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ABSTRACT In agri-food supply chains (ASCs), consumers pay for agri-food products produced by
farmers. During this process, consumers emphasize the importance of agri-food safety while farmers expect
to increase their profits. Due to the complexity and dynamics of ASCs, the effective traceability and
management for agri-food products face huge challenges. However, most of the existing solutions cannot
well meet the requirements of traceability and management in ASCs. To address these challenges, we first
design a blockchain-based ASC framework to provide product traceability, which guarantees decentralized
security for the agri-food tracing data in ASCs. Next, a Deep Reinforcement learning based Supply Chain
Management (DR-SCM) method is proposed to make effective decisions on the production and storage
of agri-food products for profit optimization. The extensive simulation experiments are conducted to
demonstrate the effectiveness of the proposed blockchain-based framework and the DR-SCM method under
different ASC environments. The results show that reliable product traceability is well guaranteed by using
the proposed blockchain-based ASC framework. Moreover, the DR-SCM can achieve higher product profits
than heuristic and Q-learning methods.

INDEX TERMS Agri-food supply chains, agri-food safety, product traceability, profit optimization,

blockchain, deep reinforcement learning.

I. INTRODUCTION

IN recent years, the problems of agri-food safety and farmer
income have received widespread attentions [1]-[4]. The
issues of agri-food safety may occur in each part of agri-food
supply chains (ASCs), while inefficient management strate-
gies of ASCs would lead to low profits. However, many fac-
tors may constrain the normal work of ASCs. First, due to the
complex structure of ASCs, it is hard to record the full circu-
lation information of agri-food products while ensuring that
the information will never be tampered with. Second, the shift
of consumer preferences has become the main barrier of
precisely determining the production and storage of agri-food
products with the consideration of profit maximization. Such
uncertainties and dynamics undoubtedly increase the tough-
ness of designing an efficient ASC framework. To address
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these problems, the effective traceability and management
for agri-food products in ASCs have become urgently
necessary [5], [6].

On one hand, to guarantee the agri-food safety, the infor-
mation of agri-food products in ASCs including produc-
tion, processing, storage, distribution, and retail should be
collected and recorded when establishing a mechanism of
product traceability [7]. However, most of the traditional
traceability solutions of ASCs rely on a centralized system
maintained by a trusted third party, which may suffer from
the potential single-node failure and security threats such
as data tampering and information leakage [8]. Blockchain,
a distributed, append-only, and tamper-proof ledger, offers
an effective architecture for reliable transactions on the
Bitcoin network [9] without the control of a centralized
third party. Each information recorded in a blockchain
should be verified by the majority of participants to reach
a global consensus, which ensures the information source
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with auditability and transparency. Moreover, there is no
need for a blockchain-based traceability solution to con-
nect to a remote cloud data center because it only requires
the stable connection among adjacent participants. There-
fore, the blockchain technology can be used to realize a
reliable product traceability in supply chains, which has
recently become a new research direction and attracted
many research interests. For example, Tian [10] proposed
a traceability system for ASCs with the radio frequency
identification (RFID) and blockchain technologies, where
RFID-based devices and blockchains are used for collecting
and storing data, respectively. Furthermore, the author [11]
designed another traceability system for ASCs based on
the Hazard Analysis and Critical Control Points (HACCP),
blockchain and Internet-of-Things (IoT) technologies.
Toyoda et al. [12] proposed a blockchain-based product own-
ership management system (POMS), which can be used to
prevent counterfeit products in supply chains. Caro et al. [13]
developed the AgriBlockloT, a blockchain-based traceabil-
ity solution, which can acquire the agri-food data of pro-
duction and consumption from IoT devices along ASCs.
Mao et al. [14] designed a blockchain-based credit evaluation
system to optimize the supervision and management of food
supply chains, which collected the credit via smart contracts
and made analysis by using the long short-term memory
(LSTM). Lin et al. [15] proposed an information and com-
munications technology (ICT) based system by integrating
the blockchain technology. Tse et al. [16] discussed the
application of the blockchain technology to the food supply
chain and made comparisons with traditional traceability
systems. Abeyratne and Monfared [17] proposed that the
application of blockchains can help raise trust levels of supply
chains by using transparent and traceable transactions.

On the other hand, to enhance the farmer income (i.e.
product profits), ASC systems are expected to allocate
production and storage properly according to the market
demands for agri-food products [18]. However, it would be
a highly-challenging task to continually make decisions for
profit optimization in complex and dynamic environments of
ASCs [19]. Many classic solutions for ASC management are
based on heuristics [20]-[24], game theory [25]-[28], and
control theory [29]-[32]. For example, Dwivedi et al. [21]
proposed a mixed integer nonlinear programming (MINLP)
model to optimize ASCs with the consideration of carbon
emissions, where two meta-heuristic algorithms are used to
allocate vehicles and choose orders. Kocaoglu et al. [22]
developed a heuristic-based hybrid algorithm to reduce the
delivery costs and computational time in the supply chain
management. Raj e al. [26] designed a generalized analytical
model for sustainable supply chains by using a two-stage
Stackelberg game-theoretic method. Halat and Hafezalko-
tob [27] adopted a Stackelberg game approach to optimize
the carbon regulation policies in inventory decisions of a
multi-stage green supply chain. Wu and Chen [30] utilized
the control theory to find the optimal advertising strategy
with the coordination of a supply chain under competitive
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environments. Zhao and Wang [31] proposed a feedback-
control based strategy for controlling inventory in hybrid
supply chain with uncertain orders. However, these classic
solutions are commonly developed for a specific application
scenario. Therefore, they might be feasible in a static envi-
ronment, but it would be hard for them to fit in complex and
dynamic environments of ASCs.

As a branch of machine learning (ML), reinforcement
learning (RL) [33] can be used to handle the complicated
problem of ASC management by an adaptive and flexible
way. Although the existing RL-based methods can solve the
problem of ASC management to some extent [34]-[36], most
of them adopt the traditional value-based RL algorithms (e.g.
Q-learning [33]). Therefore, these algorithms may not be
able to efficiently deal with a high-dimensional state space
because they calculate and record the Q-values of each action
under all states. To address this problem, a deep Q-networks
(DQN) algorithm [37] was proposed by combining deep
neural networks (DNNs) [38]. In light of the DQN algo-
rithm’s advantages, such deep reinforcement learning (DRL)
has great potentials to well address the problem of ASC
management.

In response to the problems of agri-food safety and farmer
income, we propose an effective traceability and manage-
ment solution for ASCs based on the blockchain and DRL
technologies. To the best of our knowledge, the integration
of the blockchain and DRL technologies in ASCs is still an
untapped but worthy research area. The main contributions of
this work are summarized as follows.

« A blockchain-based framework is designed to guaran-
tee agri-food safety with product traceability in ASC
systems, where the proof-of-work (PoW) is utilized to
ensure the global consensus so that the tracing data
is consistent, unique, and cannot be falsified. There-
fore, the proposed framework can ensure a decentralized
security for the agri-food tracing data in ASCs.

o A Deep Reinforcement learning based Supply Chain
Management (DR-SCM) method is proposed to deter-
mine the amount of production and storage in order to
achieve higher profits. The DR-SCM can autonomously
attain the policy of ASC management by interacting with
complex and dynamic environments of ASCs. Notably,
the problem of high-dimensional state space is well
addressed by introducing DNNSs.

o The extensive simulation experiments are conducted
to verify the effectiveness of the proposed DR-SCM
method in blockchain-based ASC systems. The results
show that the DR-SCM can achieve higher product prof-
its compared to heuristic and Q-learning methods under
different ASC environments.

The rest of this paper is organized as follows. In Section II,
the proposed blockchain-based framework for secure prod-
uct traceability in ASCs is introduced. Section II for-
mulates the problem of ASC management and discusses
the proposed DR-SCM method in detail. In Section IV,
the proposed solution is evaluated by simulation experiments.
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FIGURE 1. The proposed blockchain-based framework for secure agri-food tracing data in ASC systems.

Finally, Section V concludes this paper and looks for future
work.

Il. BLOCKCHAIN TECHNOLOGY FOR SECURE PRODUCT
TRACEABILITY IN ASCs

The original concept of Bitcoin was appeared in 2008 [9],
which has since developed into a highly popular decentralized
digital currency. Bitcoin is built on a Peer-to-Peer (P2P)
network (i.e. the Bitcoin network), which reveals three con-
sensus issues as follows.

« Realizing synchronization. Transaction records on dif-
ferent devices will be inconsistent if some devices are
disconnected or not running Bitcoin clients. Therefore,
it requires synchronization among devices for maintain-
ing the same list of transaction records.

o Preventing falsification. Transaction records may be
falsified by hackers, which would cause the contradic-
tions of transaction records on different devices and lead
to the errors of the Bitcoin network.

« Avoiding reuse. A Bitcoin income may be transferred to
different users simultaneously. However, due to the dif-
ferent broadcasting routes of a transaction on the Bitcoin
network, the order in which transactions are received by
different devices might be different. This will result in
disagreements of devices on the validity of transaction
records.

Therefore, the blockchain technology [9] was proposed to
solve the above consensus issues on the Bitcoin network. As a
distributed ledger, a blockchain is maintained by the partici-
pants on the Bitcoin network. More specifically, a blockchain
is made up of many blocks in only one chain, which stores the
blocks that have been verified by the majority of participants.
A transaction is placed into a new block that is added to
the blockchain after a blockchain user completes a PoW
task with verification from all the other participants. Thus,
the blockchain technology provides a reliable mechanism to
secure transactions.
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In order to guarantee the security of agri-food tracing
data in ASCs, we propose a blockchain-based framework
for ASC systems. As shown in Figure 1, through using dig-
ital technologies (e.g. QR/bar codes, RFID, NFC, sensors,
and mobile devices), the tracing data captured during each
transaction in ASCs will be added to a block. After each
block is validated by the participants of ASCs and reaching
a consensus, the block will be added to the blockchain they
maintain and become a secure permanent record. The main
components of the proposed framework are described as
follows.

o Providers. The tracing data includes the information
of agri-food raw materials (e.g. seeds, pesticides, and
fertilizers), the transactions with farmers, etc.

o Farmers. The tracing data includes the information of
farms, farming practices, cultivation process, weather
conditions, the transactions with providers and proces-
sors, etc.

o Processors. The tracing data includes the information of
factories, processing ways, the transactions with farmers
and distributors, etc.

« Distributors. The tracing data includes transportation
details, storage conditions (e.g. temperature and humid-
ity), the transactions with processors and retailers, etc.

o Retailers. The tracing data includes the information
of agri-food products (e.g. quality, quantity, price, and
expiration dates), storage conditions, the transactions
with distributors and consumers, etc.

o Consumers. Consumers can use mobile devices to get
the detailed information of agri-food products (from
providers to retailers).

In the blockchain network, each participant has an oppor-
tunity of mining blocks with the successful application of the
Proof-of- Work (PoW) [9]. As shown in Figure 1, the PoW
requires participants to prove their work by completing a
mining task, which is a mathematical puzzle that is extremely
difficult to be solved but easy to be verified. Commonly, this
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FIGURE 2. A simplified scenario of ASC management.

puzzle is defined as

Find n s.t. SHA256(SHA256(h.n)) < target @))

where h represents the contents of a block, n is a random
number, and "." is a string concatenate operator. By using
the SHA256() function [39], a cryptographic hash function,
we can get a 256-bit binary number. If this number is smaller
than the set rarget, which represents the difficulty of mining,
the puzzle is solved successfully.

IIl. EFFECTIVE ASC MANAGEMENT BASED ON DRL

We formulate the problem of ASC management in order to
enhance the farmer income (i.e. product profits). As shown
in Figure 2, we consider a simplified scenario that con-
sists of one processor (i.e. a corn factory) with multiple
retailers over a fixed number of periods, where the corn
is shipped from the factory to retailers through distributors
(i.e. trucks). During each period, the amount of corn to be
produced and stored at the factory as well as the amount of
corn to be shipped to retailers would be decided. For each
retailer, there is a seasonal demand for corn. If a retailer
cannot meet the demand, a punishment will occur until the
demand is satisfied. To make the problem closer to reality,
there are limitations on production capability and storage
capacity of the factory as well limitations on storage capac-
ity of retailers. Moreover, we assume that the demand may
exceed the production capability of the factory, and thus
there should be enough stock of corn at retailers. In response
to this problem, both the factory and retailers should be
able to efficiently rebuild stock according to the demands of
corn.

Specifically, there are one factory, denoted by vg, and
multiple retailers, denoted by L = {vy, va, ..., v,}. For the
clarity of presentation, they are integrated into a set, denoted
by V. = {vg,v1,...,vs}. The major symbols used in the
problem formulation are defined in Table 1.
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TABLE 1. Major symbols used in the problem formulation.

Symbol Definition
\% Set of a factory and multiple retailers
TO Total turnover of selling corn at retailers
P Unit price of corn
d; Corn demand of a retailer
d; ¢ Corn demand of a retailer at a time period
dmazx Predefined maximum demand at a retailer
sto; ¢ Stochastic factor
Cprod Production cost of corn
Cpr Unit cost of producing corn at the factory
ap Production level of the factory
Cltrans Transportation cost of corn
Ctr,i Truck cost of shipping corn to a retailer
t_cap; Truck capacity to a retailer
a; Transportation volume to a retailer
Cstore Storage cost of corn
Cst,i Cost of storing corn at a factory or retailer
Si Stock level of a factory or retailer
Cpunish | Punishment cost of dissatisfying demands
Cpu Unit punishment cost
Profits Net profits of producing and selling corn

First, the total turnover obtained by selling corn at retailers
is defined as

r0=p-Yd @)
i=1

where p is the unit price of corn, d; = Zthl d;; is the corn
demand of a retailer, and T is the number of time periods.
Specifically, we consider a time period of 12 months for
ASC management. Meanwhile, the application of vacuum
packs and frozen storage promises that the corn is fresh for
over 12 months. Therefore, the shelf life of the corn can be
neglected under this situation. As mentioned before, there is
a seasonal demand for corn at different retailers, and thus
the corn demand of a retailer at a time period is defined
as

dit _ Ldmax + dmax . .n<(2i+t)'7t
2 2 6
where dqy 1s the predefined maximum demand at a retailer.
sto; ; is the stochastic factor that is randomly assigned a value
of O or 1 at a retailer over different time periods, which is used
to simulate the sudden increase in demand.
Next, the production cost of corn is defined as

) +stoi;]  (3)

Cprud = Cpr - Qo “4)

where ¢, and aq are the unit cost of producing corn and the
production level of the factory, respectively.
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Then, the transportation cost of corn is defined as

n

Crrans = Y (Cari - [—1) ®)

t_cap;
i=1 —capi

where ¢y ; is the truck cost of shipping corn to a retailer and
t_cap;j is the truck capacity to a retailer. g; is the transportation
volume to a retailer, and the total volume to all retailers should
be less than the stock of the factory.

Moreover, the storage cost of corn is defined as

n
Cstore = Z(Cst,i - 8;) (6)
i=0
where ¢y ; and s; are the cost of storing corn and the stock
level of a factory or retailer, respectively.
Besides, the punishment cost occurs when a retailer cannot
meet the demand of corn, which is defined as

n
Cpunish = Cpu * Z(dz —5i) @)
i=1

where ¢y, is the unit punishment cost.
Therefore, net profits of producing and selling corn in
ASCs can be calculated by

Profits = TO — Cproa — Crrans — Cstore — Cpunish (®)

After formulating the problem of ASC management,
we propose a Deep Reinforcement learning based Sup-
ply Chain Management (DR-SCM) method. The DR-SCM
can be used to efficiently determine the production and
storage of corn for optimizing product profits. As shown
in Figure 3, a scenario of ASC management is regarded
as the environment, and the Deep Reinforcement Learn-
ing (DRL) agent takes actions by interacting with the envi-
ronment. Moreover, we define the state space, action space,
and reward function for the proposed DR-SCM method as
follows.

« State space. The state at the time period ¢ is defined as
s; =[S0, 81, 82, ..., Sy, di], where sg and (s, 52, ..., S,)
are the stock levels of the factory and retailers, respec-
tively, which are within the maximum stock capacity
s_cap;. di = [dit,day, ..., dn], defined in Eq. (3),
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represents the demands of different retailers at the time
period ¢.

o Action space. The action taken by the DRL agent is
to make decisions for the production of the factory and
the amount of products shipped to retailers. Therefore,
the action at the time period ¢ is defined as a; =
lag, a1, az, ..., ay], where ag = {0,1,..., 8|8 € N}
is the production level of the factory, which is lim-
ited by the predefined maximum production level S.
(ay,aa, ..., ay) is the amount of products shipped to
each retailer, which is less than the stock of the factory,
denoted by > "1, a; < so.

« Reward function. The reward function is used to guide
the DRL agent to learn the optimized policy of ASC
management with higher rewards, aiming to enhance
product profits. Therefore, the reward function at the
time period ¢ should follow a positive increment of net
profits (defined in Eg. (8)) as r; = Profits.

A. Q-LEARNING ALGORITHM

As a classic RL algorithm, the Q-learning [33] learns policies
by recording and utilizing the rewards of each state-action
pair, denoted by (s, a). For each timestep, the RL agent
calculates and records each Q(s, a) in a Q-table. Q(s, a) can
be used as a long-term reward, and it is defined as

0'(s,a)=r+ y - maxyO(s', a') )

where s and a are the current state and action. s’ and a’ are
the next state and action. y (0 < y < 1) is the discount
factor. When y is close to 0, the RL agent tends to focus on the
immediate reward. By contrast, when y is close to 1, the RL
agent tends to consider the future reward.

In the Q-Table, Q(s, a) is updated by

O(s, a) = Q(s, a) + o - (Q' (5, @) — Q(s, @) (10)

where « is the learning rate.

Next, the actions will be chosen by using the e-greedy
algorithm. That is, there is a probability of € that the action
with the greatest value of Q(s, a) in the current Q-Table will
be chosen. Otherwise, a random strategy will be taken for
choosing actions. Thus, the Q-learning may be able to grad-
ually find the optimal policy of ASC management. The main
steps of the Q-learning are shown in Algorithm 1.

B. DR-SCM METHOD

Although the Q-learning can solve the problem of ASC man-
agement to some extent, it may not be able to efficiently
deal with a high-dimensional state space. This is because the
Q-learning calculates and records the Q-values of each action
under all states in a Q-table, and thus the matrix of Q(s, a)
would become large, which may cause the algorithm crashed
due to memory overflow. To address this problem, a DQN
algorithm was proposed in [37] that utilizes DNNs [38] to
estimate Q(s, a) rather than calculates a Q-table. In light of
the DQN algorithm’s advantages, we propose the DR-SCM
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Algorithm 1 The Q-Learning for ASC Management

Algorithm 2 The Proposed DR-SCM Method

Input: the state space S, action space A, discount factor y,
and learning rate o.
Output: the policy of ASC management, denoted by 7 (s) =

argmax ¢ 4/ Q(s, a).

1: Initialize Q(s, a) randomly;
2: for each episode do
3: Initialize a state s;
4: for each timestep of episode do
5: Choose an action a under the state s by e-greedy;
6: Execute the action a, receive the reward r, and
observe a new state 5’
O@s,a) < O@s,a)+a-[r+y  -maxy Qs d)
—0(s, a)l;
7: Update state: s < s';
if the state s is terminal then
: Break;
10: end if
11: end for
12: if Vs, a, O(s, a) converges then
13: Break;
14: end if
15: end for

method to autonomously obtain the policy of ASC manage-
ment by interacting with complex and dynamic environments
of ASCs. The main steps of the DR-SCM method are shown
in Algorithm 2.

Compared to the Q-Learning, the improvement of the
DR-SCM is introducing the mechanism of experience replay,
which stores the acquired transitions in memory. Com-
monly, the transitions constructed in chronological order are
highly-correlated and non-stationary, which may cause great
difficulties in training convergence. Through the random
sampling in experience replay and introducing the target
network, the sample correlation and model fluctuation can be
removed to a certain extent, which makes the algorithm more
stable and easier to converge.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DR-SCM method in different blockchain-based ASC envi-
ronments and make comparisons with the other two classic
methods.

A. SIMULATION SETTINGS

The simulation environment is built on Windows 10 64-bit
with Intel® Core™ i7 CPU @2.30 GHz and RAM 8.00 GB
DDR4. We simulate three different ASC scenarios based on
Python 3.6 referring to real-world data settings [40]. In gen-
eral, there is one factory in different ASC scenarios with the
fixed maximum production level § = 20, the unit cost of
producing corn ¢, = 1k RMB/ton, the storage capacity
so = 100 tons, and no storage cost. From the perspectives of
turnover, we set the unit price of corn as p = 2.3k RMB/ton.
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Input: the state space S, action space A, discount factor y,
and learning rate «.
Output: the Q-networks Q4 (s, @) of ASC management.
1: Initialize the experience replay D with the capacity N;
2: Initialize the parameters ¢ of the Q-networks randomly;
3: Initialize the parameters é = ¢ of the target Q-networks
randomly;
4: for each episode do
5 Initialize a state s;
6: for each timestep of episode do
7: Choose an action ¢ under the state s by e-greedy;
8 Execute the action a, receive the reward r, and
observe a new state s’

9: Store the transition (s, a, r, ') in D;
10: Randomly sample a mini-batch of transitions
(s*, a*, r*, s*’) from D;

r¥, terminal

1 y= * x/ ] . )
r 4y - maxa/Qé(s ,a'), otherwise

12: Perform gradient descent on (y — Q d;(s*, a*))?;

13: Update state: s < s;

14: Update parameters every C timesteps: qAﬁ <~ ¢;

15: if the state s is terminal then

16: Break;

17: end if

18: end for

19: if Vs, a, Qy (s, a) converges then

20: Break;

21: end if

22: end for

TABLE 2. Scenario 1: A simple scenario with a single retailer.

Retailers Retailer 1 Retailer 2 | Retailer 3
cst = 0.25k RMB/ton, s=25 tons X X
Trucks Truck 1 Truck 2 Truck 3
ctr = 0.5k RMB/truck X X

As for each retailer, we set the maximum corn demand as
dmax = 10 tons (defined in Eq. (3), the demand changes
seasonally), the number of time periods as T = 12, and
the unit punishment cost as ¢, = 1k RMB/ton (defined
in Eq. (7), the punishment occurs when the demand cannot
be satisfied). As for the capacity of a truck #cp, we fix it as
5 tons. Other detailed settings of different ASC scenarios are
described as follows.

o Scenario 1: A simple scenario with a single retailer.
As shown in Table 2, there is only one retailer (i.e
Retailer 1) with the cost of storing corn c¢; = 0.25k
RMB/ton and the storage capacity s = 25 tons. More-
over, the truck cost of shipping corn from the factory to
Retailer 1 by Truck 1 is set as ¢;» = 0.5k RMB/truck.

« Scenario 2: A typical scenario with three retailers and
same settings. As shown in Table 3, there are three retail-
ers (i.e Retailer 1~3) with the same cost of storing corn
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csr = 0.25k RMB/ton and the same storage capacity s =
25 tons. Moreover, the truck cost of shipping corn from
the factory to Retailer 1~3 by Truck 1~3 is identically
set as ¢ = 0.5k RMB/truck.

o Scenario 3: A complex scenario with three retailers
and different settings. As shown in Table 4, there are
three retailers (i.e Retailer 1~3) with different costs of
storing corn ¢y = (0.20, 0.25, 0.30)k RMB/ton and
different storage capacities s = (20, 25, 30) tons. More-
over, the truck cost of shipping corn from the factory to
Retailer 1~3 by Truck 1~3 is differently set as ¢, =
(0.4, 0.5, 0.6)k RMB/truck.

Based on Scenario 3, RaspberryPi micro computers are
used to play the roles of retailers and trucks for verifying the
effectiveness of the proposed blockchain-based framework
for ASCs. The hashing operations in PoW are executed based
on Python’s library of hashlib.sha256(), where the setting of
PoW difficulty is referred to [41]. Moreover, the tracing data
used is randomly generated, and the number of transactions
per block is randomly distributed in [50, 500].

Moreover, the proposed DR-SCM method is implemented
based on TensorFlow 1.4.0 [42], and NumPy is used to offer
mathematical functions for matrix calculations. In the DR-
SCM, two hidden layers are used in DNNs with 200 and
100 neurons, respectively. Furthermore, we set the number of
episodes as 10000, the mini-batch size as 128, the discount
factor as y = 0.95, the learning rate as « = 0.001, and the
capacity of experience replay as N = 500.

Besides, we evaluate the performance of the other two
classic methods for ASC management, including heuris-
tic [23] and Q-learning [34] methods, to conduct comparative
experiments. In the heuristic method, the stock of retailers
will be replenished if the current stock is less than a prede-
fined threshold (i.e. half of storage capacity at retailers). The
Q-learning, described in Section III-A, records the Q-values
of each state-action pair into a Q-table for maximizing
long-term rewards, but it might suffer from the problem of
high-dimensional state space.

B. EXPERIMENTAL RESULTS
Based on the simulation settings, we first evaluate the effec-
tiveness of the proposed blockchain-based framework for
secure tracing data in ASCs. Figure 4 illustrates the aver-
age computational cost of hashes with different numbers of
blocks in the blockchain. As we can see from the results,
the PoW tasks in the blockchain network consumes large
computational resources when executing hashing operations.
This mechanism ensures the global consensus so that the
tracing data is consistent, unique and cannot be falsified.
Therefore, the proposed blockchain-based framework can
guarantee a decentralized security for the agri-food tracing
data in ASCs.

Next, we evaluate the performance of the proposed
DR-SCM method for ASC management, where the DR-SCM
is compared with two classic methods, including heuristic
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FIGURE 4. Computational cost of hashes with different numbers of
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and Q-learning methods. Figure 5 presents the rewards (i.e.
profits) of different methods for ASC management in vari-
ous scenarios. In general, the rewards of different methods
increase as the number of episodes grows except the heuristic
method. This is because the heuristic method always uses a
predefined threshold to control the operations of ASC man-
agement, and thus it cannot learn more optimized policy of
ASC management during the training process. Compared to
Scenario 2 and Scenario 3, the rewards achieved in Scenario
1 is much lower. This is because there is only one retailer
in Scenario 1 but there are three retailers in Scenario 2 and
Scenario 3, which leads to the difference in turnover. The
performance of the Q-learning always seems good in vari-
ous scenarios, but it might fall into the local optimum and
occur the fluctuation of rewards during the training pro-
cess. By contrast, the DR-SCM always outperforms other
methods for ASC management and presents a more sta-
ble training process in various scenarios. More specifically,
compared to Scenario 2, Scenario 3 become more complex
with changeable situations of retailers and trucks. Under this
condition, the DR-SCM can still achieve better rewards and
stability than the heuristic and Q-learning methods, which
also demonstrates the high adaptiveness of the proposed
method.

Also, we compare the stock of factory and retailers by
using the proposed DR-SCM and the heuristic method in Sce-
nario 3 over different time periods. As shown in Figure 6(a),
the DR-SCM can keep the stock of the factory available
for retailers during most of the time periods, and thus the
stock of retailers can remain positive basically. This because
the DR-SCM can flexibly adjust the production and storage
levels at factory and retailers in response to the seasonally
changeable demands over different time periods. In contrast,
as shown in Figure 6(b), the heuristic method always keep
the stock of the factory at a stable level, which may meet the
demand from retailers in some cases but cannot work well
when demands increase. This flaw leads to the negative stock
of retailers, which means that demands cannot be satisfied
and thus the profits will be reduced. The results highlight the
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TABLE 3. Scenario 2: A typical scenario with three retailers and same settings.

Retailers Retailer 1 Retailer 2 Retailer 3
cs¢ = 0.25k RMB/ton, s=25 tons cst = 0.25k RMB/ton, s=25 tons cs¢ = 0.25k RMB/ton, s=25 tons
Trucks Truck 1 Truck 2 Truck 3

c¢r = 0.5k RMB/truck

c¢r = 0.5k RMB/truck

c¢r = 0.5k RMB/truck

TABLE 4. Scenario 3: A complex scenario with three retailers and different settings.

Retailers Retailer 1 Retailer 2 Retailer 3
cst = 0.20k RMB/ton, s=20 tons cst = 0.25k RMB/ton, s=25 tons cs¢ = 0.30k RMB/ton, s=30 tons
Trucks Truck 1 Truck 2 Truck 3

¢t = 0.4k RMB/truck

c¢r = 0.5k RMB/truck

¢t = 0.6k RMB/truck
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FIGURE 5. Performance comparison among different methods for ASC management in various scenarios.
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advantages of the DR-SCM in handling the complex problem
of ASC management in dynamic environments.

Finally, we compare the training efficiency of the proposed
DR-SCM method and the Q-learning in different scenarios.
As shown in Figure 7, the values of average training time of
the above methods in different scenarios are recorded. In Sce-
nario 1, both the DR-SCM and Q-learning consume low aver-
age training time due to the simple settings of this scenario.
When it comes to more complex environments (i.e. Scenario
2 and Scenario 3), these two methods consume much higher
average training time because it would be harder for them
to find the optimized policy of ASC management. Although
the average training time of the Q-learning is slightly less
than the DR-SCM in each scenario (because there is no DNN
structure in the Q-learning), the rewards obtained by using the
Q-learning is obviously lower than the DR-SCM, as analyzed
in the aforementioned experiments. Therefore, the DR-SCM
can achieve a better trade-off between profit optimization and
learning efficiency than the Q-learning in different scenarios
of ASC management.

V. CONCLUSION AND FUTURE WORK
In this paper, we first design a blockchain-based framework
to guarantee the agri-food safety with product traceability in

36016

ASC systems. Next, we propose a DR-SCM method to make
decisions on the production and storage of agri-food products
for optimizing product profits in ASCs. The extensive simu-
lation experiments verify the effectiveness of the proposed
blockchain-based framework and the DR-SCM method for
ASC optimization. More specifically, the results show that the
proposed blockchain-based ASC framework can well guaran-
tee reliable product traceability. Moreover, the DR-SCM out-
performs common heuristic and Q-learning methods in terms
of rewards (i.e. product profits) while achieving high learn-
ing efficiency in different scenarios of ASC management.
Meanwhile, the DR-SCM has higher flexibility than others
in arranging production and storage. In the real-world ASC
environment, the demands from consumers are changing dur-
ing different time periods. Based on the simulation experi-
ments conducted by using the DR-SCM, the macro-control
for the production and storage of agricultural products can be
effectively performed. Thus, according to demands and costs,
the production of factories can maintain available for retailers
in a cost-effective way while the stock of retailers can well
satisfy the demands from consumers.

The DQN algorithm utilizes a mechanism of experience
replay to facilitate convergence, but the experience data in
the playback memory reveals strong relevance, which may
cause the low efficiency of training for achieving the optimal
performance. To address this problem, in the future, we will
continue our research by applying other advanced DRL-based
algorithms (e.g. asynchronous advantage actor-critic) in more
complex scenarios of ASC management with the demands
constructed by using real-world data. Meanwhile, we will
evaluate the robustness and potential improvements by using
these algorithms and explore their feasibility in real-world
ASC environments.
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