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ABSTRACT This paper reports two variable-gain amplifiers (VGAs) featuring a new pseudo-current-
steering gain-tuning technique. In the first VGA (VGA-I), a single-voltage-controlled dual-branch current
mirror is developed as a standalone gain control block. In the second VGA (VGA-II), two NMOS transistors,
which are biased by a tunable voltage, are integrated into a conventional common-source amplifier to
steer away from a part of the total current. Meanwhile, the theoretical analysis is developed to reveal the
mechanism of different gain tuning. Fabricated in a 40-nm CMOS process, VGA-I (VGA-II) occupies a tiny
area of 0.03 mm2 (0.024 mm2) and consumes 22 mW (20 mW). Measured over a gain range of > 64 dB,
the -3-dB bandwidth of VGA-I (VGA-II) is 9 GHz (6.6 GHz). For the time-domain tests, VGA-I (VGA-II)
exhibits a jitter of 40 ps (30 ps), under a 27-1 PRBS input at 12 Gb/s. Their power efficiencies (1.83 and 1.67
pJ/bit) compare favorably with state-of-the-art.

INDEX TERMS CMOS, high-speed transceiver, variable-gain amplifier (VGA), negative capacitance (NC),
peak-to-peak jitter, data-dependent jitter (DDJ), pseudo-current steering, wide-tuning gain control, dual-
branch current mirror, active inductor.

I. INTRODUCTION
Dynamic range is an important aspect of both wireless and
wireline communication systems. It determines the capability
of a transceiver to process and handle the signal, or the
tolerance on the variation of input power. A wide dynamic
range is always desirable since it makes the system insuscep-
tible to interference and versatile for multi-standard appli-
cations [1], [2]. Therefore, great efforts have been made to
maximize the dynamic range of a certain system. Although
gain tuning technique has been implemented with various
building blocks, such as low noise amplifier (LNA) [3],
power amplifier (PA) [4], trans-impedance amplifier (TIA)
[5], [6], etc., incorporating variable gain amplifier (VGA) is
still the most efficient way to boost the dynamic range. Based
on the control methods, two categories of VGAs are well
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adopted in the communication systems, namely, digitally-
controlled VGA and analog-controlled VGA. The former
usually employs an array of switchable resistors [7], [8].
Consequently, the gain changes in a discrete manner, leading
to phase discontinuity which may cause problems in the
system [9]–[11]. Meanwhile, if a large tuning range and
fine gain steps are required, the large number of the control
bits will exacerbate the complexity and power consumption
of the circuit design. Therefore, continuously-tuned VGA
controlled by the analog signal is more preferred.

Due to the rapid increase of data rate, wideband VGA
is widely employed in both high-frequency and high-
speed communications, such as in the baseband of 60-GHz
wireless transceivers [12], and tens-of-Gb/s backplane
receivers [13], [14]. To reach a bandwidth (BW) of sev-
eral gigahertz, many efforts have been made during the last
decade. Cherry-Hooper amplifier [15]–[17] is made use to
extend the BW of VGA up to 2.2 GHz [18], while the
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FIGURE 1. Overview of the state-of-the-art gain tuning methods.

grounded or floating active inductors [19]–[27] are used to
further extend the BW to 4 GHz [19]. These prior works
obtain a wide tuning range as well as low power consump-
tion, but little design room is left for improvements on
the BW. To alleviate the stringent requirement on both the
gain range and BW, the overall architecture with a post-
amplifier (PA) following the variable gain stage is exten-
sively used [28]–[30]. In such a way, the cascading stages
can provide an adequate small-signal gain while maintaining
broadband feature, whereas the preceding stage only needs to
take care of the gain tuning.

This paper reports a pseudo-current-steering gain-tuning
method. By incorporating it into two different VGA topolo-
gies, both achieve a wide tuning range with a single variable-
gain stage [31]. Their BW can be extended beyond 7 GHz,
thanks to adopting the PA-embedded scheme. Section II
overviews the state-of-art gain tuning methods from two dif-
ferent perspectives. Next, Section III elaborates the proposed
gain tuning method and implementations with two variable-
gain stages. The complete structures of VGAs are sketched
out in Section IV. The measurement results are summarized
in Section V, followed by a brief summary in Section VI as
the conclusion.

II. REVIEW OF STATE-OF-THE-ART GAIN TUNING
METHODS
Based on the control mechanism, the tuning methods can be
categorized into voltage-mode and current-mode. The achiev-
able gain tuning range depends strongly on the specific tuning

methods and structure of the core amplifier. Next, we will
review the state-of-the-art gain control methods and their
implementation approaches.

To make use of single-ended voltage control, the signal
can be applied to the source degenerative amplifier [32], [33]
and cascode amplifier [34], so that their effective trans- con-
ductance is adjustable, as shown in Fig. 1(a). By controlling
the gate voltage of the source degenerative transistor, its
resistance is increased with decreased biasing, and inversely
for the overall gain. However, the transistor will not be turned
on until the control voltage is above the sum of its threshold
voltage and the drain-to-source voltage across the current tail
transistor. Therefore, the useful gain control region, as well
as gain variation range, are both limited. As for the cascode
structure, as shown in Fig. 1(b), the source voltage of the
cascode transistor follows its gate voltage, resulting in a
change in the drain-to-source voltage of the input transis-
tors. If the input transistor operates in the triode region, its
transconductance varies. Therefore, the gate voltage of the
cascode transistor must be high enough to keep the input
transistor operating in the triode region. Such limitation pro-
hibits this structure from low power applications. To attain
a wide gain variation range with low supply voltage, the
single-ended control voltage is applied to both of the feedback
resistors and load resistors of the Cherry-Hooper amplifier
in [15]–[18]. The two dominant factors of the voltage gain,
namely transconductance and load resistance, tune the ampli-
fier simultaneously. Meanwhile, the voltage-control signal
can also be applied differentially, as shown in Fig. 1(c).
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With the signal-summing VGA [35]–[38], the input signal is
applied to the lower transistor pair while the upper-level tran-
sistors control the amount of current flowing to the output.
Similar to the cascode structure, the range of control voltage
also needs to be designed carefully, in order to guarantee a
normal operation of the input transistors.

On the contrary, the current-control signal is usually
applied differentially, such that the change in the current
difference determines the gain of the amplifier. Although it
is demonstrated in [39] that single-ended current-control is
feasible for tuning the current tail of cascaded amplifiers,
the common-mode voltage will be altered in such design,
and to avoid problems caused by large variations, the tun-
ing range must be restrained. To implement a differential
current-control signal, one popular way is to use the archi-
tecture shown in Fig. 1(d), whose load and input transistor
share a total current. This structure is efficient in a way that
changes the gm and output resistance simultaneously, but the
bandwidth keeps changing when the gain is tuned. Another
popular choice is the Gilbert cell implementation [28]–[31].
As shown in Fig. 1(e), the lower transistor pair mirrors a
differential current-control from the right-hand side circuit.
With the input signal applied to the upper transistor pairs, the
resultant output is the difference between the two branches of
the amplifier.

The desirable feature of gain-tuning characteristics affects
the evolution of the VGA’s topologies. Generally, the state-
of-the-art VGAs can be categorized into two groups: one
of which requires a standalone gain-control block, either
to convert the linear control voltage to an exponential out-
put [28]–[30] or to enlarge the gain-control range [31], [40],
while the other topology possesses the gain-control feature
with the amplifier itself [41], [42]. The advantage of stan-
dalone topology is that the separate gain-control block is
isolated from the signal path. Consequently, the performance
of the amplifier, including frequency response, linearity,
and power consumption, can be optimized independently.
Furthermore, according to different requirements for each
application, different exponential generators with desired
accuracies and tuning ranges can be chosen, which provides
the designers with another degree of freedom. The integrated
VGAs, on the other hand, usually have a simpler structure,
thereby reducing the size and complexity of the designs. Yet,
the architecture is more confined with its corresponding gain-
tuning algorithms, exacerbating the trade-off between BW,
linearity, and power consumption.

III. PROPOSED GAIN-TUNING METHOD
A. CONCEPTUAL PRINCIPLE
Although the VGA designed in [22] has achieved extremely
low complexity, it controls the gain of the amplifier in
two steps. First, the negative exponential generator gen-
erates a differential control signal in the voltage domain.
Then, a pseudo-folded Gilbert cell converts it into the cur-
rent domain, controlling the two branches of the amplifier.

FIGURE 2. (a) Illustration of the proposed pseudo-current-steering
gain-tuning technique. (b) Current flow versus gain-control signal (VCTRL)
corresponding to (a) when α1 = α2.

To further simplify the structure, the two-step conversion can
be saved if the gain-control signal can be converted to a differ-
ential output in the current domain directly. The illustration
is shown in Fig. 2(a), in which two voltage-dependent current
sources share a constant total current of I0, and the junction
voltage (Vm) is flexible. Assuming one of the current sources
is related to a variable voltage, VCTRL, while the other is
related to a fixed voltage, VREF, and both of them have a nega-
tive voltage-to-current relationship regarding Vm. As a result,

I1 = α1 (VCTRL − Vm) (1)

I2 = α2 (VREF − Vm) (2)

where α1 and α2 are the voltage-to-current conversion coeffi-
cients of the two voltage-dependent current sources, respec-
tively. Since the sum of I1 and I2 is immutable, Vm must
change accordingly such that,

α1 (VCTRL − Vm)+ α2 (VREF − Vm) = I0 (3)

The above condition in (3) should always be satisfied, from
which the mechanism of current flows in the two branches
can be deduced as depicted in Fig. 2(b). As the gain-control
voltage increases, I1 increases from 0 to I0, while I2 decreases
to maintain a constant total current. If we set α1 = α2, each of
the branch shares the same current, which equals to I0/2, when
VCTRL is equal to VREF. As a result, two continuously varying
currents can be obtained from one single-ended control volt-
age, which could be used to adjust the transconductance (gm)
of the transistors and thus the gain of the amplifier. To imple-
ment this control method into VGA design, both standalone
and integrated gain-control topologies are developed later.

B. IMPLEMENTATION WITH STANDALONE GAIN-TUNING
TOPOLOGY
Fig. 3 shows a single stage of our proposed VGA with a
standalone gain-control block. The single-ended gain control
voltage, VCTRL, is converted to a pseudo-differential current
output, thereafter mirrored to the current tail of the gain
amplifier on the right-hand side. To guarantee the amplifier’s
gain increases monotonically across the entire gain-control
range, one of the PMOS transistors, M1, is connected to
VCTRL, while the other one, M2, is tight to the ground, such
that the maximum current flowing through M1 is half of the
total current, which happens at VCTRL= 0. Under this condi-
tion, the drain-to-source voltage ofM1 andM2 are sustainably
large, and the transistors work in the triode region, i.e. zone I

35816 VOLUME 9, 2021



L. Kong et al.: Wideband VGAs Based on Pseudo-Current-Steering Gain-Tuning Technique

in Fig. 4. Since M3 works in the saturation region, we have

I1 = I3 = K1

[
(VS − VC − Vth1)VSD −

1
2
V 2
SD

]
=

1
2
K3 (VG3 − Vth3)2 (4)

where VS is the source voltage of M1 and VSD is the source-
to-drain voltage of M1. Then

VG3=

√√√√2K 1

[
(VS−VCTRL − Vth1)VSD − 1

2V
2
SD

]
K3

+Vth3 (5)

When VCTRL is increased, the overdrive voltage of M1
becomes smaller than that of M2, resulting in a larger current
flowing through M2 while less current through M1. As the
current through M1 and M3 are reduced, the node voltage
at the drain of M3 is decreased, pushing M1 to operate in
the subthreshold region. With M3 remained in the saturation
region, the current-to-voltage relationship is written as

I1 = I3 = ID0exp
(
VS − VC − Vth1

nVT

)(
1− exp

(
−VSD
VT

))
=

1
2
K3 (VG3 − Vth3)2 (6)

where ID0 is the reverse saturation current and can be obtained
from simulation; n is the subthreshold slope factor and can
be expressed as n = 1+ Cd

Cox
, where Cox is the gate oxide

capacitance per unit area and Cd is barrier capacitance; VT
is the thermal voltage. Thus, it gives as

VG3

=

√
2ID0WL
K3

exp
(
VS − VC − Vth1

nVT

)(
1− exp

(
−VSD
VT

))
+Vth3 (7)

At the same time, the node voltage betweenM2 andM4 keeps
increasing to provide a larger current, making the transistor
M2 work in a deep triode region. Consistently in both zone I
and II, we have

I4 = I2 =
1
2
K4 (VG4 − Vth4)2

= K2

[
(VS − Vth2)VSD −

1
2
V 2
SD

]
(8)

where VS is the source voltage of M2 and VSD is the source-
to-drain voltage of M2. Therefore,

VG4 =

√√√√2K 2

[
(VS − Vth2)VSD − 1

2V
2
SD

]
K4

+ Vth4 (9)

While VCTRL keeps increasing, M1 enters into the subthresh-
old region with a much smaller I1 and M2 maintains in
the triode region to flow through most of the current. The
difference in current keeps increasing until M1 is fully turned
off and the entire current goes through M2, at which point the
amplifier provides the maximum gain.

FIGURE 3. Schematic of VGA-I with standalone pseudo-current-steering
gain control.

FIGURE 4. Analysis of the operation region of M1 and M3 in VGA-I.

Note that, when VCTRL= 0, the amplifier’s gain will be
zero if the effects of the transistors’ non-idealities are not
considered. In a practical design, the layout routing from M4
to M5 is considerably shorter than the one from M3 to M6,
leading to a relatively larger voltage drop of the latter one and
thus a minimum gain close but not equal to zero. Simulation
result reveals that one such stage can provide a wide-tuning
gain range from -40 to 2 dB, with a BW of 20 GHz.

C. DESIGN WITH INTEGRATED GAIN-TUNING TOPOLOGY
Interestingly, our proposed pseudo-current-steering gain-
control method can be integrated with a conventional ampli-
fier as well. As illustrated in Fig. 5, an auxiliary NMOS
transistor pair, M3 and M4, is placed parallel with the input
differential pair, M1 and M2, while its gate is connected to
VCTRL instead of the input signal. Intuitively, the extra pair
manipulates the effective gm by steering away a partial of the
total current, thereby controlling the gain of amplifier. When
the control voltage is much lower than the common-mode
voltage, the control pair, M3 and M4, are turned off and the
gain of the amplifier is fixed at its maximum level. As VCTRL
is gradually increased near to common-mode voltage, M3
and M4 start to turn on and work in the subthreshold region.
Since the input pair works in the saturation region, only a
small amount of current is steered away by the control pair.
While VCTRL is increased further beyond the common-mode
voltage, the control pair steers away a considerable amount
of current and still works in the subthreshold region due to
its large transistor size. Meanwhile, the input transistor pair
operate from the saturation region to the subthreshold region
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FIGURE 5. Schematic of VGA-II with integrated pseudo-current steering
gain control.

FIGURE 6. Analysis of operation region of M1 and M3 in VGA-II.

and even to the cut-off region. Thus, the transconductance
of the input transistors shrinks continually, providing a lower
and lower gain. The working region of the two pairs is shown
in Fig. 6.

When both transistors are working in the subthreshold
region, the current through the input and control transistor is
given by

I1 = ID0
W
L
exp

(
VG − VS − Vth1

nVT

)
(
1− exp

(
−VDS
VT

))
(10)

and

I3 = ID0
W
L
exp

(
VC − VS − Vth3

nVT

)
(
1− exp

(
−VDS
VT

))
(11)

respectively. Since

I0
2
= I1 + I3 (12)

we obtain

VS = nVT

[
ln

(
e
VG−Vth1
nVT +

(w/
L
)
3(w/

L
)
1

e
VC−Vth3
nVT

)

−ln
(

I0
2ID0

(
L
W

)
1

)]
(13)

FIGURE 7. The effect of common-mode voltages on the transition point
of the operating regions.

Since the effective transconductance of the amplifier (Gm)
depends only on the gm of the input transistor pair, it can be
derived as

Gm =
ID0WL exp

(
VG−VS−Vth1

nVT

)
nVT

(14)

Additionally, as the operating region of the input dif-
ferential pair is determined by the difference between the
common-mode voltage and control voltage, one can expand
or shrink the gain control range by adjusting the common-
mode voltage. Fig. 7 illustrates this idea by comparing differ-
ent common-mode voltages from 500 to 700 mV. The higher
the common-mode voltage is set, the later the transition
from saturation to subthreshold occurs. To obtain the max-
imum gain tuning range with a wide gain control range, the
common-mode mode of 600 mV is chosen, so that the control
transistor is turned off when the control voltage is increased
near to the supply voltage, i.e. 800 mV in this design.

Different from the traditional current-steering VGAs,
as shown in Fig. 1(c), our proposed design adjusts the
transconductance of the input transistors directly, instead of
manipulating with the cascode device. In such a way, the
number of devices stacked in each branch is reduced, making
it suitable for low power applications. Moreover, the current
goes through the load resistor does not vary under the differ-
ent gain setting. Therefore, the common-mode voltage of the
output node is constant, and any stage following the VGA can
be directly coupled.

Compared to the topology in Fig. 3, this integrated design
employs fewer transistors, but the parasitic capacitance accu-
mulated at the output nodemay bring concerns for high-speed
applications. Consequently, a BW of 17 GHz is obtained
along with a gain ranging from -30 to 4 dB.

IV. COMPLETE ARCHITECTURE
Plotted in Fig. 8(a) and (b), two completed architectures are
implemented with the abovementioned VGA-I/-II, respec-
tively. Both of them comprise two variable gain stages, mul-
tiple fixed stages, a DC offset cancellation (DCOC) network,
and an output buffer for testing. The broadband technique of
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FIGURE 8. (a) Complete design-I for VGA-I with standalone gain control.
(b) Complete design-II for VGA-II with integrated gain control. Detailed
schematic of (c) fixed gain amplifier and (d) negative capacitance (NC)
circuit.

FIGURE 9. Chip photos and their detailed layouts of (a) design-I and
(b) design-II.

resistive and capacitive degeneration is adopted in the fixed
gain amplifier (FGA), to reduce the effect on bandwidth from
cascading multiple stages.

To accommodate different features of the two variable
gain stages introduced in the last section, care must be taken
when incorporating them into the complete architectures
(Fig. 3 and Fig. 5). In design-I, since the pseudo-Gilbert cell
in Fig. 3 works in such a way that the gain provided by
one input pair is minus from that of another, the resultant
maximum gain is lower compared to the integrated design.
Thus, five stages of the fixed gain amplifiers [Fig. 8(c)] are
required to elevate its maximum gain up to 25 dB, each
of which provides a gain of 4 dB with a power consump-
tion of 3.5 mW. On the other hand, to improve the internal
BW of design-II, the negative capacitance circuit [43]–[49]
[Fig. 8(d)] is inserted between adjacent stages to partially
cancel the larger node-to-ground capacitance. With a similar

FIGURE 10. Measured eye diagrams at 12Gb/s with different input Vin:
(a) design-I, Vin =75mV, (b) design-II, Vin =75mV, (c) design-I,
Vin =250mV, (d) design-II, Vin =250mV, (e) design-I, Vin =1V, (f) design-II,
Vin =1V when the input pattern is 27-1 PRBS.

FIGURE 11. Measured peak-to-peak jitter versus data rate: (a) design-I
and (b) design-II under different input swing (Vin), when the input pattern
is a 27-1 PRBS.

power budget, three stages of the fixed gain amplifiers are
cascaded, such that an overall gain of 23 dB is achieved. The
DCOC employs a low pass filter followed by a transcon-
ductor cell, while the output buffer adopts the fT doubler
structure [30].
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FIGURE 12. Mearsurement results: (a) frequency response of design-I in dB scale, (b) frequency response of design-I in linear scale, (c) gain
characteristic of design-I in dB scale, (d) frequency response of design-II in dB sacle, (e) frequency response of design-II in linear scale, and (f) gain
characteristic of design-II in linear scale.

TABLE 1. Performance summary and comparison of recent state-of-the-art VGAs.

V. MEASUREMENT RESULTS
Fig. 9 shows the chip photos of the proposed prototypes, both
of which were fabricated in standard 40-nm CMOS technol-
ogy, with an active area of 0.03 and 0.024 mm2, respectively.
Their time-domain performance is verified by the pseudo-
random binary sequence (PRBS) with a length of 27-1, and

the eye diagram is captured by the real-time oscilloscope,
as shown in Fig. 10.With different levels of input swing under
the weak, moderate, and strong conditions, the measured
peak-to-peak jitter is plotted in Fig. 11, covering a data rate
from 2 to 14 Gb/s. Under the lower data rate of 2 Gb/s, the
jitter is prominent due to the DC wander resulting from the
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DCOC network. At the higher data rate beyond 12 Gb/s,
high-frequency peaking and its corresponding phase distor-
tion incur data-dependent jitter and inter-symbol interference
(ISI), so the time-domain waveform is worsened. In both
cases, it is observed that higher input levels can lead to
a better jitter performance. Moreover, frequency responses
are measured by the network analyzer and are plotted in
Fig. 12, both in conventional dB scale and linear magnitude
scale. Although incorporating the negative capacitive circuit,
design-II rolls off earlier∼7 GHz, while design-I has a higher
BW up to 9 GHz. This may owe to an insufficient compen-
sation of negative capacitance or an underestimation of the
parasitic capacitance from the simulation results. By plotting
their gain characteristic over the gain-control voltage (VCTRL)
in both dB and linear scales, it is interesting to observe that
both designs preserve a linear-in-magnitude feature in the
high-gain mode whereas a linear-in-dB feature in the low-
gain mode.

Table 1 shows the performance summary and comparison
with recent state-of-the-art VGAs targeting for similar appli-
cations. Both designs show a wider gain range, higher power
efficiency as well as a smaller core area.

VI. CONCLUSION
This paper presented a pseudo-current-steering gain-tuning
method. Two design examples (Design-I and Design-II) were
prototyped in a 40-nm CMOS. Measurement results show
that this work obtains a wide gain range (>64 dB) and
broad BW (> 6.6 GHz), while occupying a small active
area (<0.024 mm2) and achieving a high power efficiency
(<1.83 pJ/bit) up to 12 Gb/s.
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