fea-
tures occur in successive learning layers of PCA, J ∈ {j1,
j2, . . . jy} with projection matrix P and non-linear feature
matrix Nt. The layer output can be given by F ∈ [0, L-1] as:

Jy = Ix .P (13)

FZ=10,L−1 = Jy.Nt (14)
The non-linear featurematrix is introduced to improve PCA

performance by providing additional non-linear function with

the traditional architecture. For this purpose, the nonlinear
feature matrix Nt as mentioned is given as

Nt = (ϕ(jy)(ϕ(jy)
T )
T

(15)

where ϕ (·) is the non-linear mapping function. The output F0
for the first layer will be given by Eq. 16. For layers [1, L-1],
the output will be given as:

FZ1,L−1 = FZ−10,L−1 + Crem (16)

where, Crem gives the output of remnant connections given as

Crem = G.
(
Jy−1.Nt−1

)
(17)

The function G (·) gives the activation function while
stacking successive layers of PCA in rem connections.

In order to collect more compact set of features and
to improve PCA performance, we have integrated a
knowledge-based feature selection technique with the output
of PCA layers. This technique is based on some improve-
ments in existing Rough set theory which was originally

VOLUME 9, 2021 35141



N. Riaz et al.: Intelligent Hybrid Scheme for Identification of Faults in Industrial Ball Screw Linear Motion Systems

FIGURE 9. Proposed Kb-Rem-PCA architecture.

proposed by Z. Pawlak and has successfully been uti-
lized to eliminate imprecise, redundant and uncertain fea-
tures [36], [39], [40].

Rough set can be defined as a knowledge base Kb [O,
S] where O and S represent overall feature set and selected
feature set respectively. The probabilistic based rough set
model considers variable precision probability which is more
robust against noisy data. A probabilistic precision threshold
δ is added which depends on noise magnitude. Based on
this threshold, three distinct feature regions (FR) are defined
which are as follows.

FR1: δ – True Region: Tδ (V)= {v∈O |P (V| [v])≥ 1−δ};
FR2: δ – False Region: Fδ (V) = {v ∈ O |P (V| [v]) ≤ δ};
FR3: δ – Border: Bδ (V) = {v ∈ O |δ <P (V| [v]), 1- δ}
Using feature regions, the correlation degree between tar-

get and equivalent class can be found by,

Tδ ([v] ,V ) =
|Tδ(V ) ∪ Fδ(V )|

|O|
(18)

D. MULTI-CLASS SVM (MC-SVM) FAULT CLASSIFIER
For classification of faults, a strong multi-class Support
vector machine (Mc-SVM) classifier was applied based on
Gaussian radial kernel function that gives efficient fault
classification [41]. The Gaussian radial kernel function has
already proved its outstanding ability and performance in

handling nonlinear faults classification. Mathematically, this
function can be given by Eq. 19 [41].

RG (um, un) = exp

(
−
||um − un||2

2σ 2

)
(19)

where, RG(um, un) gives radial kernel function, um and
un shows input features and σ represents hyper parameter
selected on the basis of effective kernel width.

E. PROPOSED OVERALL HYBRID STRUCTURE
A basic outline of our proposed hybrid framework is shown
in Figure 10. The flowchart shows the sequential working
of model for faults classification in BS-LMS as summarized
below.

FIGURE 10. Proposed overall hybrid structure.

IV. EXPERIMENTATION DETAILS
To evaluate the performance of proposed algorithm, an instru-
mented setup is developed. The testing setup is based on BS
linear motion mechanism where BS shaft provides necessary
ball bearings channel retained inside suiting ball nut. A num-
ber of distinctive faults were induced in BS drive and load
bearing under varying conditions of external load to consider
the effect of faults on measured system parameter as well as
to acquire the signal data for detection of these faults.

A. TESTING SETUP DETAILS
The testing setup was developed using available mechanical
components including precision rolled miniature BS drive
(that consists of BS threaded shaft fitted with ball nut).
Ball nut is provided with threaded attachment collar for
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assembly integration. Other components required for motion
system include motor in combination with necessary gear
train along bearings, linear miniature guides and posi-
tion feedback device etc. The experimental setup was also
equipped with different sensors for data acquisition purpose.
The resolution, bandwidth and repeatability of sensors should
be well analyzed for reliable data acquisition. Linear trans-
ducer having linearity error 0.05%, Hall-effect current sensor
with 32.7 mV rated sensitivity @ 12V DC and a tension-
compression load cell having 0.02 % rated output error were
also integrated in the setup for data monitoring.

The developed experimental setup provides 100mm linear
movement with a load capacity of 1000N (in both directions).
Figure 11 illustrates some details of experimental setup.

FIGURE 11. Testing setup to simulate fault modes.

B. BS LINEAR DRIVE FAULT CASES
The testing setup was initially operated with no induced
fault to get significant signal information and observe LMS
behavior under different load and motion profiles. This data
was labeled as reference data with acceptable behavior of
mechanical system. In the next phase, different faults were
induced in LMS and the system was run to collect posi-
tion measurement data. This data was used to evaluate the
performance of developed monitoring scheme. The faults
were selected based on repetitive nature and high criticality
obtained from previous history. The faults were induced in
ball screw (BS) and load bearing (LB) for testing and include
the following.
→ BS Friction (Insufficient lubrication) fault, developed

by ceasing the lubricant and pressing the ball nut seals
firmly (as shown in Figure 12).

FIGURE 12. BS friction by pressing ball nut seals.

FIGURE 13. BS backlash by varying recirculating balls dimension.

→ BS Backlash fault, induced by substituting original
balls with undersize recirculating balls (as shown
in Figure 13).

→ LB Friction (Insufficient lubrication), developed by
ceasing bearing lubricant.

→ LBRoller Damage, developed by creating surface flaw
at load bearing roller (as shown in Figure 14).

FIGURE 14. LB Roller damage stages.

Since it takes sufficient time for natural failure, therefore,
the above mentioned faults were added to simulate system
behavior and competency for signal features and faults clas-
sification.
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In case of BS in-adequate lubrication fault, the lubricant
carried by ball nut was initially removed. Signal data was
observed and recorded as partial friction fault. Since BS drive
offers low characteristic friction coefficient, major signal
changes were not observed. Friction severity was increased
in the next phase by tightening sealing locks provided at the
end of ball drive nut as depicted in Figure 12. BS backlash
was studied by substituting original dimensioned balls with
undersize balls in ball nut channel. The original size of
recirculating balls was 3mm in diameter which was replaced
with 2.8mm and then 2.4mm successively. LB friction was
analyzed by removing synthetic-based protective grease from
bearing. LB roller damage fault was simulated in multiple
phases, initiating with small sized flaw at contact surface of
roller nearly 1mm wide (low level) as shown in Figure 14.
In the next stage, the width of surface defect was increased to
2mm (medium level), simulating fault propagation. In the last
stage (high level), the flaw size was increased to 3mm wide
with additional surface marks on multiple rollers as shown
in Figure 14.

The above faults were tested for BS linear drive against
different external loadings to acquire signal measurements
and observe performance of developed scheme. One motion
cycle of BS linear drive under consideration is completed
in 6sec including 1sec dwell time at direction reversals and
gives 80mm linear movement. The loads applied include
rated load (600 N), positive peak load (750 N) and negative
peak load (-750 N). Initially, a number of motion cycles were
given to attain system steady state (normalize thermal and
mechanical effects). Later on, position measurements were
observed for both normal and faulty conditions.

C. DATASET DESCRIPTION
1) BS LINEAR DRIVE DATA SET
The position measurements for mentioned fault cases were
obtained using aforementioned experimentation. Signal data
augmentation was performed, required for improved feature
extraction accuracy and higher performance [35]. This gives
increased number of signal samples, therefore improving
CNNmodel generalization [35]. The observed signal data can
generate large amount of training data by samples segmenta-
tion with signal data overlap (Figure 3). The original signal
data with 40000 points can produce 100 samples, which can
be extended to 800 training samples with a stride length
of 360.

Dataset for four fault categories i.e., BS friction, BS back-
lash, LB friction and LB roller damage was generated with
different severity levels under rated load. The experimental
dataset details are given in Table 1. The faults are desig-
nated by BF (ball screw friction), BB (ball screw backlash),
LF (load bearing friction), LR (load bearing roller damage)
and ND (no defect). The intensity levels of these faults are
given as H (high), M (medium) and L (low). For 1-D signal
to 2-D conversion, as performed in section III-A, 224 ×
224 gray scale image was generated using 50176 signal

TABLE 1. BS dataset description for proposed framework.

sampling points. Gray images for different faults using CWT
conversion are shown in Figure 15. It can be seen that each
fault shows distinct gray image pattern which can be easily
distinguished.

FIGURE 15. 2-D Gray images for different faults using CWT conversion.

2) IMS-UC PUBLISHED BEARING DATASET
IMS-UC (Intelligent Maintenance Systems - University of
Cincinnati), USA published bearing dataset was also con-
sidered for validation of proposed scheme [55] since it is
publically available and used by many researchers. IMS-UC
dataset provides RTF (run to failure) maintenance testing
results that gives vibration signal data recorded at 20 kHzwith
20,480 input data points. 4 accelerometers were attached to
acquire vibration signals for bearings faults that include outer
race (OR), inner race (IR) and rolling element (RE). The data
packet includes three sets. Random samples were selected for
each set that includes all types of faults data.

D. IMPLEMENTATION DETAILS
The ResT-CNN model was implemented in TensorFlow
Python using Intel core-i7 CPU desktop system with
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GTX1070 GPU, 12 GB memory. 1-D and 2-D CNN’s were
trained with 80 epochs and 150 epochs respectively. Adam
optimization algorithm was adopted with a decaying learning
rate of 0.001; reduce to one-half after 80 iterations. The
dataset was split into training and testing data (along with
validation) data. Augmented dataset was utilized for network
training since it provides large training samples that avoid
data over-fitting and improve model performance. Initial
weights of network model were arbitrarily generated. Ran-
dom samples were selected from defined testing dataset with
different sample size to monitor its effect on performance of
network.

The feature vectors obtained from 1-D and 2-DCNN’s (C1f
and C2f) give the characteristics of different faults. The infor-
mation of both feature vectors can be combined, as shown in
section III-B, by concatenating the two types to form a new
feature vector Cf that carries strong and abundant informa-
tion as compared with individual feature vectors. However,
Cf contains high dimension features which not only require
extra processing power, but a strong SVM classifier as well,
for accurate classification. For this purpose, Kb-Rem-PCA
was proposed and utilized to reduce redundant data from
extracted features. Experiments have shown that the proposed
combination gives low dimension feature mapping which
gives better classification along with reduced memory and
computation cost.

E. PERFORMANCE PARAMETERS
Two critical performance parameters considered commonly
to evaluate the system performance include classification
accuracy and precision. Accuracy gives a comprehensive
classification performance of overall system. Mathemati-
cally, it can be expressed as;

Acc =
TP + TN

TP + TN + FP + FN
(20)

where, FP and TP show false positive and true positive sam-
ples whereas FN and TN represents false negative and true
negative samples. False positive comprises positive samples
which were classified incorrect and false negative means neg-
ative samples which were classified incorrect. True positive
and true negative also gives similar interpretation.

Precision represents a measure of correct classification of
samples outcome. Mathematically precision is given as;

Prec =
TP

TP + FP
(21)

V. RESULTS
The suggested hybrid scheme was successfully trained to
learn features from BS linear drive dataset as well as IMS-UC
dataset for each fault case. The model was then tested and
validated. Figure 16 (a) shows the curves for training and val-
idation results for BS dataset. It can be seen that the proposed
hybrid combination gives close to 100% accuracy. Figure 16
(b) gives precision results for BS linear drive dataset. The
average precision result for each fault is shown. The precision

ratio for BS friction, LB friction and LB roller damage fault is
higher than BS backlash fault. The overall results indicate that
the proposed scheme successfully deals with combination of
critical fault in BS linear drives.

FIGURE 16. (a) Accuracy and (b) Precision results of proposed hybrid
scheme.

A. PERFORMANCE COMPARISON WITH MAINSTREAM
TECHNIQUES
The developed scheme was also compared with few selected
sate of the arts to evaluate classification performance. These
include LeNet [47], Adaptive deepCNN [56] by converting 1-
D signal to 2-D images and implementing adaptive deep CNN
structure, RBF-SVM [21] by training time domain signal
data feature parameters and our proposed hybrid scheme
replacing Mc-SVM with Softmax [48]. Performance results
are mentioned in Table 2. It can be observed that RBF-SVM
and LeNet-5 gives low accuracy as compared with adaptive
CNN. The proposed scheme replacing Mc-SVM with soft-
max (Hybrid scheme with Softmax) further promotes better
results since it improves computational accuracy. The devel-
oped hybrid architecture gives much improved performance
achieving higher accuracy of 99.3%. This proves the superior
performance of developed hybrid methodology for high-level
faults classification.

B. CONFUSION MATRIX FOR BS LINEAR DRIVE FAULTS
Confusion matrix for comparison of BS linear drive
faults was computed using the trained network as given
in Figure 17. The matrix shows fault accuracies for different
predicted classes. It can be observed that the network model
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TABLE 2. Performance comparison with mainstream techniques.

FIGURE 17. Confusion Matrix for BS linear drive faults.

is quite perfect for no defect (ND) class and gives 100%
identification accuracy. BS friction (BF), LB friction (LF) and
LB roller damage (LR) shows higher classification accuracy
in comparison to BS backlash (BB). In general, BB faults
have little bit higher confusion possibilities than with other
fault modes. This implies BB faults are more complex to
analyze and therefore need additional features information to
avoid misclassification or false identification.

C. MODEL VALIDATION WITH IMS-UC BEARING DATASET
In addition to BS dataset, the developed network was also
trained and validated by IMS-UC (Intelligent Maintenance
Systems – University of Cincinnati) bearing dataset that
include inner race (IR), outer race (OR) and rolling ele-
ment (RE) faults data. The dataset were collected at 20 KHz
sampling rate and 2000 RPM which gives 600 points per
rotation. Continuous data samples were recorded for above
20K data points. 1360 data samples with 300 input points
were used for model training and testing. The rolling element
bearing considered for testing has 16 rollers with 8.4 mm
roller diameter, 71.5 mm pitch diameter of bearing, 0.265
radians contact angle and 33.75 Hz rotational speed. Four

accelerometers were used to acquire vibration data. The same
dataset was applied by Jagath et al. [57] and Eren et al. [58]
for validation of their fault detection techniques. Results
are compared in Figure 18. The work of Jagath et al. [57]
provides early and real time faults identification for bearings
using SVM. Time and frequency domain features were con-
sidered for SVM training. Eren et al. [58] apply their pro-
posed adaptive 1-D CNN technique with 1224 training sam-
ples and 5440 testing samples (from 4 fault classes including
no-fault data class). The proposed hybrid scheme was also
trained and tested with similar data samples from each class.
The results for each fault including inner race fault, outer
race fault and rolling element fault are compared below.
The classification accuracy results indicate more reliable and
improved performance with developed model in comparison
to other two techniques.

FIGURE 18. Performance comparison with IMS-UC bearing dataset.

VI. DISCUSSIONS
The combined hybrid model has achieved higher classifica-
tion accuracy with improved feature extraction for desired
diagnostic requirement. Typical characteristic aspects of our
developed framework are discussed below.

A. SUPERIORITY OF RESIDUAL CONNECTIONS IN ResT
CNN (1-D & 2-D CNN’s)
The utilization of residual connections significantly improved
the model accuracy and network training speed through iden-
tity mapping of input data. The stacked residual connections
effectively minimized deep network training difficulties with
better system performance. For ResT CNN, the comparison
of model performance with and without residual connec-
tions is shown in Figure 19. It was found that the training
data accuracy increases by an average of 5% using residual
connections in 1-D and 2-D CNN’s which indicate better
learning rate of proposed architecture. Another important
aspect is the improvement in performance accuracy of val-
idation data which was increased by 7%. This shows that
the overall performance of developed network is greatly
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FIGURE 19. Accuracy Curves with and without Residual connections (a)
Training (b) Validation.

FIGURE 20. Accuracy comparison for PCA architectures.

improved with residual scheme by minimizing effects of
network degradation. Additionally, it can be noticed that
validation accuracy shows rapid convergence with residual
architecture that explicitly indicates improved generalization
and accurate fault classification of developed system with
multi-class features. This illustrates that the proposed model
gives better practical solution for BS linear drives faults
classification.

B. EFFECTIVENESS OF KNOWLEDGE-BASED FEATURES
SELECTION IN DEEP PCA (KB-REM-PCA)
The effectiveness of proposed knowledge-based PCA archi-
tecture was evaluated by computing average accuracies for
proposed Kb-Rem-PCA with non-linear mapping, residual
and deep PCA structures using typical parameters and G (·)
activation function. BS linear drive dataset was considered
for accuracy comparison. 250 random samples were selected
(50 samples per class) from 5 classes that include high

FIGURE 21. Performance against load variations (a) 600 N, (b) 750 N and
(c) −750 N.

BS friction (BS-H), high BS backlash (BB-H), LB friction
(LF-M) and high LB roller damage (LR-H). Results indicate
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that Kb-Rem-PCA offers better features selection and quite
stable behavior even with variation in input parameters set-
tings. Although deep PCA shows good features discrimina-
tion, however there occurs loss of information in succes-
sive layers resulting in reduced accuracy especially when
handling non-linear data. By adding residual connections in
deep PCA, more effective features extraction is achieved than
deep PCA. The addition of knowledge base rough set in
combination with residual blocks significantly improves fea-
tures classification accuracy by eliminating uncertain infor-
mation from features. Kb-Rem-PCA, therefore, gives more
promising classification results by removing data redundancy
and uncertainty. Figure 20 gives outcome of this comparative
analysis for 250 random sample points. The average accu-
racy for Kb-Rem-PCA has increased nearly 6% than with
residual PCA structure. It can, therefore, be concluded that
non-linearmappingwith knowledge base structureminimizes
redundancy and inaccuracies from PCA structure.

C. SYSTEM PERFORMANCE AGAINST LOAD PROFILE
VARIATIONS
In addition to performance evaluation against rated load
(600 N), the model was also studied for load variation in
magnitude and direction. This include positive peak load
(750 N) and negative peak load (-750 N) applied at attach-
ment section of BS LMS under consideration.Multiple exper-
iments were performed with above 3 load cycles in repetition.
This evaluates system’s performance for stability retention
against different load domains. 12 experiments were per-
formed for 3 load cases (4 tests per load cycle). Each load
cycle was repeated 4 times in a sequence. These reversals
of load cycles validate model’s stability and adaptive perfor-
mance to endure domain variations in profile. This scheme
becomes very helpful for practical engineering problems and
provides system response for correct classification at same
computation time under variable load domains. From average
accuracy results in Figure 21, it can be seen that in all exper-
iments, the model retains high level of accuracy with aver-
age variance of ±0.0025 (approx). The average computation
time for each sample classification was found as 0.96 milli-
secs. This ensures good network stability under varying load
cycles with acceptable testing timewhichmakes the proposed
system suitable for real-time monitoring and fault detection
of engineering systems.

VII. CONCLUSION
This paper presents a reliable and effective novel hybrid
combination of collective techniques based on improvements
in deep residual connections to identify and classify BS
LMS faults. The major contributions include application of
position measurement data for accurate detection of different
BS linear drive faults including BS friction, BS backlash,
LB friction and LB roller damage. ResT CNN structure was
developed that comprises parallel learning of 1-D and 2-D
improved deep residual CNN’s followed by knowledge base
Kb-Rem-PCA architecture for reduction of redundant data
and multi-class SVM classifier. This composition greatly

improves system accuracy for typical features extraction and
non-linear faults identification. The proposed methodology
was also validated by IMS-UC published dataset. The results
prove that the developed scheme not only gives effective
extraction of characteristic features but also yields more sys-
tematic classification of faults with different severities and
load variations. The accuracy results also show the superi-
ority of proposed algorithm comparable with state of the art
techniques.

This research can be extended to include some other failure
modes of BS LMS elements to explore combined failure
scenarios for more accurate system diagnosis. A comparison
can also be donewith fault signals from real failure case along
with induced faults. This would be more helpful to predict BS
drives performance with proposed scheme comparable with
real complexities in actual framework.
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