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ABSTRACT Modern antenna systems are designed to meet stringent performance requirements pertinent
to both their electrical and field properties. The objectives typically stay in conflict with each other. As the
simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to
be sought. The most comprehensive information about available design trade-offs can be obtained through
multi-objective optimization (MO), typically in the form of a Pareto set. Notwithstanding, MO is a numer-
ically challenging task, in a large part due to high CPU cost of evaluating the antenna properties, normally
carried out through full-wave electromagnetic (EM) analysis. Surrogate-assisted procedures can mitigate
the cost issue to a certain extent but construction of reliable metamodels is hindered by the curse of dimen-
sionality, and often highly nonlinear antenna characteristics. This work proposes an alternative approach
to MO of antennas. The major contribution of our work consists in establishing a deterministic machine
learning procedure, which involves sequential generation of Pareto-optimal designs based on the knowledge
gathered so far in the process (specifically, by triangulation of the already obtained Pareto set), and local
surrogate-assisted refinement procedures. Our methodology allows for rendering uniformly-distributed
Pareto designs at the cost of a few hundreds of antenna EM simulations, as demonstrated by means of three
verification case studies. Benchmarking against state-of-the-art MO techniques is provided as well.

INDEX TERMS Antenna optimization, EM-driven design, multi-criterial design, Pareto front triangulation,
surrogate modeling.

I. INTRODUCTION
Contemporary antenna systems have to satisfy multiple and
often stringent requirements concerning their electrical and
field characteristics, such as broadband [1] or multi-band
operation [2], multi-input multi-output (MIMO) function-
ality [3], circular polarization [4], tunability [5], pattern
diversity [6], or enhanced gain [7]. These specifications are
rooted in the needs pertinent to specific application areas
(e.g., wearable [8] or implantable devices [9]), including the
emerging technologies such as 5G [10]–[12], or the internet
of things (IoT) [13], [14]. Their fulfilment generally requires
novel and complex antenna structures, whose geometries are
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parameterized by large numbers of variables, when com-
pared to traditional radiators [15]–[17]. Appropriate tuning
of antenna dimensions is critical from the point of view
of achieving satisfactory levels of performance parameters.
On the other hand, it is a challenging process due to high com-
putational cost of antenna evaluation, normally realized using
electromagnetic (EM) analysis. The necessity of handling
multiple goals and constraints only aggravates the problem.
Furthermore, as the design objectives are often conflicting
(i.e., the improvement of one results in a degradation of
others), trade-off solutions need to be identified. Perhaps the
most common example is the design of compact antennas,
where diminishing the antenna size leads to various undesir-
able effects (e.g., a reduction of the impedance bandwidth,
loss of efficiency, and pattern stability, etc. [18], [19]).

35670 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9063-2647
https://orcid.org/0000-0003-2319-6782
https://orcid.org/0000-0003-3181-4480


S. Koziel, A. Pietrenko-Dabrowska: Rapid Multi-Criterial Antenna Optimization

Given the aforementioned issues, it is clear that con-
ventional, yet still widespread EM-driven design methods
(primarily those relying on parametric studies) are grossly
incapable of handling complex design scenarios, particularly
those involving multiple objectives. Numerical optimization
procedures are much more suitable for this purpose [20];
yet, the vast majority of available algorithms, both conven-
tional (gradient-based methods [21], pattern search [22]),
and nature-inspired (evolutionary algorithms [23], dif-
ferential evolution [24], particle swarm optimizers [25],
firefly algorithm [26]) can only process scalar objective
functions. For practical convenience, multi-objective tasks
are often reformulated into single-objective ones using, e.g.,
weighted sum method [27] or goal attainment approach [28],
as well as objective prioritization by selecting a pri-
mary goal and turning the others into constraints [29].
This allows for utilization of the standard algorithmic
approaches. At the same time, the obtained solutions are
biased towards the user priorities concerning the design
goals.

In order to generate more complete information about the
best possible design trade-offs, typically in the form of a
Pareto set, a proper multi-objective optimization (MO) is
necessary [30]. In principle, single-objective routines can
be adopted for this purpose, e.g., by means of executing
repetitive optimization of the aggregated objectives with
variable weighting factors [27]. Notwithstanding, the most
widely used algorithms nowadays are nature-inspired
population-based procedures mimicking either biologi-
cal [31] or social phenomena [32], many of which have
their multi-objective versions. Some of the popular meth-
ods include evolutionary algorithms [33], differential evolu-
tion [34], particle swarm optimization [35], invasive weed
optimization [36], ant colony [37], and others [38], [39].
The most important benefit of population-based procedures
is the ability of rendering the entire Pareto set in on algorithm
run. On the other hand, the practical bottleneck is poor
computational efficiency with usually thousands of objective
function evaluations required to converge. Clearly, such a cost
may be prohibitive if the antenna under design is evaluated
using full-wave EM analysis.

One of possible ways to alleviate the cost-related difficul-
ties is to combine population-based methods with surrogate
modeling techniques [40], [41]. In some cases, a construction
of the surrogate may be possible within the entire parameter
space of the problem at hand; however, it only applies to rela-
tively simple and low-dimensional problems [42], [43]. In the
case of antennas, an additional obstacle is highly nonlinear
dependence between the geometry parameters and the system
outputs [44]. Furthermore, as mentioned before, majority of
modern antennas are described by a relatively large num-
ber of parameters (typically, over ten). A workaround is the
application of machine learning techniques where rendering
of the surrogate is interleaved with the prediction stages,
at which the promising regions of the space are identified, and
the surrogate models are iteratively improved therein using

various infill criteria [45], [46]. Popular modeling meth-
ods utilized within these frameworks include kriging [47],
Gaussian process regression [48], and support vector
machines [49]. Another possibility is the application of
variable-fidelity EM simulations [41]. Finally, it is also pos-
sible to employ performance-driven modeling techniques,
where the surrogate model domain is confined to the regions
containing high-quality designs, and the training data is only
acquired therein [50]. Performance-driven models have been
adopted forMO purposes and demonstrated to be efficient for
handling multi-parameter antenna structures [51], [52].

The techniques mentioned in the previous paragraphs are
stochastic in the sense that at some stage of the optimiza-
tion process, randomized search procedures (in particular,
nature-inspired methods) are employed, either to handle the
problem objectives directly or at the level of the surro-
gatemodel. Recently, several deterministic surrogate-assisted
MO techniques have been proposed including point-by-point
Pareto front exploration [53], a bisection method [54],
as well as sequential domain patching (SDP) [55]. Although
these algorithms have been developed to handle two-
objective problems, some generalized versions have been
proposed as well (generalized bisection [56], or general-
ized SDP [57]). A common feature of the mentioned tech-
niques is a sequential generation of Pareto-optimal designs
by iterative adjustment of design specifications and solv-
ing local constrained minimization tasks, either directly [54]
or using local surrogates [53]. Perhaps the most impor-
tant advantage of such methods is that no globally accu-
rate replacement models have to be constructed (in other
words, the method exhibits immunity against dimensional-
ity issues) and no stochastic search algorithm have to be
involved.

This paper proposes a novel deterministic machine-
learning-based framework for multi-objective design opti-
mization of antenna structures. Ourmethodology involves the
already gathered knowledge about the system at hand in the
form of currently available Pareto-optimal set, triangulation
of the latter and interpolative predictors employed to generate
the infill points, as well as local design refinement procedures
to obtain additional optimum points. The presented approach
is generic in the sense of being able to handle arbitrary
number of objectives, and allows for generating uniformly
distributed Pareto sets. Furthermore, it is computationally
efficient as demonstrated using three antenna structures,
an ultra-wideband (UWB) monopole optimized for mini-
mum size and minimum in-band reflection, a quasi-Yagi
antenna optimized for maximum end-fire gain and minimum
reflection, as well as an UWB antenna optimized for three
objectives: minimum size, minimum reflection, and mini-
mum in-band gain variability. In all cases, the sets of trade-off
designs are rendered at the cost of a few hundreds of EM
analyses of the respective antennas. Benchmarking against
surrogate-assisted methods is also provided, showing that
the presented approach enables considerable savings but also
improved uniformity of the Pareto set.
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II. MULTI-OBJECTIVE ANTENNA DESIGN VIA PARETO SET
TRIANGULATION
This section introduces the multi-objective optimization pro-
cedure proposed in the paper. We start by recalling the for-
mulation of the MO task, followed by the discussion of
the Pareto set triangulation and the iterative procedure of
generating new Pareto-optimal points by using a predictor
constructed over the existing designs and local constrained
refinement. Demonstration case studies and benchmarking
will be presented in Section III.

A. MULTI-OBJECTIVE ANTENNA OPTIMIZATION. PARETO
SET
The design objectives, all to be minimized, are denoted as Fk ,
k = 1, . . ., Nobj. The goal of multi-objective optimization,
as understood in this paper, is to identify a set of globally
non-dominated designs or a Pareto set, which is a discrete rep-
resentation of the Pareto front, i.e., the best possible trade-offs
between the objectives Fk . The definition of the dominance
relation can be found in the vast literature of the subject
(e.g., [58]). In plain words, a globally non-dominated design
x is such that no other design exists within the considered
parameter space X that is better than x with respect to all
objectives simultaneously. One of the consequences is that all
Pareto set elements are equally good regarding the objective
vector F = [F1 F2 . . . FNobj]T .

The antenna structure under design is assumed to be eval-
uated through full-wave EM analysis. The output of the com-
putational model (e.g., relevant frequency characteristics)
will be denoted as R(x) with x being a vector of (usually
geometry) parameters to be adjusted. The introductory part
of the paper briefly discussed possible ways of mitigating
the issue related to high computational cost of massive EM
simulations required by conventional MO algorithms. These
include both the hybrid approaches, primarily combinations
of nature-inspired algorithms and surrogate modeling meth-
ods [41]–[45], deterministic algorithms [56], [59], as well as
multi-fidelity methodologies combined with the refinement
strategies [40].

B. PARETO SET TRIANGULATION. INVERSE SURROGATE
The major underlying assumption for the MO procedure
proposed in this paper is that the Pareto front is a connected
set, both in the parameter space X , and the space of design
objectives F . This means, in particular, that it does not con-
tain several disjoint subsets. For many practical antenna MO
tasks, this sort of condition is satisfied and follows from
the continuity of antenna characteristics as a function of the
designable parameters.

For the purpose of our considerations, let x(k), k = 1,. . .,
p, denote the Pareto-optimal designs found so far in the MO
process, and F(k)

= F(x(k)) = [F (k)
1 . . . F (k)

Nobj]
T be the

corresponding objective vectors. The firstNobj designs are the
single-objective optima

x(k) = argmin
x∈X

Fk (R(x)) (1)

These points (extreme Pareto-optimal designs [40]) deter-
mine the span of the Pareto front. Subsequent points are
iteratively determined as elaborated on below.

Further, let s(F): F → X be the inverse surrogate estab-
lished using the training data {F(k), x(k)}k=1,...,p. The model
is referred to as inverse because its codomain is the antenna
parameter set. In our approach the inverse surrogate s(F) is
utilized to generate the predictions about the Pareto-optimal
designs parameterized using the objectives Fk , k = 1, . . . ,
Nobj. In other words, the inverse surrogate renders an initial
design for finding a new Pareto-optimal design. In this work,
the data-driven surrogate is constructed using kriging interpo-
lation [46] although other modelling techniques can be used
as well.

Let S(j), j = 1, . . ., Kp, be the simplexes obtained by
triangulation of the set {F(k)}k=1,...,p. The simplex vertices
in the objective space are S(j) = {F(j.1), . . . , F(j.Nobj)}, with
F(j.r)

∈ {F(k)}k=1,...,p, for r = 1, . . . , Nobj. We use Delaunay
triangulation to avoid near-to-degenerate simplexes.

C. GENERATING PARETO-OPTIMAL DESIGNS BY INVERSE
SURROGATE. DESIGN REFINEMENT
The simplexes determine the partitioning of the current rep-
resentation of the Pareto set, and are used to allocate a new
point, which is realized in the form of machine-learning
algorithm according to the sequential design of experiments
strategy based on Delaunay triangulation [60]. In particular,
if A(S(j)) denotes the volume of the simplex S(j), the new
(temporary) objective vector is allocated as

Ftmp =
1
Nobj

∑Nobj

k=1
F(jmax.k) (2)

where

jmax = argmax
1≤j≤Nobj

{A(S(j))} (3)

In other words, Ftmp = [Ftmp.1 . . .Ftmp.Nobj]T is the center of
the simplex having the largest volume among the set S(j), j =
1, . . . , Kp.
The initial design xtmp used to find a new Pareto-optimal

design is then assigned as the image of the vector Ftmp
through the surrogate s, i.e.,

xtmp = s(Ftmp) (4)

As an additional precaution, an alternative initial design is
generated as the center of the simplex S(jmax) in the parameter
space, i.e.,

xtmp.alt =
1
Nobj

∑Nobj

k=1
x(jmax.k) (5)

where x(jmax .k ), k = 1, . . ., Nobj, is the parameter space vector
corresponding to F(jmax .k ). Effectively, the design xtmp.alt is
obtained in the same way as (4) but using the linear model
established using the (parameter space) vertices of the sim-
plex S(jmax). Having both xtmp and xtmp.alt , the better of the two
(in terms of the smaller value of the objective F1) is selected
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as the initial design. The reason for considering the alternative
initial design is that at certain stages of the optimization
process, the prediction of the kriging surrogate model s may
be of limited reliability. For example, the surrogate accuracy
may be questionable at locations in between already found
Pareto-optimal points being relatively away from each other,
while other points are located close to their neighbors (with
the latter determining the surrogate hyper-parameter values).

Because the inverse surrogate only provides an approxima-
tion of the Pareto front, the design xtmp has to be refined in
order to be ‘‘pushed’’ towards the front. This is realized by
solving the following single-objective task

x(p+1) = argmin
x, F2(x) ≤ Ftmp.2

...

FNobj (x) ≤ Ftmp.Nobj

F1 (R(x)) (6)

In (6), the goal is to improve the first objective as much as
possible while fulfilling constraints imposed on the remain-
ing ones, as determined by the initial vector Ftmp. The
problem (6) is solved using a local procedure, specifi-
cally, trust-region-embedded gradient search, which gener-
ates approximations x(p+1.i), i = 0, 1, . . ., to x(p+1) (with
x(p+1.0) = xtmp) as

x(p+1.i+1)

= argmin
x, x(p+1.i) − d (i) ≤ x ≤ x(p+1.i) + d (i)

F2(x) ≤ Ftmp.2
...

FNobj (x) ≤ Ftmp.Nobj

F1
(
L(i)(x)

)
(7)

where L(i) = R(x(p+1.i))+ JR(x(p+1.i))·(x – x(p+1.i)). The
sensitivity matrix JR is estimated using finite differentiation
in the first iteration, and then updated using the Broyden
formula [61]. Rank-one updates are sufficient because the
initial design xtmp is normally close to the refined one, and
the prediction accuracy of the surrogate (cf. (4)) is expected
to improve as the distances between the existing designs x(k)

become smaller. Figure 1 shows a graphical illustration of the
considered concepts.

The new Pareto-optimal point x(p+1) is incorporated into
the existing representation of the Pareto set to create the
updated training ensemble {F(k), x(k)}k=1,...,p+1. The lat-
ter is used to re-generate the surrogate model s(F), which
concludes the iteration of the algorithm. The procedure is
terminated when the required number of designs along the
front have been identified.

D. OPTIMIZATION PROCEDURE
The proposed multi-objective optimization procedure has
been summarized in the form of the flow diagram shown
in Fig. 2. The optimization process starts by acquiring the
single-objective optima x(k), k = 1, . . . , Nobj (extreme
Pareto-optimal designs) as discussed in Section II. B (cf. (1)).

FIGURE 1. Knowledge-based multi-objective design by Pareto front
triangulation: conceptual illustration. The left panel shows the objective
space (here, three dimensional), whereas the right panel illustrates the
parameter space (here, also three-dimensional): (a) first iteration: the
extreme Pareto-optimal designs Fk , k = 1, 2, 3, are triangulated in the
objective space to produce the initial point s(Ftmp); this design is refined
(cf. (5), (6)) to obtain the new Pareto-optimal point x (4) and its
representation in the objective space F (4); (b) second iteration of the
algorithm, where the initial (objective space) design Ftmp is allocated in
the center of the largest simplex (here, S(2)); (c) one of the further
iterations of the procedure.

Using this data, the initial surrogate model s(F) is constructed
and utilized to generate the initial design xtmp, following
triangulation of the existing representation of the Pareto set
in the objective space and identification of the largest simplex
S(jmax). The refinement process (6), (7) involves a solution to
the constrained problem aiming at the improvement of the
first objective without degrading the remaining ones, which
pushes the design towards the Pareto front. The computa-
tional cost of this operation is low due to using a trust-region
gradient-based algorithm with sparse sensitivity updates and
availability of good initial design, the quality of which is
gradually improving once the size of the existing Pareto
set increases. The procedure is terminated upon finding the
required number of designs.

It should be emphasized that the considered MO algo-
rithm is fully deterministic, it does not require any auxiliary
stochastic search procedures, and its computational cost can
be estimated beforehand based on the target number of Pareto
optimal designs to be generated. Furthermore, the knowledge
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FIGURE 2. Flow diagram of the proposed machine-learning-based
framework for multi-objective optimization of antennas by Pareto front
triangulation and interpolative predictors.

about the trade-off designs that have been acquired at any
given stage of the search process is fully exploited using
machine learning (here, inverse surrogates).

An additional benefit that follows directly from the for-
mulation of the method is a fairly uniform coverage of the
Pareto front that can be rendered. As mentioned before, there
are certain limitations as well. The major assumption is that
the Pareto front is a connected set in the parameter space,
i.e., it does not contain several disjoint regions. Although
this is not always the case, the assumption would normally
hold of many practical antenna cases because of continu-
ous dependence between antenna dimensions and frequency
characteristics [40].

III. VERIFICATION CASE STUDIES AND BENCHMARKING
This section provides numerical verification of the multi-
objective optimization framework introduced in Section II.

FIGURE 3. Ultra-wideband monopole antenna with radiator slots:
(a) antenna geometry with the ground plane marked using the light-gray
shade, (b) perspective view.

Demonstration case studies include three antenna structures:
two ultra-wideband monopoles, and a planar Yagi antenna.
Two of these structures are optimized for two objectives
(the first monopole and the Yagi antenna), the third one
is designed with respect to three objectives. The design
goals include size reduction, matching improvement, as well
as reduction of the in-band gain variability. For the sake
of benchmarking, a surrogate-assisted procedure involving
initial parameter range reduction, a population-based meta-
heuristic algorithm, and response correction algorithm for
design refinement, is utilized. In all cases, the considered
algorithms exclusively use high-fidelity EM simulations.

A. EXAMPLE 1: ULTRA-WIDEBAND MONOPOLE ANTENNA
WITH RADIATOR SLOTS
Our first example is an ultra-wideband (UWB) monopole
with two radiator slots [62], shown in Fig. 3. The antenna
is implemented on FR4 substrate (εr = 4.3, h = 1.55 mm).
The independent parameters are x = [LgL0LsWsd dL ds dWs
dW a b]T . The feeding line width W0 = 2.0 mm is fixed to
ensure 50 ohm input impedance (the unit for all parameters
is mm). The EM model is implemented in CST Microwave
Studio (∼600,000 mesh cells, simulation time 3 minutes).
In this work, all the simulationswere performed on Intel Xeon
2.1 GHz dual-core CPU, 128 GB RAM. The computational
model includes the SMA connector.

For the antenna of Fig. 3, we consider two objectives:
F1 – minimization of maximum reflection over the frequency
range 3.1 GHz to 10.6 GHz, andF2 –minimization of antenna
footprint A(x)= (a+ 2o)(l0+ l1+w1). We are only interested
in the part of the Pareto front for which the maximum in-band
reflection does not exceed the level of around −10 dB.

The single-objective optima have been found using trust-
region gradient search [63]: x(1) = [9.07 13.39 9.93
0.43 2.03 9.17 0.80 2.29 3.02 0.29 0.59]T mm (the best
matching design), x(2) = [9.81 13.26 7.82 0.23 4.36
0.00 0.97 1.20 0.00 0.80 0.62]T mm (the minimum size
design).

Figure 4 shows the 10-element Pareto set obtained using
the methodology of Section 2. Table 1 shows the break-
down of the computational cost of the optimization process.
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FIGURE 4. UWB monopole antenna of Fig. 3: Pareto set found by means
of the proposed methodology (o), and the set identified using the
surrogate-assisted technique of [40] (∗).

TABLE 1. UWB antenna of Fig. 3: optimization cost and benchmarking.

The cost of generating the designs x(1) and x(2) is 403 EM
antenna simulations, whereas the expenses related to the
acquisition of the remaining designs is only 162 simula-
tions. Thus, the total cost is 575 EM antenna simulations
(or only 20 simulations per design when excluding extreme
Pareto-optimal point generation). Figure 4 and Table 1 also
show the results obtained using the benchmark technique,
which is a surrogate-assisted framework [40], where the
kriging surrogate model is constructed in the interval
[l∗ u∗] with l∗ = min{x(1), x(2)} and u∗ = max{x(1),
x(2)}, then optimized using a multi-objective evolutionary
algorithm (MOEA) [64] to yield an initial approximation of
the Pareto set, with selected designs further refined using
output space mapping [65]. Limiting the surrogate mod-
eling process to [l∗ u∗], which provides an estimation of
the Pareto front allocation in the parameter space, allows
for alleviating the curse of dimensionality to a certain
extent.

The cost of this procedure is 1433 EM antenna simulations,
a large part of which has been generated by constructing the
surrogate model (acquisition of the training data). In this case,
1000 samples were used to ensure that the model predictive
power is sufficient for the design purposes (average rootmean
square (RMS) error of 7.7 percent). Thus, the computational
savings due to the method of Section II are as high as sixty
percent.

FIGURE 5. UWB monopole antenna of Fig. 3: reflection responses at
selected Pareto-optimal designs of Table 2: x (2) (—), x (4) (· · ··), x (7) (- - -),
and x (10) (-o-).

FIGURE 6. Geometry of the planar Yagi antenna [66].

B. EXAMPLE 2: PLANAR YAGI ANTENNA
The second illustration example is a planar Yagi antenna [66]
shown in Fig. 6, implemented on RT6010 substrate (εr =
10.2, h = 0.635 mm). The designable variables are x =
[s1 s2 v1 v2 u1 u2 u3 u4]T , whereas w1 = w3 = w4 =

0.6, w2 = 1.2, u5 = 1.5, s3 = 3.0, and v3 = 17.5, are
fixed (all dimensions in mm). The EM simulation model is
implemented in CST Microwave Studio and evaluated using
its time domain solver (∼600,000mesh cells, simulation time
4 minutes).

The antenna is supposed to operate in the frequency range
from f1 = 10 GHz to f2 = 11 GHz. We consider two design
objectives: (i) minimization of the in-band reflection within
[f1 f2] (F1), and (ii) maximization of the average end-fire gain,
also within [f1 f2] (F2). The single-objective optima have
been found using trust-region gradient search: x(1) = [4.38
3.56 8.90 4.16 4.08 4.74 2.15 1.50]T (maximum matching
design), and x(2) = [5.19 6.90 7.10 5.08 3.54 4.78 2.23 0.93]T

(maximum average end-fire gain design).
Figure 7 illustrates the 10-element Pareto set obtained

using the proposed methodology. The computational cost
has been summarized in Table 3. The cost of generating
the designs x(1) and x(2) is 160 EM antenna simulations,
whereas the remaining expenses (acquisition of designs x(3)

through x(10)) are only 130 EM simulations. Consequently,
the total cost is 290 EM antenna simulations. Figure 7 and
Table 3 also provide the results obtained using the benchmark
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FIGURE 7. Planar Yagi antenna of Fig. 6: Pareto set found by means of the
proposed methodology (o), and the set identified using the
surrogate-assisted technique of [40] (∗).

TABLE 2. Pareto-optimal designs for UWB antenna of Fig. 3.

(surrogate-assisted framework [40]). For the latter, the krig-
ing surrogate constructed in the interval [l∗ u∗] with l∗ =
min{x(1), x(2)} and u∗ = max{x(1), x(2)}, was optimized
using MOEA, and the selected designs were further refined
to yield the final Pareto set. The cost of this procedure is
1190 EM antenna simulations, with as much as 1000 samples
required to construct a reliable metamodel (average RMS
error of 3.8 and 3.6 percent for the antenna reflection and
gain, respectively). Thus, the computational savings due to
the proposed approach are almost seventy percent.

Similarly as for the first example, the methodology pro-
posed in this work allows for obtaining a uniform coverage
of the Pareto front, which is not the case for the benchmark
method. Furthermore, the span of the Pareto front representa-
tion rendered by the benchmark technique is narrower than
for the approach presented here. Table 4 provides objec-
tive and geometry parameter values for the obtained trade-
off solutions. The reflection and gain characteristic for the
selected designs can be found in Fig. 8.

TABLE 3. Planar Yagi antenna of Fig. 6: optimization cost and
benchmarking.

TABLE 4. Pareto-optimal designs for Yagi antenna of Fig. 6.

FIGURE 8. Planar Yagi antenna of Fig. 6: (a) reflection, and (b) end-fire
gain characteristics for the selected Pareto designs of Table 4: x(1) (—),
x(4) (· · ··), x(7) (- - -), and x(10) (-o-).

C. EXAMPLE 3: UWB MONOPOLE ANTENNA
Our last example is a UWB monopole antenna [67] shown
in Fig. 9, realized on RF-35 substrate (εr = 3.5, h =
0.762 mm). The designable parameters are x = [L0 dR
Rrrel dL dw LgL1 R1 dr crel]T . The computational model
is implemented in CST Microwave Studio and evaluated
using its transient solver (∼840,000 mesh cells, simulation
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FIGURE 9. Ultra-wideband monopole antenna [67]: (a) structure
geometry with the ground plane marked using the light gray shade,
(b) perspective view.

TABLE 5. UWB monopole antenna of Fig. 9: optimization cost and
benchmarking.

time 5 minutes). The model incorporates the SMA connec-
tor. The antenna is to operate from 3.1 GHz to 10.6 GHz.
In the multi-objective optimization process, we consider
three criteria: minimization of the in-band reflection (F1),
reduction of the realized gain variability within the oper-
ating frequency range (F2), and reduction of the antenna
footprint (F3).
The extreme Pareto-optimal designs have been found using

gradient search. We have: x(1) = [10.64 0.0 6.00 0.10 1.46
6.20 10.46 4.26 2.00 0.73 0.49]T (best matching design),
x(2) = [8.74 1.55 5.81 0.51 0.016 5.65 8.95 5.47 2.60
0.99 0.84]T (minimum gain variation design), and x(3) =
[9.51 0.19 4.46 0.27 4.33 1.17 10.05 6.00 2.94 0.99 0.90]T

(minimum-size design).
The 15-element Pareto set generated by means of the pro-

posed approach has been shown in Fig. 10. The cost break-
down of the optimization procedure can be found in Table 5.
The overall cost of finding the design x(1) through x(3) is
440 antenna simulations. The cost of identifying the remain-
ing twelve designs (x(4) through x(15)) is only 242 EM sim-
ulations. The total expenses amount to 684 EM simulations.
For the sake of comparison, Fig. 10 and Table 5 also pro-
vide the results obtained using the benchmark. The kriging
surrogate model constructed for the latter in the interval

FIGURE 10. Ultra-wideband monopole antenna of Fig. 9: Pareto set found
by means of the proposed methodology (o), and the set identified using
the surrogate-assisted technique of [40] (∗).

TABLE 6. Pareto-optimal designs for UWB monopole antenna of Fig. 9.

[l∗ u∗] with l∗ = min{x(1), x(2), x(3)} and u∗ = max{x(1),
x(2), x(3)}, was optimized using MOEA. Despite using as
many as 1600 training samples, the predictive power of the
surrogate is still limited, which is due to a relatively high
dimensionality of the parameter space. The average relative
RMS model error is 15% for reflection characteristics and
11% for the gain response. The final Pareto set was then
obtained through local refinement. The total cost of this pro-
cedure is 2076 EM antenna simulations despite of rendering
only twelve trade-off designs. The computational savings due
to the proposed approach are almost seventy percent. Simi-
larly as for the previous verification cases, our methodology
permits obtaining a uniform coverage of the Pareto front
(unlike the benchmark procedure), which is corroborated by
the results shown in Fig. 10. Additionally, the Pareto front
span produced by the proposed technique is wider than for
the benchmark method.
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TABLE 7. Pareto-optimal designs for UWB monopole antenna of Fig. 9:
objective values.

FIGURE 11. Ultra-wideband monopole antenna of Fig. 9: (a) reflection,
and (b) end-fire gain characteristics for the selected Pareto designs of
Table 6: x (1) (—), x (5) (· · · ), x (10) (- - -), and x (15) (-o-).

Again, the methodology proposed in this paper allows
for obtaining a relatively uniform coverage of the Pareto
front. The span of the Pareto front representation rendered
by both methods is similar. Tables 6 and 7 provide geometry
parameter and objective values, respectively, for the obtained
trade-off solutions. The reflection and gain characteristic for
the selected designs have been shown in Fig. 11.

IV. CONCLUSION
The paper proposed a novel deterministic machine learn-
ing framework for multi-objective optimization of antenna
structures. Our methodology relies on a sequential rendition
of the Pareto-optimal designs based on triangulation of the
already accumulated knowledge in the form of Pareto set
representation, as well as a supplementary surrogate-assisted
refinement procedure. The algorithm does not involve any
stochastic search methods such as population-based meta-
heuristics. It has been comprehensively validated using three
examples of microstrip antennas featuring distinct types of

responses, and optimized with respect to various criteria such
as matching improvement, size reduction, or minimization of
the in-band gain variability. It has been demonstrated that the
presented technique allows for generating trade-off solutions
that uniformly cover the Pareto fronts of the respective struc-
tures. Meanwhile, the computational cost of the optimization
process is low and corresponds to a few hundreds of EM
antenna simulations, with the average expenses of about forty
simulations per trade-off design, but only fifteen simulations
per design for the core part of the algorithm (i.e., excluding
acquisition of the extreme Pareto-optimal points). The com-
putational savings over the state-of-the-art surrogate-assisted
technique are as high as seventy percent, while ensuring
broader and more uniform coverage of the front.

One of the practical limitations of the presented approach
is the number of design objectives that can be efficiently
handled. Although there are no formal restrictions, due to the
triangulation process involved in the procedure, uniformity of
the trade-off design allocation is slightly degraded already at
three objectives, and is expected to further deteriorate beyond
that number. Notwithstanding, the proposed methodology
may be a viable alternative to the existing techniques for rapid
two- or three-objective optimization, especially in the context
of compact antennas (e.g., impedancematching, gain, or axial
ratio versus footprint area).
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