
Received January 22, 2021, accepted February 15, 2021, date of publication February 26, 2021, date of current version March 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3062388

Systematic Mapping of the Literature on
Secure Software Development
HERNAN NINA 1,2, (Senior Member, IEEE),
JOSÉ ANTONIO POW-SANG1, (Senior Member, IEEE),
AND MÓNICA VILLAVICENCIO3
1Maestría en Informática, Pontificia Universidad Católica del Perú, Lima 15088, Peru
2Carrera Profesional de Ingeniería de Sistemas, Universidad de Lima, Lima 15023, Peru
3Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral, 090902 Guayaquil, Ecuador

Corresponding author: Hernan Nina (hernan.nina@pucp.edu.pe)

ABSTRACT The accelerated growth in exploiting vulnerabilities due to errors or failures in the software
development process is a latent concern in the Software Industry. In this sense, this study aims to provide
an overview of the Secure Software Development trends to help identify topics that have been extensively
studied and those that still need to be. Therefore, in this paper, a systematic mapping reviewwith PICo search
strategies was conducted. A total of 867 papers were identified, of which only 528 papers were selected for
this review. The main findings correspond to the Software Requirements Security, where the Elicitation
and Misuse Cases reported more frequently. In Software Design Security, recurring themes are security in
component-based software development, threat model, and security patterns. In the Software Construction
Security, the most frequent topics are static code analysis and vulnerability detection. Finally, in Software
Testing Security, the most frequent topics are vulnerability scanning and penetration testing. In conclusion,
there is a diversity of methodologies, models, and tools with specific objectives in each secure software
development stage.

INDEX TERMS Software development, security, requirements, design, construction, testing, vulnerability,
systematic mapping review.

I. INTRODUCTION
A study by the US Department of Homeland Security shows
that more than 90% of cyber-attacks are not due to defects
in cryptography, networks, or hardware, but due to vul-
nerabilities generated in software development [1]. Further-
more, the increase in malicious activities targeting software
products and software security weaknesses has become a
significant problem for the software development process.
Likewise, it is necessary to address security issues from the
beginning of the software development life cycle (and in
each phase) instead of facing them by creating patches when
the software is in the production phase [2]–[4]; therefore, a
comprehensive model is needed to adapt security activities to
the software development process [6]. The secure software
development process comprises software requirements secu-
rity, software design security, software construction security,
and software testing security. This process aims to enrich

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Chi Chen .

security requirements, use threat models methodologies dur-
ing software design, and apply best security practices for
coding, code reviews, and tests [5]. To increase the security
level of software products, this process should be continu-
ously updated [5], [7]; hence, studies showing the trends in
methodologies, notations, tools, and techniques are required.

Moreover, a systematic mapping study with an updated
overview of trends in secure software development is nec-
essary to identify the most relevant topics in the secure
software development process and to complement existing
studies which have a variety of objectives and context. For
example, some systematic mapping reviews focus on: agile
methodologies’ security requirements; specific applications
(e.g. Cyber-physical System), particular methods (e.g. prob-
lem frames or threat analysis), quality assessment, SWOT
analysis, among others [8]–[14].

This paper is structured as follows: Section II describes
the research methodology, section III presents the results
of the systematic mapping study, and section IV poses the
conclusions and future works.

36852 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0230-5812
https://orcid.org/0000-0002-5577-0016


H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

FIGURE 1. Process steps for systematic mapping studies.

II. RESEARCH METHODS
This systematic mapping follows the guidelines for perform-
ing systematic literature reviews in software engineering pro-
posed by Kitchenham and Charters [15] and the guidelines
for systematic mapping studies in security engineering rec-
ommended by Felderer and Carver [16]. Figure 1 illustrates
the steps described to carry out systematic mapping studies.

Each process of the systematic mapping study in secure
software development is presented below.

A. STUDY PLANNING
In this phase, the research questions must be formulated.
To do so, the PICo technique [17] was applied, as follows:

• Population: Software development.
• Interest: Secure software.
• Context: The context corresponds to the sector of the
Software development industry.

As a result, five research questions were stated for this
mapping study (see Table 1).

B. SEARCHING FOR STUDIES
For the present study, the indexed bibliographies databases
were used: Scopus, Web of Science, IEEE Xplore, and ACM
Digital Library. These databases are frequently used in sys-
tematic mapping studies in the Software Engineering disci-
pline and have automated search tools that allow an adequate
level of coverage for the subject studied. Table 2 illustrates
the selected sources for this mapping study.

The search for scientific articles in the above men-
tioned databases was carried out according to the following
procedure:

TABLE 1. Research questions.

TABLE 2. Selected sources for the Systemic mapping study.

• Keywords: Two keywords were obtained by decompos-
ing the research questions: ‘‘software development’’ and
‘‘secure software’’.

• Synonyms. Synonyms were created for ‘‘software devel-
opment’’ which correspond to the following terms:
‘‘software engineering’’, ‘‘software process’’, ‘‘software
construction’’, and ‘‘software project’’. The following
terms were used for the keyword ‘‘secure software’’:
‘‘software security’’, ‘‘security requirement’’, ‘‘security
attribute’’, ‘‘software vulnerability’’.

• Search strings. Search strings were generated using
logical operators: OR for synonyms and AND for
combine keywords. Table 3 shows the string used in
each database considering studies published in English
between 2014 and 2019. The total number of publica-
tions found until June 10th, 2019 was 867.

• Filtering articles. Articles with a blank abstract or a
language other than English were deleted.

C. STUDY SELECTION
For the final selection of the articles, the inclusion and exclu-
sion criteria shown in Table 4 were used.

VOLUME 9, 2021 36853



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 3. Search strings by database.

TABLE 4. Inclusion and exclusion criteria.

TABLE 5. Summary of results.

After applying the inclusion and exclusion criteria and
filtering duplicates, 528 articles were selected. Table 5 shows
the summary of the search process.

For selecting the articles, the title and abstract were read.
However, full-text reading was necessary in 49 studies.

D. ASSESSING STUDY QUALITY
Considering that a large number of studies were retrieved;
one reviewer, the first author, filtered the papers applying
the inclusion and exclusion criteria [18]. Next, actions were

taken by the second author to evaluate the final set of articles
to reduce the validity threat. The second author checked
the extraction to reduce the bias. The quality assessment of
selected studies was performed based on their credibility,
integrity, and relevance to answer the research questions.

E. DATA EXTRACTION
The extraction of the relevant data from the selected studies
was performed using a classification scheme (see Figure 2)

36854 VOLUME 9, 2021



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

FIGURE 2. Classification scheme for data extraction.

based on a set of recommended rules and practices in secure
software development obtained from: the Software Engi-
neering Body of Knowledge (SWEBOK), ISO/IEC/IEEE
12207:2017 Standard, Software Security Assurance State of
the Art Report (SOAR), and Software Assurance Forum for
Excellence in Code (SAFECode).

III. RESULTS AND ANALYSIS
This section presents the results for each research question
and consequently provides an overview of the secure software

development process trends. A way to determine the rele-
vance of security related aspects encountered in the con-
text of software development can be through their frequency
(i.e. the number of times that an aspect is reported in the
analyzed documents).

A. RQ1: WHAT ARE THE MAIN TRENDS IN SECURE
SOFTWARE DEVELOPMENT?
The main trends in the development of Secure Software
according to systematic mapping are classified on the

VOLUME 9, 2021 36855



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 6. Number of articles by main trends.

following categories: 1) phases of secure software devel-
opment, 2) security principles, 3) type of research studies,
4) application domains, 5) types of software, 6) types of
non-traditional life-cycle models, 7) secure software develop-
ment models, 8) contribution of research studies, 9) artificial
intelligence techniques, and 10) security aspects according
to developers. Table 6 shows the number of articles by main
trends.

FIGURE 3. Classification by phases of secure software development.

First, the publications were classified based on the phases
of secure software development. Likewise, according to the
Software Engineering Body of Knowledge (SWEBOK) and
CSSLP Certification, the phases of the construction of Secure
Software correspond to the requirements, design, coding, and
testing phase of secure software [19], [20]. Figure 3 illustrates
that 267 (42%) of 528 studies focus on the coding phase of
secure software, being this the first topic of interest, followed
by the design, requirements, and testing phases. These results
are similar to a previous systematicmapping study on security
in the software development life cycle carried out with pub-
lications between 1980 and 2015, where coding, design, and
requirements reached 42%, 29%, and 19%, respectively [14].

Second, the security principles were analyzed using
the ISO/IEC/IEEE 12207-2017 standard and CSSLP Cer-
tification Program definitions – see Figure 4. The most

frequently reported security principles are confidentiality,
integrity, and availability. They were identified in 42 studies
(8% of 528 articles) by reviewing the entire content of some
articles.

Third, the articles were classified based on the type of types
of papers recommended in [16] and [21], (see Table 7). As it
can be observed, the evaluation research type is reportedmore
frequently (53% of all reviewed papers). This kind of research
implements a technique in practice or studies a problem in
practice [16]. Only 23 papers reported systematic reviews and
mappings.

Table 8 presents a closer view of the evaluation and
validation research types, showing that a higher proportion
corresponds to the case study research type followed by
experiments.

Fourth, the articles were also sorted out by the security
application domains, resulting in 64 studies; the predomi-
nant domain was government – see Table 9. Some of the
articles propose government frameworks for secure soft-
ware development (e.g. Information technology services to
the Brazilian Government, Malaysian public sector for in-
house web application development, Chinese IT security
standards, etc).

Fifth, the type of software application was obtained from
209 articles that contained that information. Results are
shown in Figure 5 where Web applications (33%) are the
most referred since they are prey to constant attacks that are
difficult to control. Also, large enterprise software presents
a latent security concern because managing bulky assets,
components, and a considerable amount of code is complex.
Likewise, cyber-physical systems must be completely secure,
since these are sensitive applications that integrate physical
systems with software (e.g. systems that manage the opera-
tion of electrical networks). Similarly, emerging applications
such as IoT applications are gradually becoming an attractive
attack vector due to their limited security.

Sixth, the studies were classified according to the type
of software life cycle model. To do so, it was necessary to
review the entire content of some articles. Figure 6 shows
that the most referred were the agile methodologies being

36856 VOLUME 9, 2021



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

FIGURE 4. Frequency of papers by security principle.

TABLE 7. The trend in the types of studies related to secure software development.

TABLE 8. The evaluation research and validation research types reported.

TABLE 9. Security application domain.

the Scrum framework and the dynamic software develop-
ment those that stand out. It was also found that agile
methodologies are not the preferred option for developing

large-scale projects, security-critical software projects, and
projects where requirements are known in advance. Waterfall
methodologies are preferred in those types of projects [22].

VOLUME 9, 2021 36857



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

FIGURE 5. Classification of papers by type of application.

TABLE 10. The secure software development model.

FIGURE 6. Classification of papers by non-traditional life cycle model.

Seventh, we looked for secure software development mod-
els among the articles. Table 10 illustrates the results obtained
from reading 44 studies, where it can be observed that the
Comprehensive Lightweight Application Security Process
(OWASP - CLASP) and the Microsoft Security Development
Lifecycle (SDL) are themost commonly referred. Themodels
that do not appear in the studies despite their popularity are
Security Apple Developer, Web Application Security Con-
sortium (WASC), and SANS information security training.
Apart from secure software development models, there are

also organizations in the world that lead security issues such
as Central Illinois Center of Excellence for Secure Software
(CICESS), Illinois Central College (ICC), GDPR (General
Data Protection Regulation), Malaysian Public Service Orga-
nization (MPS). Department of Defense (DoD), European
Space Agency (ESA).

Eighth, the contributions that the researchers propose in
their studies appear in Table 11. Models, methodologies,
and tools are the most generally reported. A model is a
graphic or mathematical description of a system with its
respective properties; a methodology is a particular set of
procedures; and a tool is the implementation of a process.

Ninth, we look at trends in the use of Artificial Intelligence
techniques for secure software development. Figure 7 illus-
trates the result of 52 studies related to this issue. Machine
learning techniques are undoubtedly trending in secure soft-
ware development, among them the Bayesian network, Sup-
port Vector Machine (SVM), Long Short-Term Memory
model (LSTM), K-Nearest Neighbor (KNN), Principal Com-
ponent Analysis (PCA), Naive Bayes, and frequency -reverse
document frequency TF-IDF.

Finally, Figure 8 presents the classification of papers
according to the problems identified by developers regarding

36858 VOLUME 9, 2021



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 11. Contributions to the development of secure software.

FIGURE 7. Classification of articles by artificial intelligence techniques.

FIGURE 8. Problems encountered by developers.

secure software development. As it can be seen, what
developers require the most is assistance and training to
develop secure software. This is understandable since the
analyzed articles report that developers: lack of knowl-
edge or skills to build these kind of applications, have
the need for a security expert to guide them, and feel
overloaded or have complex development activities to per-
form. Some proposals consider it essential to change the

FIGURE 9. Sub-phases in the security requirements stage.

developer’s mindset to make security a priority in software
development. In this respect, security training helps, but
developers find it challenging to apply it into their program-
ming tasks [23]. It is important to consider that awareness of
security issues is generated through several avenues, includ-
ing company processes, standards, practices, and training,
as well as the contextual factors that drive the focus on
security [24].

VOLUME 9, 2021 36859



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 12. Sub-phases in the security requirements stage.

FIGURE 10. Methods used in security requirements.

B. RQ2: WHAT ARE THE MOST PROMINENT ACTIVITIES,
AND WHAT METHODS ARE PREVALENT IN SOFTWARE
REQUIREMENTS SECURITY?
Security requirements are divided into two categories. The
first category includes software functions that implement
security policies or that are required for security reasons.
The second category is related to the probability that software
security is threatened [19], [25]. Therefore, it is necessary to
consider security aspects from the early phases of develop-
ment. The first phase should identify the software security
requirements and lay the foundation with high-level require-
ment models to continue developing secure software in the
next phases [5].

In the secure software requirements phase, the sub-phases
of elicitation, analysis, specification, and validation are

carried out. Figure 9 and Table 7 shows the classification
of 154 papers related to the requirement phase, being elici-
tation and analysis the sub-phases commonly referred. In the
elicitation sub-phase, the sources of security requirements
are identified based on the application’s goals, domain, and
stakeholders. For its part, the analysis sub-phase classi-
fies and identifies limits, and detects and resolves conflicts
between requirements. Finally, the specification sub-phase
writes the requirements in a formal document to be evaluated
in the requirements validation sub-phase.

Figure 10 and Table 13 presents the security require-
ments methods or techniques identified in 70 papers. These
methods or techniques aim to identify precise requirements,
without ambiguities, and balanced them with other software
quality attributes such as usability and durability. The misuse

36860 VOLUME 9, 2021



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 13. Methods used in security requirements.

FIGURE 11. Security issues in the secure software design phase.

case is more frequently highlighted, which is used to elicit
security requirements and identify potential threats in the use
cases. Other methods or techniques were identified with the
same objective and similar tasks, but with different names
and approaches to tackle security. Likewise, many of the
techniques derive from Security Requirements Engineering,
but there is an interest in applying methods based on machine
learning and agile methodologies. Also, for the prioritization
of security requirements, the Fuzzy - Analytic Hierarchy
Process method is reported. In addition, to represent security
requirements, UML diagram extensions are used in tech-
niques such as UMLsec. Finally, it is not a matter of choosing
the best technique but looking how they can complement

each other. For example, requirements for safety, and security,
usability, and reliability.

C. RQ3: WHAT ARE THE TRENDS IN SOFTWARE
DESIGN SECURITY?
According to the ISO/IEC/IEEE 12207-2017 standard defi-
nitions, software design consists of two activities: software
architectural design and software detailed design. Software
design security deals with the design of software mod-
ules to meet security objectives specified in the security
requirements stage. Early attention to security issues, such
as captured security requirements and design an architecture,
can decrease the likelihood of weaknesses in design [25].

VOLUME 9, 2021 36861



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 14. Security issues in the secure software design phase.

FIGURE 12. Topics in the secure code building stage.

In the present study, 149 papers (28% of the total sample)
are related to secure software design topics. Figure 11 and
Table 14 shows that security in a component-based software
system, threat modeling, and security patterns are trends in
design. Security in a component-based software system is an
option to develop software using third-party software compo-
nents since many times the security risks that can be inherited
from such components are not taking into account, whether
we use commercial off-the-shelf-products (COTS) or open-
source software (OSS). Thread Modeling is an activity best
executed in the software design phase and has the purpose of
identifying the attacks that the software must withstand using
the best defense strategy [26]. Security patterns correspond

to structured solutions for recurring security problems and
are reusable to design secure applications. Security Pat-
terns allow software architects and designers to produce
systems that meet their security requirements, are maintain-
able and extensible from the smallest to the most extensive
systems. [27], [28].

Other topics are design review activities performed at
the end of the detailed design stage and before starting the
coding and testing phases [20], [25]. Architecture modeling
includes the modeling of the architecture for comprehensive
security analysis and the identification of possible attacks.
Likewise, for architectural modeling, UMLdiagrams are used
to represent entities, resources, privileges, safeguards, and

36862 VOLUME 9, 2021



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 15. Topics in the secure code building stage.

FIGURE 13. Vulnerabilities in the secure code construction stage.

policies [25]. Regarding identity and access management,
the ISO 24760 standard defines them as a set of processes
and policies involved in managing the life cycle of digital
identity. Encryption Strategy is the encryption mechanism
used to protect propagated data or inadvertent alteration,
either of stored or transmitted data. This mechanism is con-
sidered comfortable, efficient, and cost-effective in the design
process [26]. Finally, the security design principles establish
general rules and guidelines for design.

D. RQ4: WHAT ARE THE MOST FREQUENT TOPICS IN
SOFTWARE CONSTRUCTION SECURITY?
Software construction security refers to writing the code
for specific situations to deal with security considerations.
Encryption of security in software can be achieved by

following the rules recommended in the Software Engi-
neering Body of Knowledge (SWEBOK) [19]. These rules
emphasize that the Software modules must be as small as
possible, with validated and documented privileges, and with
the ability to avoid sharing objects in memory with other
programs. Figure 12 and Table 15 shows the classification
of 160 studies related to secure code construction, where
the most frequent topic corresponds to Static code analy-
sis (25%). The classification is based on the approach made
by SafeCode and the Information Assurance Technology
Analysis Center (IATAC) [19], [20].

A vulnerability is a weakness expressed in errors or flaws
in the software, which can be exploited by an attacker [29].
According to Andy Ozment, there are three leading
causes of vulnerabilities in software: loss of motivation of

VOLUME 9, 2021 36863



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

TABLE 16. Vulnerabilities in the secure code construction stage.

FIGURE 14. Standards on vulnerabilities.

TABLE 17. Standards on vulnerabilities.

programmers due to constant changes in software require-
ments, lack of knowledge of programmers for developing
complex software; and lack of use of adequate technology

for the construction of secure software [25]. Figure 13 and
Table 16 shows the classification of vulnerability issues
in 159 studies. As it can be noticed, the two most referred

36864 VOLUME 9, 2021



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

FIGURE 15. Topics in the secure software testing stage.

TABLE 18. Topics in the secure software testing stage.

issues are detecting vulnerabilities and exploit vulnerabilities
prevention.

We also reviewed 57 articles to identify standards of vul-
nerabilities; the results appear in Figure 14 and Table 17.
The National Vulnerability Database (NVD) and the Com-
mon Vulnerabilities and Exposures (CVE) are the ones that
appeared most in the studies. Another noteworthy fact is
that the vulnerability reports show that the vulnerabilities
are related to common mistakes that are made during the
programming phase [24].

E. RQ5: WHAT TECHNIQUES ARE PREVALENT AT
SOFTWARE TESTING SECURITY?
Software security tests verify that the software protects data
and complies with the implementation of the Software secu-
rity requirements. There is a diversity of techniques and tools
in the software security testing stage, among which the most
notable are vulnerability scanning, penetration tests, risk
assessment, security audit, ethical hacking, posture assess-

ment, and safety regression [30]–[33]. The present study
identified 83 papers related to software testing security;
Figure 15 and Table 18 summarizes the findings.

IV. CONCLUSION AND FUTURE WORK
Unauthorized access to confidential data is frequent, and
security threats grow exponentially. Hence the importance of
developing secure software. However, in the literature it has
been reported that secure software development approaches
have weaknesses or are little or not accessible for their use in
the software industry.

To deepen into these issues, this study provides an
overview of trends in secure software development by review-
ing 528 articles. We found out that the most frequently
reported topics are software construction security or secure
coding, evaluation research in security, case study papers,
vulnerabilities in web applications, need for assistance and
training in security for developers, and proposal of new secu-
rity software models. The topics less frequently reported are

VOLUME 9, 2021 36865



H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

security principles, agile techniques and methods, popular
secure software development models (OWASP or Microsoft
SDL), and artificial intelligence techniques. Specifically,
in the security requirements stage, the most frequently
reported are elicitation and analysis of security requirements
and the Misuse case technique. Recurring themes in secure
software design are security in component-based software
development, threat modeling, and security patterns. The
secure code construction stage reported most frequently to
static code analysis, vulnerability detection, and public vul-
nerability database (NVD). In the software security testing
stage, vulnerability scanning and penetration testing are the
most recurrent topics.

Finally, to know the characteristics of a secure software
development method, technique, or tool, it is necessary to
deepen the study by conducting systematic reviews.

APPENDIX
Papers Identified in the Systematic mapping of the literature
on Secure Software Development

This information is available at:
http://inform.pucp.edu.pe/~jpowsang/ssd/mapping_

study_appendix.htm

REFERENCES
[1] E. Bodden, ‘‘State of the systems security,’’ in Proc. IEEE/ACM 40th

Int. Conf. Softw. Eng., Companion (ICSE-Companion), May 2018,
pp. 550–551.

[2] X. Meng, K. Qian, D. Lo, H. Shahriar, M. A. I. Talukder, and
P. Bhattacharya, ‘‘Secure mobile IPC software development with vulner-
ability detectors in Android studio,’’ in Proc. IEEE 42nd Annu. Comput.
Softw. Appl. Conf. (COMPSAC), Jul. 2018, pp. 829–830, doi: 10.1109/
COMPSAC.2018.00141.

[3] R. A. Khan and S. U. Khan, ‘‘A preliminary structure of software security
assurance model,’’ in Proc. 13th Int. Conf. Global Softw. Eng., May 2018,
pp. 132–135.

[4] M. Saito, A. Hazeyama, N. Yoshioka, T. Kobashi, H. Washizaki, H. Kaiya,
and T. Ohkubo, ‘‘A case-based management system for secure software
development using software security knowledge,’’ Procedia Comput. Sci.,
vol. 60, pp. 1092–1100, Jan. 2015.

[5] M. Busch, N. Koch, and M. Wirsing, ‘‘Evaluation of engineering
approaches in the secure software development life cycle,’’ in Engineering
Secure Future Internet Services and Systems (Lecture Notes in Computer
Science), vol. 8431, M. Heisel, W. Joosen, J. Lopez, and F. Martinelli, Eds.
Cham, Switzerland: Springer, 2014, doi: 10.1007/978-3-319-07452-8_10.

[6] M. Ramachandran, ‘‘Software security requirements engineering: State
of the art,’’ in Proc. Int. Conf. Global Secur., Saf., Sustainability, 2015,
pp. 313–322.

[7] M. Felderer, B. Katt, P. Kalb, J. Jürjens, M. Ochoa, F. Paci, T. T. Tun,
K. Yskout, R. Scandariato, F. Piessens, ‘‘Evolution of security engineering
artifacts: A state of the art survey,’’ Int. J. Secure Softw. Eng. IJSSE, vol. 5,
no. 4, pp. 48–98, 2014.

[8] H. Villamizar, M. Kalinowski, M. Viana, and D. M. Fernandez, ‘‘A sys-
tematic mapping study on security in agile requirements engineering,’’ in
Proc. 44th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2018,
pp. 454–461.

[9] A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, ‘‘Reusable knowl-
edge in security requirements engineering: A systematic mapping study,’’
Requirements Eng., vol. 21, no. 2, pp. 251–283, Jun. 2016.

[10] P. H. Nguyen, S. Ali, and T. Yue, ‘‘Model-based security engineering for
cyber-physical systems: A systematic mapping study,’’ Inf. Softw. Technol.,
vol. 83, pp. 116–135, Mar. 2017.

[11] S. Rehman, V. Gruhn, S. Shafiq, and Y. I. Inayat, ‘‘A systematic mapping
study on security requirements engineering frameworks for cyber-physical
systems,’’ inProc. Int. Conf. Secur., Privacy Anonymity Comput., Commun.
Storage, Dec. 2018, pp. 428–442.

[12] P. Silva, R. Noël, M. Gallego, S. Matalonga, and Y. H. Astudillo, ‘‘Soft-
ware development initiatives to identify and mitigate security threats: A
systematic mapping,’’ in Proc. CIbSE, 2016, pp. 257–270.

[13] S. Wu, C. Zhang, and F. Wang, ‘‘Extracting software security con-
cerns of problem frames based on a mapping study,’’ in Proc. 24th
Asia–Pacific Softw. Eng. Conf. Workshops (APSECW), Dec. 2017,
pp. 121–125.

[14] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, ‘‘Exploring
software security approaches in software development lifecycle: A system-
atic mapping study,’’ Comput. Standards Interface, vol. 50, pp. 107–115,
Feb. 2017.

[15] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Keele, U.K.,
Durham Univ., Durham, U.K., Tech. Rep., 2007.

[16] M. Felderer and J. C. Carver, ‘‘Guidelines for systematic mapping studies
in security engineering,’’ in Empirical Research for Software Security.
Boca Raton, FL, USA: CRC Press, 2017, pp. 47–68.

[17] C. Lockwood, Z. Munn, and K. Porritt, ‘‘Qualitative research syn-
thesis: Methodological guidance for systematic reviewers utilizing
meta-aggregation,’’ Int. J. Evidence-Based Healthcare, vol. 13, no. 3,
pp. 179–187, 2015.

[18] M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences: A
Practical Guide. Hoboken, NJ, USA: Wiley, 2008.

[19] I. C. Society, P. Bourque, and R. E. Fairley,Guide to the Software Engineer-
ing Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2014.

[20] W. A. Conklin and D. Shoemaker, CSSLP Certification All-in-One Exam
Guide, 2nd ed. New York, NY, USA: McGraw-Hill, 2019.

[21] J. C. Carver, M. Burcham, S. A. Kocak, A. Bener, M. Felderer, M. Gander,
J. King, J. Markkula, M. Oivo, C. Sauerwein, and L. Williams, ‘‘Estab-
lishing a baseline for measuring advancement in the science of security:
An analysis of the 2015 IEEE security & privacy proceedings,’’ in Proc.
Symp. Bootcamp Sci. Secur., Apr. 2016, pp. 38–51.

[22] L. Siddique and B. A. Hussein, ‘‘Practical insight about choice
of methodology in large complex software projects in Norway,’’ in
Proc. IEEE Int. Technol. Manage. Conf., Jun. 2014, pp. 1–4, doi:
10.1109/ITMC.2014.6918615.

[23] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and Y. Zhuang,
‘‘It’s the psychology stupid: How heuristics explain software vulnerabili-
ties and how priming can illuminate developer’s blind spots,’’ in Proc. 30th
Annu. Comput. Secur. Appl. Conf. ACSAC, 2014, pp. 296–305.

[24] T. Lopez, H. Sharp, T. Tun, A. Bandara, M. Levine, and B. Nuseibeh,
‘‘‘Hopefully we are mostly secure’: Views on secure code in profes-
sional practice,’’ in Proc. IEEE/ACM 12th Int. Workshop Cooperat.
Hum. Aspects Softw. Eng. (CHASE), May 2019, pp. 61–68, doi: 10.
1109/CHASE.2019.00023.

[25] T. Winograd, H. L. McKinley, L. Oh, M. Colon, T. McGibbon, E. Fedchak,
and R. Vienneau, Software Security Assurance: A State-of-the Art Report
(SOAR). Herndon, VA, USA: Information Assurance Technology Analysis
Center (IATAC) Data and Analysis Center for Software (DACS), 2007.

[26] S. Simpson, ‘‘SAFECode whitepaper: Fundamental practices for secure
software development 2nd edition,’’ in Proc. ISSE Securing Electronic
Business Processes, Wiesbaden, Germany, 2014, pp. 1–32.

[27] E. Rodriguez, ‘‘Security design patterns,’’ in Proc. 19th Annu. Comput.
Secur. Appl. Conf. (ACSAC), 2003.

[28] A. V. Uzunov, E. B. Fernandez, and K. Falkner, ‘‘Securing distributed sys-
tems using patterns: A survey,’’Comput. Secur., vol. 31, no. 5, pp. 681–703,
Jul. 2012.

[29] S. Barnum and A. Sethi, ‘‘Attack patterns as a knowledge resource for
building secure software,’’ in Proc. OMG Softw. Assurance Workshop,
Cigital, 2007.

[30] Y.-H. Tung, S.-C. Lo, J.-F. Shih, and H.-F. Lin, ‘‘An integrated security
testing framework for secure software development life cycle,’’ in Proc.
18th Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Oct. 2016,
pp. 1–4.

[31] V. V. Ribeiro, D. S. Cruzes, and G. H. Travassos, ‘‘A perception of the
practice of software security and performance verification,’’ in Proc. 25th
Australas. Softw. Eng. Conf. (ASWEC), Nov. 2018, pp. 71–80.

[32] P. Nidagundi andM. Uhanova, ‘‘Software application security test strategy
with lean canvas design,’’ in Proc. IVUS Int. Conf. Inf. Technol., Kaunas,
Lithuania, Apr. 2018.

[33] M. Felderer, M. Bü̈chler, M. Johns, A. D. Brucker, R. Breu, and
Y. A. Pretschner, ‘‘Security testing: A survey,’’ in Advances in Computers,
vol. 101. Amsterdam, The Netherlands: Elsevier, 2016, pp. 1–51.

36866 VOLUME 9, 2021

http://dx.doi.org/10.1109/COMPSAC.2018.00141
http://dx.doi.org/10.1109/COMPSAC.2018.00141
http://dx.doi.org/10.1007/978-3-319-07452-8_10
http://dx.doi.org/10.1109/ITMC.2014.6918615
http://dx.doi.org/10.1109/CHASE.2019.00023
http://dx.doi.org/10.1109/CHASE.2019.00023


H. Nina et al.: Systematic Mapping of the Literature on Secure Software Development

HERNAN NINA (SeniorMember, IEEE) received
the B.Sc. degree in informatics and system engi-
neering and the Master of Administration degree
from the Universidad Nacional de San Anto-
nio Abad del Cusco (UNSAAC), Peru, the mas-
ter’s degree in informatica with mention in
software engineering from the Pontificia Univer-
sidad Católica del Perú (PUCP), and the Ph.D.
degree in system engineering from Universidad
Nacional Federico Villareal (UNFV), Peru. He

was qualified as a Researcher fromCONCYTEC, Peru. He is currently a Full
Professor with the Universidad de Lima, Peru. His research interests include
software engineering, innovation in higher education, and human–computer
interaction. He is also a member of ACM.

JOSÉ ANTONIO POW-SANG (Senior Member,
IEEE) received the B.Sc. degree in informatics
engineering and the Licentiate degree in education
for development from the Pontificia Universidad
Católica del Perú (PUCP), and the master’s degree
in software engineering and the Ph.D. degree
in informatics engineering from the Universidad
Politécnica de Madrid, Spain. He was the Exec-
utive Director of the Postgraduate School from
2013 to 2020 and the Director of the Master’s

Program in Informatics from 2011 to 2020. He is currently a Full Professor

with PUCP. He has published several articles in the field of effort estimation
for software development projects. His research interests include empirical
software engineering, software metrics, software engineering education,
and human–computer interaction. He is a member of ACM and the IEEE
Computer Society. He has been elected President of the Peruvian Section of
the IEEE Computer Society from 2015 to 2018.

MÓNICA VILLAVICENCIO received the Ph.D.
degree in applied engineering from the École de
technologie Súperieure, UQAM, Montreal, QC,
Canada. She is currently a Full Professor with the
Faculty of Electrical and Computer Engineering,
Escuela Superior Politécnica del Litoral (ESPOL),
Ecuador, where she teaches software engineering-
related courses to undergraduate and graduate stu-
dents. She is also the Director of the Doctorate
Program of Applied Computer Science, ESPOL.

Her research interests include agile software development, software mea-
surement, software engineering education, and applied software engineering
to the IoT and intelligent systems.

VOLUME 9, 2021 36867


