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ABSTRACT Robots that can move autonomously and can make intelligent decisions by perceiving their
environments and surrounding objects are known as autonomous mobile robots. Such robots have rapidly
moved from laboratories to automated industries to fill a variety of roles in our lives, homes, offices, hospitals,
industries, and even on the streets. The interest in mobile robots is growing rapidly, prompting an enormous
amount of research over the last 30 years, on critical factors of mobile robots such as locomotion, perception,
localization, mapping, ego-motion tracking, and dynamic navigation. This article surveys these essential
factors of autonomous mobile robots in terms of mathematical modeling, control issues, and challenging
factors. Brief discussions are provided on the fundamentals of these technologies, popular algorithms in
comprehensive mode, future challenges, and promising directions to guide the construction of an autonomous
mobile robot with high accuracy and effectiveness. Since it is difficult to find complete coverage of those
topics in a single location, this article provides a guideline for researchers entering the field or for innovators
in the mobile robotics sector. The paper also examines open challenges in indoor mobile robots and identifies

potential futures for autonomous mobile robots.

INDEX TERMS Indoor mobile robot, slam, navigation, path planning, sensors, locomotion.

I. INTRODUCTION

Robotics, which deals with the concept, design, development,
control, and application of autonomous systems, is a rapidly
growing sector with a wide variety of applications. Techno-
logical progress over the years has brought robotics from
laboratories to almost all aspects of science, engineering,
industry, manufacturing, transportation, and life in general.
Even in homes, robots can perform almost any operation,
including cleaning rooms [1], serving food [2], controlling
doors, and serving humans efficiently [3]. Robots already
make an outstanding contribution to the medical sector by
serving patients [4], performing critical operations with great
precision [5], controlling medical devices, and transporting
and instructing patients [6]. The contributions of robotics
in industrial and manufacturing sectors of industries are
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remarkable in the automation of factories, and operating in
hazardous environments controlling and carrying large and
dangerous devices [7].

One of the rapidly growing technologies of the current
world is mobile robots [9]. Mobile robots have been an
interest in the research topic for decades now. It is because
people imagined intelligent agents to do a lot of fascinating
things & computers on wheels with simple sensors were only
the beginning of these imaginations. So people researched
to identify features, detect patterns and regularities, learn
from experiences, localize itself, build maps of its surround-
ings, navigate to its desired place, and accomplish specific
applications [8].

Mobile robots are able to move autonomously in the envi-
ronment for which they are designed. They can sense their
surrounding environments, perform actions in accordance
with their instructions, and make decisions that allow them
to achieve their tasks efficiently, effectively and safely [9].
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FIGURE 1. Basic Control Scheme of Mobile Robots [8].

Computing power, sensor accuracy, and powerful open-source
software have led to mass production and deployment of these
robots in various fields such as personal homes, automa-
tion industries, medical and health-care sectors, schools,
hotel guides, construction sites, unknown land exploration,
patrolling, rescuer operations and many more domains.

Any driver would prefer a less complex approach
in the case of controlling the robots while handling
objects [10]. The efficient design and control of a mobile
robot completely depend on many factors such as locomo-
tion, perception, cognition, and navigation. Each aspect con-
tributes to the ability to manipulate the robots properly in the
given environment [8].

Locomotion mechanisms are needed in mobile robots for
them to move through their environments in order to perform
their tasks that can be achieved by properly understanding
the kinematics, dynamics, and mechanism of the system [11].
To understand the surrounding of a mobile robot, perception
is an important factor that deals with a set of sensors whose
data is extracted by the method of cognition to understand the
real view of the surrounding environment [9], [12].

The selection of the best route for moving the mobile robot
within the environment is done with the help of a navigation
approach consisting of path-planning and object avoidance
algorithms to generate real-time trajectories and avoid col-
lisions [13]. The key factor of the navigation is localization
that helps to optimize the working point of the robot within
its surrounding environment [14]. The efficient control of
the robot navigation largely relies on the creation of proper
mapping of the environment that gives detailed information
of the trajectory and obstacles within the environment [15].
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Figure 1 shows the basic workflow of autonomous mobile
robots using their elements. The mobile robot can be clas-
sified based on the operation to be performed. Based on
its intended working environment, a mobile robot can be
classified as either an outdoor or indoor mobile robot.

Outdoor mobile robots are mainly used in land exploration
with the help of global positioning system (GPS) sensors
to localize and navigate autonomously. They are used in
the agricultural field to automate traditionally labor-intensive
agriculture practices, in defense, to assist the military forces
to find bombs, harmful objects, or navigate and to gather
intelligence [16]. The controlling of locomotion is a criti-
cal challenging task for outdoor mobile robots due to the
dynamics of landscapes. Indoor mobile robots have devel-
oped rapidly from simple line followers that are restricted
to move within a fixed-line, to robots that can recognize
not only their surroundings but also adjust to accommodate
dynamic objects such as people around them. The main
challenges for indoor robots are localization and positioning
as GPS systems do not work indoors [17]. Simultaneous
localization and mapping (SLAM) require high-level sensor
fusion techniques with visual perception capabilities. With
the exponential advancements in computer science, partic-
ularly the growth in artificial intelligence, along with the
increase in computing power in edge devices, the efficiency of
indoor robot navigation has increased dramatically after 2010
[18], [19]. Some uses of robots in indoor spaces include per-
sonal assistants [3], industrial robots [20], waiter robots [21],
a personal assistant robot [22], take-care robots [23] etc.
are becoming true. Figure 2 is evidence of the increasing
popularity of indoor mobile robot throughout the world.
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FIGURE 2. Projection of Number of Robots Manufactured for Different Applications [16].

Mobile robotics is based on a broad range of algorithms
and technologies which have progressed dramatically in the
last twenty years. Cadena et al. [24] have provided a survey of
SLAM, explaining open challenges in SLAM and mapping.
However, the article did not cover the recent advances of
SLAM using deep learning, which has been covered by [19].
This article has surveyed the deep-learning based solutions
for localization and mapping, while fundamentals like loco-
motion and navigation have not been covered. An excellent
survey on navigation techniques such as obstacle avoidance
and path planning is provided by [18]. Alatise et al. [12] dis-
cussed the methods, challenges, and scope of sensor-fusion
methods in mobile robotics broadly, but did not discuss other
aspects of mobile robotics. These papers are focused on
specific aspects of mobile robots and do not provide all of
the fundamentals that make the mobile robot reliable and
controllable.

The efficient regulation of the indoor mobile robot largely
depends on the proper control of locomotion, perception, cog-
nition, navigation as well as mapping. The aforementioned
research articles have focused on only one control side of
the mobile robot. Detailed information of all the controlling
factors of the mobile robot is missing in these research arti-
cles. The main motivation of the research article is to provide
more detailed information about all controlling factors which
makes the design and control procedure easy and efficient.
The fundamentals of the mobile robots such as locomotion,
perception, navigation, localization, mapping, path planning,
and obstacle avoidance as shown in Figure 3 are the essentials
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FIGURE 3. Paper Organization.

aspects of mobile robots which are reviewed in this article in
order to provide a comprehensive guide to the researcher. The
modeling and control issues of these fundamentals are inves-
tigated in terms of mathematical modeling, efficiency, control
approach, and computational cost estimation. The available
technologies of these fundamentals are analyzed in terms of
their integration and design complexity. The minimization of
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the complexity is reviewed by describing control technologies
available in the research community and industry. Different
advanced control technique such as machine learning and
deep learning is becoming popular due to their high level
of accuracy and autonomous control technique. The article
also reviews the implementation of deep learning approach
in different controlling factors of the mobile robots to explore
the new research area in robotics.

A. PAPER ORGANIZATION

The paper begins in section I with a standard formulation of
indoor autonomous mobile robots and a brief introduction
to their core elements. Section II then begins to address
core concepts starting with locomotion in mobile robots,
discussing the type of locomotion, use cases, advantages, and
limitations. Section III formulates a general concept of how
mobile robots perceive the world using sensors, as well as the
type of sensor and sensor-fusion methods that can be used.
Section IV discusses cognitive models of mobile robots and
section V introduces the general components of navigation,
with subsection A discussing the kinds of maps generated for
mobile robotics applications, and subsection B addressing the
basic paradigms of localization providing a comparison. Sub-
section C overviews SLAM algorithms, SLAM’s importance,
SLAM paradigms, and recent advances in visual SLAM. Sub-
section D and E outline cognition schemes for a mobile robot
through its path planning and obstacle-avoidance strategies.
Section VI highlights recent advances in mobile robotics
with the power of deep learning. Section VII discusses open
challenges and future trends in mobile robotics and final
remarks are in section VIII. Figure 3 provides an illustration
of the organization of the paper.

Il. LOCOMOTION

Mobile robots need to be able to work in any
environment including hazardous, rough, loose, uneven ter-
rain, surrounded by obstacles and taboo areas. Locomotion
is therefore fundamental for a robot’s movement through
the working environment, and not only depends on the
nature of the environment or path of the robot’s movement
but also on vital factors such as the required ability to be
controlled, the degree of maneuverability, efficiency, and
stability in varying terrain situations [9]. Indoor mobile robots
are designed to move, run or walk in order to complete their
specified assignments, so can be equipped with legs or wheels
or wings sometimes (wheeled robots are proven to be most
efficient) [25]. These various multi-terrain robot locomotion
procedures have been discussed in this article.

A. GAIT LOCOMOTION

GAIT locomotion implements one of the locomotive mech-
anisms from nature, such as biped, quadruped, and hexapod.
According to one unique method, the leg configuration can be
devised on a pantograph mechanism which is spring loaded
with multiple segments [36].
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The legged locomotion allows the robots to be high in
mobility, keeping both dynamically, and statically stable gaits
and overcome significant obstacles such as several steps or
stairs [37].

The complexity of the limb coordination of any robot
depends on the number of legs, which defines the GAIT
pattern [25]. If the robot is built with » number of legs then it
has the (2n — 1)! possible number of events [8]. The leg con-
figuration can be described in various ways. Table 1 discusses
the applications and limitations of different gait locomotion
methods and each is described in more detail in the following
sections.

1) ONE-LEGGED ROBOT (HOPPER)

A robot can have at least one leg, which is also called “hop-
per” because there is only a single contact point between the
ground and foot and the robot has only one kind of motion
which is hopping. This comes with the manner of duo sub-
dynamics; one when contact between the leg and ground are
in contact and another for contactless situations. [38]. One
vital application of these hopper robots is in the research of
small celestial bodies such as asteroids and comets where
multi-legged or robots with wheeled locomotion are not able
to maneuver successfully as the local gravity is relatively
low [39].

2) TWO-LEGGED ROBOT (BIPED ROBOT)

Two-legged design is most commonly used in robot loco-
motion. These two-legged robots, also known as humanoid
robots, are able to walk, jump, run and sometimes dance.
They can climb stairs and traverse different rough surfaces
but dynamic stability is still an issue. Biped robot locomotion
has shown several advantages over single or multi-legged
locomotion in many research cases [40], due to the dynamic
balance.

3) THREE-LEGGED ROBOT (TRIPOD ROBOT)

Three-legged robots are rare as they aren’t inspired by any
biological examples. The only way these robots can make
movements is by moving their center of gravity out of the
body keeping the action balanced [25]. Three-legged robots
have better mass balance than two-legged in more rugged
surface areas.

4) FOUR-LEGGED ROBOT (QUADRUPED ROBOTS)
Quadruped robots are the most easily balanced, having the
best dynamic stability. These animal-like four-legged robots
are also popular because they can be treated as pet substitutes.
There are also six-legged robots called hexapods. In [41],
various control architectures are applied in the four-legged
robot to monitor robot behavior. These procedures are base on
bio-inspired structures help in carrying heavy loads for their
dynamic stability and heavy equipment carrying capacity
through the rough surface [41].
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TABLE 1. Summary on Different Types of Gait Locomotion.

Locomotion Type

Ref

Usefulness

Applications

Limitations

One legged robot
(Hopper)

[26]

(i) Can jump over obstacles more easily
(ii) Are able to position themselves less
concern about static stability

(iii) Requires only single contact point on
the ground to maneuver over rough terrain
(iv) No requirements of leg coordination.

This locomotion system can be
used when the robot is move in
places where jumping over ob-
stacles is needed, for example
in the stairs, rough geographical
topographies and small celestial
bodies in outer space.

(i) Needs to be balanced especially in
abrupt stationary situations.

(ii) Static stability is near to impossi-
ble.

Two legged robot
(Biped)

[27], [28]

(1) Dynamic balance is better and easier
than hoppers to establish stability

(ii) Are able to move over irregular surface
efficiently

(iii) Leg coordination is easier than multi-
legged locomotion.

This kind of locomotion system
is mostly applied in humanoid
robots assisting humans.

(i) The size and weight of the actuators
are two significant botheration while
constructing a biped robot [29]

(ii) There is still an issue with the
dynamic balance but in recent research
this issue can largely be overcome.

Three legged
robot (Tripod)

[30]

(1) A tripod offers advantages in balancing
while walking and even when stationary
(i) Can easily change their direction in the
trajectory

(iii) Can move in both circles and line path
according to the need.

These robots can be used in mil-
itary applications to carry heavy
weight as they have good dynamic
balance.

These three-legged locomotion is quite
difficult to find in nature so some bio-
logical complexity is still present.

Four legged robot
(Quadruped)

(31], [32],
[33]

(i) Dynamically most stable robots [34]
(ii) Can balance by estimating their accel-
eration along with lateral velocity with the
help of the sensors in the legs and this helps
them to balance dynamically

(iii) Can carry more weight than other de-
signs

(iv) Can maneuver through rough terrain
while walking, running, climbing and also

These are largely used in mili-
tary applications as they can carry
load in rough terrains easily and
also can maneuver in environ-
ments that are hazardous to hu-
mans. They can also be treated
as pets & emotional relationships
can be developed which can be an
alternative to a real pet.

(i) The leg combination while walking
is more complex than the other loco-
motion systems.

carrying heavy loads [35]

B. WHEELED LOCOMOTION

Wheeled locomotion is one of the most popular mechanisms
as it is the easiest means of locomotion for mobile robotics
as it is for many man-made vehicles generally. Wheeled
locomotion has achieved very good efficiencies due to its
stability, easy controllability, and also relatively simpler
mechanical design. Balancing is not really a major concern
as the design of wheels guarantee that it is always in contact
with the ground thus providing the maximum stability and
low acceleration rate, which helps them avoid moving too far
too quickly [42]. There are four different types of wheeled
locomotion:

1) The Standard Wheel: two degrees of freedom and
rotation occurs around the wheel axle and point of
contact.

2) The Castor wheel: two degrees of freedom and
the turning occurs around the offset steering
joint.

3) The Swedish (or Mecanum) wheel: three degrees of
freedom and the rotation occurs around the rollers,
wheel axle and contact point.

4) The Ball or Spherical wheel: has more surface area than
the previous cylindrical castor wheels.

Figure 4 portrays all categories of wheels applied in mobile
robots. Depending on the environment, the wheel arrange-
ment is considered simultaneously while choosing wheel
type [43]. Both the wheel type and wheel geometry play vital
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FIGURE 4. Four Types of Wheels (a) Standard Wheel, (b) Castor Wheel,
(c) Swedish Wheel and (d) Ball wheel [8].
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roles in the fundamental robot characteristics; maneuverabil-
ity, controllability, and stability. Stability requires two wheels
minimum if the center of gravity is directly below the axle
of the wheel, but a two-wheeled robot can strike the ground,
for instance, when in motion. Generally, three-wheeled robots
are the most stable statically with the center of gravity in the
center of the wheels. For further improved stability, the wheel
number can be increased. Maneuverability is the ability to
maneuver in any direction gradually [25] and is one of the
vital concerns of the robot design. Table 2 compares the usage
and limitations of the different kinds of wheels in mobile
robots.
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TABLE 2. Summary on Different Types of Wheel Locomotion.

Wheel Type

Ref

Application

Usefulness

Limitations.

The Standard
wheel

[44]

Standard wheels are applicable in al-
most every type of vehicle: cars, mo-
tor cycles and also in mobile robots
to maneuver rough terrain.

(i) Can accomplish steering motion in
different direction without any kind of
side effects. The steering action of this
wheel can resist self movement of the
robot chassis

Limited motion because of the condi-
tion of no side slip.

Castor wheel

[45]

(i) This type of wheel is used in
a wide range of applications from
office chairs to mobile robots.

(ii) This wheels are also used in
medical field, industrial field and ed-
ucational field.

Castor wheels are one of the most signif-
icant solutions to providing omnidirec-
tionality.

i. As this type of wheel tends to rotate
around the offset axis, it causes an im-
parted force on the robot chassis while
steering.

ii. This wheel produces comparatively
complex kinematics which makes it
difficult to program.

The Swedish or
Mecanum wheel

[46], [47]

(i) Better maneuver in rough terrain
in omni-direction.

(ii) Used in both outdoor and in-
door applications including search-
ing and rescuing missions, many
military activities, mine operations
and also in planetary explorations,
shopping carts or powered robotic
wheelchairs.

(i) It is basically used in efficient omi-
directional movement. As the robots
with this kind of wheel are able to have
full mobility over the plane which means
the wheel helps them to move in each
direction at any instant without facing
any reorientation.

(ii) The design of wheel is compact and
has higher load capability.

(iii) Controlling this wheel drive is eas-
ier.

i. Design is conceptually very com-
plex.

ii. Robots face some discontinuous
contact of wheel and higher sensitiv-
ity towards floor irregularities, hence
more torque is needed from the motor
than standard wheels.

The Ball or
Spherical wheel

[48], [49]

(i) These wheels are applicable in
wheels of supercars, office chairs,
mobile robots, mars rover locomo-
tion.

(ii) Robotics ballbots are specific
kind of application of spherical
wheel.

(i) Can be moved at any direction di-
rectly

(ii) Is able to include motion from point
to point and also keeping station along
with dynamic balance.

(iii) Can also have movement in arbitrary
direction.

There are some design issues along
with technical problems regarding this
spherical wheel such as tucking this
wheel tire beneath any car’s fender
requires more space, which means that
the front and the rear axles must be

shortened considerably.

C. OTHER UNCONVENTIONAL CONCEPTS

Along with the most commonly used types of legged and
wheeled locomotion, there are some other types used. The
concept of Serpentine Locomotion is taken from the move-
ment of a snake to push the robot’s body forward [50]. Track
Belt/Slip Locomotion is another technique that overcomes
the problems faced by wheeled locomotion to move in soft
terrain and has dynamic stability due to its large surface
area [51]. Wheeled and legged locomotion are also combined
to overcome the drawbacks of both types in what is called the
Legged Wheeled locomotion or Walking wheels [52].

These locomotion techniques help the mobile robots
maneuver through their indoor environment. Although no one
mechanism is suited to all environments, wheeled and legged
locomotion systems have many successful applications [25].

lIl. PERCEPTION
Perception relates to the ability to see, hear, or become aware
of the surrounding environment. In robotics, especially for
a self-governing mobile robot, perception means the abil-
ity to attain knowledge about itself and the external con-
text within which it is located [53]. For a robot to work
autonomously, perception is vital and is achieved with the
help of high-resolution sensors and algorithms to extract
information from them [54].

Figure 5 shows the basic flow diagram of the perception
process.
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The main components of perception are:

« Processing data from sensors
« Representation of data (environmental modeling)
« Artificial Intelligence Algorithms

Perception helps the robot

functions [55]:

to operate numerous

o Detection of human, vehicle and obstacle detection [56]

o 2D and 3D environment

« Recognition of gesture, voice and some other activity
and semantic place classifications

o Detection of environmental changes

o Classification of terrain [57],

All the examples are achieved with the help of some spe-
cific and highly precise sensors such as various vision sensors
and proximity sensors [9].

A. SENSORS

A sensor can detect physical changes in the environment and
transform the changes into electrical signals that can be used
in further procedures. Sensors can be categorized into two
broad categories [12]:

1) Proprioceptive or Exteroceptive kinds of sensors

2) Active or Passive sensors

A proprioceptive sensor is able to read the internal changes
of the robot such as the internal battery voltage and tem-
perature, speed of motors used, acceleration, and net loads
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on the wheels. Exteroceptive sensors measure aspects of the
external environment of the robot. An active sensor has its
own source of energy, such as an IR proximity sensor, which
is emitted and the return measured in some way. A passive
sensor can detect energy in response to some kind of inputs
from the internal or external environment such as gyroscope
motion [11]. A robot will be designed with selected sensors
based on its role as an indoor or outdoor robot as well as its
allocated tasks.

1) RGB-D SENSOR

RGB sensors are color sensors that are used to detect the color
of any surface in the RGB (red, green, blue) scale. An RGB-D
camera that can simultaneously report the information about
color and depth is a very good solution for needing accurate
objection detection. The camera uses in-depth technology
measurements and can use a single sensor to measure RGB
and depth with high robustness with an excellent signal to
noise ratio [59]. One of the cheapest options for an RGB-D
sensor is the Microsoft Kinect shown in Figure 6.

2) INERTIA MEASUREMENT UNITS

The basic inertial sensors are combined as Inertia mea-
surement Units (IMU) comprising various sensors such as
accelerometers or acceleration sensors, gyro sensors or gyro-
scope, and magnetometers [12].

a: ACCELERATION SENSOR
An accelerometer can be used to estimate the angle of
any vehicle but has great difficulty in detecting the differ-
ence between the vehicle’s acceleration and the acceleration
of gravity. For the axis along g. and gy, the acceleration
angle [44] is:
6 = (tan)~'&* (1
8y

Which illustrates that angle estimation accuracy decreases

if the vehicle increases or decreases its speed.

b: GYRO SENSOR
A gyro sensor or gyroscope is a mounted wheel with two
or three gimbals and pivoting supports which allow wheel
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rotation about a single axis. One gimbal is seated upon the
other with the pivot of orthogonal axes. The other kind of
gyroscope has two gimbals one of them is the outer gimbal
and the other is the inner gimbal. For gyro angle [44]:

0=— / wdt 2)
where o is the angular velocity.

c¢: MAGNETOMETER

Magnetometers are able to measure the strength, direction,
and also change in the magnetic field (like a compass). There
are combinations of magnetometer and accelerometer, called
an accelerometer-magnetometer combination (AMC), that
can be used to extract angular rate, sensing motion or in
gesture detection, and so on in the concept of virtual gyro
in robotics [60].

3) MOTION SENSOR

In object detection techniques, motion sensors play a vital
role [61]. These devices can be often integrated with some
other comparative components and used as a system that
automatically can perform a task such as alerting the user
about a motion in a certain area.

4) BIO-POTENTIAL SENSORS

Bio-potential sensors are built with transmitters with confined
range and power, used for transmitting biopotential infor-
mation in form of signals. An algorithm then is operated to
compute the signals with the help of the previously recorded
value and the measured value. These sensors can be used
in an integrated form in making some kinds of wireless
headsets [62] and measuring signals from any patient’s skin.

5) ENCODERS

An encoder is a kind of electro-mechanical device that can
provide motion control with position, velocity, and change in
direction. Encoders are of two types; the linear encoder which
response to motion along a linear path, and the rotary encoder
which response to rotation. Encoders can be connected to the
controller for data analysis [63].

6) INFRARED SENSOR
An IR sensor [65] measures the heat energy emitted from an
object body and can detect motion of that object [63].
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7) OPTICAL FLOW SENSOR

Optical flow sensors can be used to make texture and features
visible to determine ground velocity. These sensors can be
used in projects where weight and size are issues.

8) LIDAR SENSOR

LIDAR, the acronym for “Light Detection And Ranging”
is one kind of sensing method, which is often called a laser
scanner or 2D LIDAR sensor as shown in Figure 7. LIDAR
sensor is one of the most used sensors that measures distance
with the help of illuminating a target by laser light and also
measure the reflected light with a sensing element [66].

FIGURE 7. Rplidar A1 by SLAMTEC [71].

9) PRESSURE AND FORCE SENSOR

The measured force or pressure can be converted into a
change in length or other dimensions of a material or spring
element. This change can be measured by a sensory element
such as a piezo-resistive gauge or any resonant strain gauge
or varying capacitance [67]

10) ULTRASONIC SENSOR

Ultrasonic sensors are able to measure distance with the help
of ultrasonic sound waves. The sensor can quantify the time
between emitting the wave and receiving it back, from which
it can calculate the distance [68].

B. FUSION TECHNIQUES OF SENSORS

Practically, when sensor data is analyzed, there are many
sources of noise and uncertainty [69] such that multi-sensor
integration is almost always useful to fuse or combine various
sensory information sources into a single representational
format. A multi-sensory data fusion (MSDF) system can
combine all the complementary sensors, additional sensors,
or even from only one single sensor within the constraint of a
programmable amount of time [70]. This kind of combination
of sensors provides a number of advantages as summarized
in Table 3.

Searching methods fall into two basic categories [8].

1) BASED ON AREAS

These types of algorithms mostly identify small portions of
the whole image and seek a similar area in the sample image,
by measuring the appropriate correlation [8]. There are sev-
eral methods that are being used for the measurement of the
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uniformity of the image areas for stereo matching such as
the Sum of Absolute Difference (SAD), the Sum of Squared
Difference (SSD), and Normalized Cross Correlation (NCC).

2) BASED ON FEATURES

Feature-based

algorithms extract prominent features present in the images.
These sensors usually consider the corners, edges, blocs, and
line segments as the matching features, which are not neces-
sarily to be a geometrically well-defined entities. There’s a
drawback that these only provide sparse depth maps which
must be interpolated. The fusion methods can also be catego-
rized as follows [72]:

a: STATE ESTIMATION METHOD

These types of methods are usable as the data can come from
any sensor or be at any state which is unpredictable. The
Particle Filter and Kalman Filter are two basic state estima-
tion methods. The Kalman filter estimates some unknown
state of the systems of various fields [12] for object tracking,
navigation and localization, and the particle filter build a rep-
resentation based on Probability Density Functions (PDFs).

b: DECISION FUSION METHOD

This method integrates the decisions from multiple classify-
ing units into a single efficient decision about the activity that
occurred in the area. This method is able to reduce the uncer-
tainty level by measuring the evidence at a maximum level.
One of the two basic types of decision fusion approaches is
the Bayesian Approach, which uses the Bayes Theorem to
update the probability for any system where more information
or evidence is available for analysis. The second type is
the Dempster-Shafer (DS) which is widely used in signal
recognition and solving with better adaptability in unknown
and uncertain territory problems [12].

IV. COGNITION

Whenever the robot is embedded in an environment, it accu-
mulates data about its surroundings and collects data about
the route, and becomes more and more familiar with every-
thing around. It can identify the places it visited before.

A mobile robot comprises two vital sections; the
mechanical structure and the control section. The control
section, grounded on perception, processing, and cognition-
navigation, is used to monitor the mechanical construction’s
ability to achieve the required objectives. [9] Perception
offers the ability to observe, hear and generate awareness of
the surroundings. [53] The information gathered by percep-
tion is then refined and adequate injunctions are received by
actuators for further movement. After processing, the cog-
nition function identifies the approach and objective. The
main focus of cognition is planning an effortless reference
track from the initial count to the destined mark avoiding
collisions in the working environment [75]. To constitute the
representation of the robot, its surroundings, and interaction
system, a ‘cognition model’ is needed and tracking using
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TABLE 3. A Comparative Table of Different Sensor Fusion Techniques.

Limitations

Advantages

(i) These are not able to differ-
entiate between gravitational and
vehicle’s own acceleration.

(ii) Filters are used to reduce the
noise.

These sensors are low cost with
two-axis acceleration and one-
axis gyro sensor.

When the vehicle speed is very
high, the embedded filters are un-
able to reduce the full noise. A
complementary filter is needed
and this increases the cost.

(i) These sensor units are very
low in cost and power and high
in performance.

(ii) Easily usable in smart-
phones and smart devices such
as mobile robots.

The cost is pretty high for low
budget robots.

These sensors provide a wide
range of measurement. Also at-
titude and navigation problems
can be solved.

These sensors alone can not pro-
vide proper posture control. Some
algorithms such as Kalman esti-
mators are needed to be integrated
to get better results.

These sensors are essential for
manipulation tasks and also for
sensing the state of the part to
control the posture.

Sensor Sensor name ref Fusion Efficiency
Type and Method
year
Inertia sen-  Acceleration Low pass The inertia sensors are
sors sensor & [12], filters of medium accuracy. For
gyro sensor 2020 cases such as vehicles ac-
celerating at very high or
low speeds, the accuracy
decreases.
Inertial Acceleration Kalman Shows accuracy after cal-
measure- and Gyro [12], Filter ibration with the comple-
ment unit  sensor 2020 (Comple- mentary filter.
(IMU) mentary)
Inertial Acceleration [9], Sophisticated These sensors provide high
Mea- and gyro 2014 Estimation  efficiency and accurate
surement Sensors, Filter output.
Unit Magnetic
Encoder
(Non-contact
type)
Inertia &  Accelerometer, Kalman Provides medium
Tactile Position and  [73], Filter efficiency according to
Sensors Force/ 2002 the calibration, but with
Torque the help of better filter
SEensors. algorithms, the noise
can be filtered, and the
efficiency can be increased.
Encoder &  Three  axis Extended Significant improvements
IMU Gyroscope &  [74], Kalman in odometry accuracy have
Accelerom- 2019  Filter been seen involving the
eter MU fusion job. The error in
and  Wheel achieving the final position
encoder has been reduced. Over-
Sensor all localization with fusion

has been improved from
single sensor usage.

(i) The localization area is limited
to within a few centimeters.

(ii) The sensor frequency and res-
olution is still a challenge to im-
prove.

The mapping error percentage
is reduced significantly
(0.021%). Great improvement
in odometry exactitude is
shown.

pattern recognition, including computer vision. For tracking
purposes, control is needed, and a performance error can be
identified [9] which requires various control techniques.

V. NAVIGATION
Navigation provides the toughest challenges for mobile
robots, particularly for indoor navigation. For a success-
ful path navigation approach within the territory, a mobile
robot must simultaneously perform localization and keep
track of its surroundings—simultaneous localization and
mapping (SLAM) [9].

Navigation can be broadly classified into four major con-
cerns: i. Environmental Modelling (Mapping), ii. Localiza-
tion, iii. Path planning, iv. Obstacle avoidance [12].

A. MAPPING

The fundamental problem of mobile robotics often con-
cerns two questions, where is the robot at a given time,
and what is its surrounding environment. For the robot to
navigate smoothly while achieving some desired task, there
are several methods but the best approach is the map based
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approach. Mapping basically means creating some represen-
tation that the robot uses to model the environment, gain
knowledge about the environment, and take decisions based
on that knowledge, and achieve its goal [12]. The prob-
lem of finding the position and modelling the surroundings
around the robot is a dual problem that can be related to
the chicken-egg problem. So often the problem is defined
using SLAM [76]. SLAM means computing the different
robot positions as well as the model of the environment
simultaneously. Three vital relationships are to be considered
while choosing a certain map representation [8]:

1) The map’s precision needs to match the desired preci-
sion of the robot while achieving its goal.

2) The features represented by the map must match with
the features that are extracted by the sensors.

3) The arithmetic efficiency of mapping, localization, and
navigation is directly affected by the complexity of the
map representation.

In the world of mobile robotics, two types of traditional

map representation have been popular: metric map and
topological map [77]. Metric & topological maps are
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generally associated with 2D map representations. Differ-
ent types of 3D map representations have surfaced in the
last decade including a sparse map, semi-dense map, dense
map [78]. Semantic maps can be generated in both
2D [79] & 3D [80] representation.

1) METRIC MAP REPRESENTATION

A metric map shows the geometric attributes of a surrounding
environment. Generally, in a metric map, a location or an
object is presented as a co-ordinate. Idiothetic data plays
a vital role in this approach and the raw sensor data is
converted into information regarding the 2D space. Metric
models usually are highly accurate in presenting the objects
in the surrounding environment and easy to understand from
a human point of view [77].

Metric maps depend heavily on Idiothetic data, but in
reality, are prone to cumulative error. The quality of such data
decreases as time goes by, so this data cannot be trusted after a
certain length of time. Also, the model relies on the accuracy
of sensors and the circumstances around them.

Two popular metric map approaches are Feature-based
map representation and Free-space representation [81].

a: FEATURE-BASED MAP REPRESENTATION

A feature map representation annotates the positions of the
features of the environment with precision in a continuous
space. Most indoor mobile robots use sonar or lidar sensors
to learn the distance between themselves and the accessible
objects. These robots can bring out the best lines from the
integrated sensor data. Using such lines, objects or boundaries
might be represented in a metric map [82], [83]. This process
represents the physical location of the walls or any other
objects in the environment without adding any additional
features such as color, texture, etc.

b: FREE-SPACE REPRESENTATION
This approach deals with the free space that the robot is able
to access. This simplifies the approach of adding different
features, rather it just maps the free area in the surrounding
access to the robot. One of the most common and used map
representation technique in mobile robotics is occupancy grid
representation, which follows the free space approach [84].
In the occupancy grid, the circumstance is divided into
a distinct grid consisting of two kinds of cells. The cells
that contain objects are called occupied cells, and the
other cells are a part of free space. The cell’s probabilis-
tic value increases with increasing hits, and after a certain
threshold, it is determined as an occupied cell [85]. The
significant advantage of this approach is it can straightly use
sensor data without the necessity to extract any feature [81].
Figure 8 shows a basic representation of the feature-based
map and occupancy-grid map for a real-world environment.

2) TOPOLOGICAL MAP REPRESENTATION
The topological approach doesn’t concentrate on exact geo-
metric co-ordinates of the environment; instead, it focuses
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on distinct characteristics of the most relevant environment
for the robot to localize and navigate effectively [77]. The
topological approach consists of nodes and arcs. Nodes are
referred to as locations in the environment that the robot can
traverse and arcs are used to connect adjacent nodes.

The main benefit of topological representation is that it
doesn’t require the transformation of the sensor data in a
2D reference frame [81] but only requires the storage of
location information given a sensor reading. The drawback of
this representation is that the sensor information that defines
key places is only available if the robot has physically visited
that place before, meaning that more expensive exploration
is needed of the environment in order to estimate position at
higher precision. Figure 10 shows a basic representation of
the metric and topological maps.

3) SPARSE MAP REPRESENTATION

Sparse maps are generated through feature-based SLAM
methods [78]. These methods extract visual features from the
frames captured from the camera and construct the map using
the set of key features needed to describe the scene geometry.
A sparse map consists of persistent keyframes in a geomet-
ric scene. These methods check for common map points in
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(a) Real World

(b) Feature map

(c) Occupency grid map

FIGURE 10. (a) Real World, (b) Feature-based Map and (c) Occupancy-grid Map [81].

different timeframes and fix a set of active keyframes in a
fixed location containing rich geometric information about
the location [86]. As sparse maps store only the active map
points required to form a 3D representation, it is generally
less computationally expensive than generating semi-dense
or dense map representation.

4) DENSE & SEMI-DENSE MAP REPRESENTATION

While sparse maps are very useful for reducing computational
complexity, and visual localization; these maps are often not
very helpful for robotics applications such as navigation or
interaction with surrounding objects [87]. Dense maps pro-
vide far richer geometric information from images, helping
robots interact with their nearby objects & take intelligent
decisions. Dense maps are created by capturing all of the geo-
metric information available using visual sensors, and recon-
structing the structural nature of the objects [78]. Though,
dense maps are computationally very expensive; hence, they
require the use of a powerful GPU for real-time inference.
Semi-dense maps reduce this complexity to multi-thread
operation on CPU only by building a depth map using more
key-points than sparse map [87]. This results in a map that can
hold more geometric information and helps robots interact
with objects far better, which, eventually helps in succeeding
in various robotics tasks such as navigation.

5) SEMANTIC MAP REPRESENTATION

Semantic maps use contextual clues to develop a qualitative
description of a robot’s surroundings and use that infor-
mation to understand complex unstructured environments.
To achieve this, the robot must retain a cognitive interpreta-
tion of space. This process should involve semantic attributes
about objects and places encountered correlated to the sur-
rounding’s geometrical perception. Figure 9 shows a seman-
tic map generated by [79].

Since Metric and topological maps only describe spatial
information regarding the surrounding environment, addi-
tional information might be needed for the execution of
multiple and complex robotic tasks. Semantic maps enlarge
the scope of adding additional information to maps such as
instances, categories, and attributes of an object as well as
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common sense knowledge regarding the entities present in
the maps.
Semantic maps may vary in nature but they should always
include [88]:
« Spatial information contained in the map such as metric
or topological map
« Anchoring of spatial concepts such as place or object
classification

The drawback of a semantic map is that, as it holds a high
level of information, it has high memory usage [89]. To do
a cognitive interpretation of the environment, a high level of
object detection is necessary, which wasn’t available, at least
until the late 2000s.

B. LOCALIZATION

Localization has often been the most challenging problem
in mobile robotics. It is essential to figure out where the
robot is and whether the absolute map of the environment

is available or not. Three types of localization problem have
been described by [90]:

o Local pose tracking: The robot’s previous position is
needed to track the current location which is solved by
modelling the robot belief with a unimodal distribution
such as the normal distribution [91].

o Global Localization: This assumes the robot localizes
concerning the map with the help of a uniform distri-
bution as the initial belief of the robot [92].

o The kidnapped robot problem: This kind of situation
arises when the robot gets picked up and travelled to
another point on the map without the robot’s knowledge.
The problem can be solved similarly to the global local-
ization problem only if the robot itself knows that it has
been kidnapped. The complexity of the problem arises
when the robot thinks it knows its position, but in fact,
it doesn’t [93].

A mobile robot uses on-board sensors to learn about
its environment. But often these sensor readings cannot be
trusted which means that localization is such a difficult prob-
lem for two reasons [8]. The first is sensor noise where
sensor readings are dropped over time. This might be solved
by taking multiple sensor readings and using sensor fusion
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methods. The second problem that might be faced is called
sensor aliasing which is a problem that humans rarely
encounter but is common for robots [94], [95]. Figure 11 rep-
resents the basic working diagram of localization methods.
There are also other types of localization methods such as:

Odometry
-— —
reading ]
Position
Encoder Plf edicted 8 |
osition
Map Data- . Pose estimation
Base Matching Update

N

Perception I
Observation

FIGURE 11. Basic Block Diagram of Localization [8].

1) Positioning beacon based localization: By designing
active beacon systems and deploying them in the target
environment, good localization can be achieved based
on wireless communication [96], [97].

2) Light-based Localization: Estimating poses of the robot
in indoor conditions based on visible light is a newly
emerging field in the mobile robotics field [98].

3) Landmark-based Localization: These techniques use
natural as well as artificial landmarks and relative posi-
tion techniques such as dead-reckoning, and triangular
methods to localize the robot [12], [99], [100].

4) Odor based Localization: This type of technique analy-
ses chemicals of the environment and makes decisions
about its surroundings. Although this is mainly appli-
cable for harsh conditions or underwater robots, this
can also be applied to indoor mobile robots in certain
cases [101].

The error from the sensor reading can be minimized by the
following algorithms: [102]:

1) Kalman filter localization
2) Markov localization
3) Monte-carlo localization

1) KALMAN FILTER LOCALIZATION

The Kalman filter is well known in the world of dynamic
control systems that use the probabilistic algorithm for esti-
mating the state of a time-dependent process and reducing
the noise as shown in Figure 12 [103]. It estimates the
current state by comparing the previous estate with recent
measurements [104].

Consider a linear dynamic system as: [90],

X, +1 = Fi, Xi, + Gi, Uy, + Vg,
Yi, = Hi, Xi, + Wy, 3)
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where, X;, is a state vector, Uy, and Yj, are the input
and output vector, Fy,, Gg,, Hy, are system matrices and
Vi, » Wk, are Gaussian noise with co-variance matrices such
as O, , Ry, .

The estimation of the next states can be represented
as [90], [105]:

Xio+11ky = FrrXip ik, + G, Ui,
P+t = Fior Pt i + O 4)

Then, the estimated states are corrected by using a correc-
tion step:

S = HiPr, 11, H. + R
Wir = Pi 41, HLS™! )
Then the finally updated states of the Kalman filter are:

X, +11k+1 = Xt + 11k, + Wir Vir
P+ 1jk+1 = P41, + Wi SWLL (6)

This algorithm has poor performance with nonlinear sys-
tems that is its main limitation [106].

2) MARKOV LOCALIZATION

It is impossible for a robot to measure its pose directly, even
with GPS. The best a robot can do is guess about its state.
The best guess for a robot’s pose is known as belief. In prob-
abilistic robotics, belief can be represented as conditional
probability distributions and can be denoted by bel(x,;) [8].

In Markov localization, the credence is described by a
probability distribution over all possible states, and the Bayes
theorem and convolution operations are used to update the
opinion after each sensor reading [107]. It first distributes
the configuration position of the robot [x y 6] into a finite
number of discrete grid cells where each grid tells possible
robot positions [108].

According to Markov’s assumption, the only state in the
environment which affects sensor readings is the robot’s cur-
rent location, not all the other previous states [8]. The belief
is computed by taking the odometry data into account:

bel(xy) = /p(xrt“'trta Xrt—1bel (X —1))dxyr—1 @)
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TABLE 4. Comparison of Localization Techniques.

Method Ref Filter Distribution Assumptions Steps Application Problems Improved
type version
Kalman Kalman Gaussian/ (i) World is Gaussian (i) Prediction ~ Local Pose estimation (i) Does not work for  EKF,
filter [122], filter Normal (i) System is linear (ii) non-linear systems UKF
localiza- [123] distribution, Correction (ii) Cannot solve [124],
tion Parametric (ii) Update global pose and robot  [125]
kidnapping problem
(iii) Cannot handle
multi  model robot
distribution
Grid- Histogram Discrete, (i) The configuration space (i) Prediction (i) Local pose estima-  Computationally Markov-
based [108], filter Non- is a set of discrete cells or (i) Measure-  tion expensive to do for kalman
Markov [126]- parametric histograms ment (ii) Global pose esti-  real-time operation local-
localiza- [128] (i) The next state of the mation ization
tion robot is predicted only us- (iii) Can tackle robot [129]
ing the current state of the kidnapping problem
robot but not the previous (static environment)
ones
Monte- Particle Arbitrary, The possible states of a (i) Proposal (i) Local pose estima-  Computationally AMCL
Carlo [110], filter Non- robot in a single moment  (ii) Measure-  tion expensive hence  [132],
localiza- [111], parametric can be described by par-  ment (ii) Global pose esti- has to be a tradeoff [133]
tion [130], ticles. Each particle de- (iii) Resam-  mation between speed and
[131] scribes a possible state. pling (iii)  Solves robot  accuracy

kidnapping problem
(static environment)

where, bel(x;) is the possibilities of belief which are further
updated a:

bel(xy1) = np(zr|xye, M)bel(xrr) ®)

Here z; are sensor readings, and p(z;|x;, M) is a probabilis-
tic measurement model [8]. Markov localization does well to
compute global localization and solve the robot kidnapping
problem as it sums over all the possible positions a robot can
be in at a given time [109].

3) MONTE-CARLO LOCALIZATION
Monte-Carlo localization uses a particle filter algorithm to
estimate the pose of the bot [110]. In this algorithm, particles
are used to represent a probability density function. Each
particle is thought to represent a state of the robot is also given
a weight for that possibility [111]. The higher the weight,
the higher the possibility of a particle being right. The weight
of each particle is computed using the ratio between target
and proposed function where each function is an estimate of
the robot.

The noise and motion model is applied for each particle by
sampling from the density function as:

X}~ pOx|xe—1, ur) )

The measurements of the sensors are denoted by z; and are
used to compare the proposed state with the target state to
compute the weight for each particle as:

target

t = ———— ~ p(zlx, m)

= 10
proposal (10)

where the weight M basically computes the likelihood of each
particle being x; given z;.
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The next step creates a current group of particles that
keeps the particles having higher mass values and gets
rid of particles with lower values. The Monte Carlo
localization works better with more samples, but this
means more computational complexities. Table 4 com-
pares the localization techniques and shows their pros and
cons.

4) POSE GRAPH OPTIMIZATION

Apart from these three techniques, another method named
Pose Graph Optimization (PGO) has been popular in the last
decade [112]. This method is mainly used for localization
in graph-based slam techniques [113]. While a robot moves
through the environment, its trajectory can be defined as a
collection of its poses over time and these poses are joined
together with edges creating some sort of graph. This is
known as a pose graph. Pose graph optimization is used
to estimate the accurate poses relative to the best possible
constraints in the graph, which eventually is used to compute
the trajectory of the robot. The poses are usually measured
with various methods such as IMU readings, scan matching,
dense point clouds, etc. The problem is usually treated as
a non-convex optimization problem, where the solution is
the maximum likelihood approximation of the comparative
poses. Most state-of-the-art techniques to solve PGO are iter-
ative optimization techniques such as Gradient method [114],
[115] or Gauss-Newton method [116], [117] etc. These are
generally used to compute local minima. Convex relaxations
based solutions have recently been popular to solve the global
minima [118]-[120]. PGO has also been used in multi-robot
localization [121].
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C. SLAM
The robot localization problem is closely related to the prob-
lem of map building. Without a map, it is impossible for a
robot to localize itself properly, and again, without localizing
the robot, it is difficult to comprehend the surrounding envi-
ronment; thus the mapping process can be inaccurate [77].
So to solve this, the concept of SLAM was developed in the
1990s. The SLAM problem is developing an environmental
map and determining the right position to track the robot
simultaneously with the noisy sensor data available [134].
The problem can mainly be categorized into two types.
“Online SLAM™, which deals with only the current pose of
the robot while “Full SLAM”™ tracks the robot path always
while building the map [11]. If the state of the robot is Xk,
and the distance between the states is Uk, then the
SLAM problem can be described as,

PXi1:x, M| Zg1:x, Uki:x) (1D

where M is neighboring ambient and the sensor measurement
is Zg . The online SLAM problem can be denoted by:

Pk, M|z, ug) (12)

SLAM algorithms can also be classified based on the
sensors they use. Lidar SLAM, which uses lidars as primary
sensors for the environment perception, and Visual SLAM or
V-SLAM, which uses vision sensors or cameras as primary
sensors. Although SLAM seems to be the ideal solution for
mobile robotics, it takes time to implement because of the
high dimensionality and a large number of discrete variables
in the parametric space [24].

1) PARADIGMS OF SLAM
Most SLAM algorithms were derived from the three basic
paradigms. EKF-SLAM, which emerged on the basis of the
extended Kalman filter [135]. This algorithm uses a single
dense statute vector in order to estimate the position and
the features of its surroundings having any error covariance
matrix, which represents uncertainties associated with the
estimations based on the online SLAM problem [11].
Particle filter based SLAM algorithm is the second princi-
pal paradigm of SLAM. It’s usually okay for something like
localization but in the case of SLAM where a huge number
of features are present, makes the system complex that can
be overcome by the fastSLAM approach [136] which always
works with an adjusted number of particles as,

Kl. [K (K, K] K]
Xt[l’ﬂgol]' /J“tl\ll] 1’2[1 : Ez[lel 1 (13)
where X; (K1) is the estimated sample route and estimation of

each feature which are described by a 2D Gaussian which
have a N set of mean ,u;[f,’] and variance Zt[f,’ 1

The control commands of the motor #; update the estimated
position of each particle as:

X~ pXq1 X, up) (14)
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The next step is to compute the importance weight W,EK] ]

based on the measurement readings z; as:

[Ki] [Ki] Kl] ) (15)

Kt]
_p(t|x ’MON 1’ tN 1

fastSLAM has been improved in several ways such as
GridSLAM [137], gMapping [138]-[141] etc. are Grid-based
versions of fastSLAm.

The third general family of algorithms is called
graph-based SLAM. These algorithms treat the SLAM
problem as a sparse graph where pose and landmarks of
the robot are treated as nodes in the sparse graph [142].
The information of the nodes are portrayed as robot poses
Xy » Xky» Xk » Xky» - - - --Xky and n number of landmarks in the
map as my, ; My, , My, My, . . . .M, The constraints between
the nodes are thought of as the relative distance between
successive nodes, which is influenced by the odometry
data u;. The constraints are relaxed, such as springs to get the
best possible estimation of the pose and the map of the robot.
The system can be seen as a spring-mass model [143] and
solved by computing the minimal energy state of the model.
Some of the popular open source graph-based algorithms are
g20 [117], GTSAM [144], HOG-Man [145], KinectFusion
[146], PTAM [147], TORO [148], CPL-SLAM [149], [150]
etc. A comparative analysis of these three paradigms has been
shown in Table 5.

2) LIDAR SLAM

The lidar scanners are largely used in SLAM as the primary
sensors for indoor mapping and localization in which the time
of flight (ToF) method is used to calibrate the readings of the
lidar sensor. Larger detection range, lower dependency on the
environment and lower cost of acquiring lidar data are the
advantages of lidar SLAM [158], [159].

Single-line lidar sensor can be used in 2D applications due
to the presence of single pair of transmitter and receiver which
can be used in scene-matching and mapping problem [140],
[145]. The lower detection range is the main limitation of this
lidar which can be overcome by developing multi-line lidar
sensors that increase the navigation range by establishing a
3D map. It provides the facility to capture 360 degree field of
view with the help of a point cloud.

The algorithms can be categorized into organized [160],
[161] and unorganized [162] based on the environment, and
the type of point clouds [160]. Another way to deal with
3D point cloud is to perform data association among point
clouds and look for closest points, which is called Iterative
closest point (ICP) algorithm [163], [164].

3) VISUAL SLAM

In the earlier years of SLAM, research was focused more on
2D SLAM. Over time, 3D maps with more information were
needed for the mobile robots to do more complex, specific
tasks in dynamic environments since 2D maps do not hold
distinctive features of the environment. VSLAM stands for
a visual slam, which involves solving the problem where the
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TABLE 5. Comparison Table Between Basic Paradigms of SLAM.

Method  Properties Pre- Applications Advantages Limitations Open-
requisites sourced
ver.

EKF- Filter based approach, uses ~ Number of  Active SLAM (i) Can handle non-linear situa- (i) Time complexity in general [151],
SLAM  extended Kalman filters. landmarks, (can be modified tions, provides optimal state of  is quadratic hence computation-  [152],

Uses single dense state Known data to do Full  the robot through MMSE (Min-  ally expensive for long operat-

vector for state estimation  association. SLAM) in small imum mean-square Error) ing conditions.

and an Error co-variance The motion environments. (ii) The Error co-variance ma-  (ii) Doesn’t work with uncer-

matrix for representing un-  model is  Used in airborne,  trix converges easily. tain data association, needs spe-

certainty. based on  underwater or cial treatment to converge in

velocity indoor  robotic such cases.
applications. (iii) Cannot do FULL SLAM in
normal cases.

fastSLAM Filter based approach, The number Used for Active (i) Time complexity in gen- (i) No defined methodology ex- [153],

uses  Rao-Blackwellized of particles  Slam, can do full eral is logarithmic, computa- ists for fixing the number of  [137],

particle filters. “K” in each  slam forrelatively tionally less expensive than particles “k” in the initial stage.  [154],

Uses a sample path and step hastobe larger maps than = EKF-SLAM. It has to be done by “educated  [155],

“N” numbers of a 2D gaus-  determined ekf-slam can (i) Can handle multiple data as-  guessing”. [156]

sian (EKF). Each gaussian  beforehand. manage. sociations, deal with unknown  (ii) Repeated visits to same

has a mean and a variance. data associations to some ex-  mapped areas cause particle de-

The particles are updated tent. pletion, which can prevent the

after each prediction step (iii) Can do FULL SLAM for  algorithm from building consis-

using importance weight. medium sized maps. tent maps.
Graph-  Optimization-based The nodes FULL SLAM. (i) Memory requirement is lin- (i) Most of the initial algorithms [117],
based approach. in the sparse  Used for ear were offline algorithms. [145],
SLAM  The configuration space is  graph are  generating large (i) Varieties of efficient op-  (ii) Though the optimization [114],

thought of as a sparse considered as  accurate maps. timization techniques exists; techniques are efficient, they [157]

graph. landmarks &
Uses optimization  poses.
techniques such a Bundle The edges

adjustment.

between the

hence more popular among re-
searchers.

(iii) Suitable for FULL SLAM,
can build very large maps and

are expensive.

(iii) Data association needs to
be optimal for optimum perfor-
mance.

nodes are
considered
odometry
readings.

is the preferred method for huge
areas.

(iv) Recent optimized methods
can do online SLAM very effi-
ciently with visual sensors only.

primary sensor of the system is a sensor based on vision, such
as a camera [165].

Three different types of cameras are used for VSLAM.
When using only a single camera, VSLAM is often called
monocular SLAM [166]. Another type that uses stereo vision
for SLAM systems uses a set of cameras which allows depth
to be readily perceived. RGB-D cameras use infrared light to
measure the depth of objects. Visual SLAM can be generally
classified into two different methods [78]:

a: FEATURE-BASED METHOD

This method has been the most commonly used method in
SLAM. Images are the type of data that hold a high volume
of information. Thus it was necessary to pull out distinct
features from these images for getting useful features only
which can identify particular areas using techniques such
as SIFT [167], SURF [168], ORB [169] etc. Feature-based
methods can be categorized into two types of approaches:
filter-based approaches and key-frame based approaches.
Filter-based approaches have been used for monocular
slam [170] using EKF and fastSLAM to tackle the
non-linearity issue. Key-frame based approaches such as
PTAM solve the localization and mapping task in parallel.
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b: DIRECT METHOD

The direct method uses the pixel information directly from
each frame to track the pose of the robot and perform
mapping. Although feature-based methods are quite robust,
they tend to perform poorly in low texture scenes as well
as when scenes are repeated as the feature extraction pro-
cesses are texture sensitive [78]. Direct methods use pixel
to pixel brightness information and try to estimate the pose
by optimizing the iterative process and reducing the initial
photometric errors [11].

Some of the more popular direct methods such as
DSO [171], LSD-SLAM [87], DTAM [172] used monoc-
ular vision as their primary sensor. Some used RGB-D
sensors as the primary sensor such as Kinectfusion [173],
Kintinuous [174], BAD-SLAM [175] etc.

VSLAM is still very much an ongoing research topic,
including incorporating the power of modern GPUs, to create
a more dense map with semantic information and better
tracking [78], [176], [177]], [178], [179].

D. PATH PLANNING

For a particular environment, a mobile robot determines an
optimal or sub-optimal collision-free route towards its desired
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goal from the initial location according to a specific perfor-
mance criterion. Path planning techniques are divided based
on the environment [13] in which objects may be fixed or
movable. Path planning techniques can also be divided into
two divisions: global path planning and local path planning.

Global path planning is concerned with techniques that
require every detail about the surroundings before the robot
starts navigating such as, Dijkstra algorithm, [180], A* algo-
rithm [181], Visibility graph [182], Artificial potential field
method [183], and cell decomposition method, etc.

In local path planning, the surrounding environment is
usually unknown or barely known in some cases [184]. The
information from the surrounding environment is generally
extracted from the robot’s onboard sensors. Some popu-
lar algorithms are Artificial Neural Networks [185], Fuzzy
logic [186], Neuro-Fuzzy logic [187], PSO [188], GA [189],
and ACO [190], RRT [191].

1) PRINCIPLES OF PATH PLANNING

Figure 13 shows a basic diagram of the path planning pro-
cess which follows three steps: (i) environmental modelling,
(i) optimization criteria, and (iii) path searching
algorithm [18].

Environmental Modeling is the step which creates a
description of the robot’s surroundings, which is understand-
able by computers. Environmental modeling dramatically
reduces the planning complexity and computational power,
as well as navigation time.

Optimization Criteria is used to model a path planning
algorithm in the following manner [9]:

(i) Minimum time needed, which controls the productivity
of the robot.

(i1) Minimum jerking, which ensures the exactitude, profi-
ciency of work, and proper maintenance of the equipment.

(ii1) Least power or least actuator exertion needed in order
to save energy.

(iv) Hybrid criteria, such as minimal time and power.

(v) Minimum Path length: The path length D,, is defined
as [192], [193]:

n—1
D=3 g1 =5+ G =y (16)

Jj=0

where, x; is the value of X coordinate axis and y; is the value
of Y coordinate axis.
(vi) Smoothness: Smoothness is defined as [193]:

DA Smin
1) + B — ) (17)

S =a(l —
Ny — Ny

where o & B are weighted coefficients, DA; is the angle of
deflection, Ny is the number of path segments, and Sy,in is
the number of minimum path segments in the path [18].
Path Searching Algorithm is adopted to find a
collision-free route between the onset point and the desti-
nation point in the state space, which should satisfy a set
of optimization measures including route length, evenness,
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FIGURE 13. Basic Working Process of Path Planning Algorithm [18].

safety standard, etc. Path planning algorithms can be classi-
fied as (i) Classical Algorithms, (ii) Heuristic Algorithms and
(iii) Reactive algorithms.

2) CLASSICAL ALGORITHMS

Classical algorithms rely on two states. These methods decide
whether there is an optimum path or not. The main limi-
tation of the classical approach is that these methods need
more computational power, and they cannot adapt to uncer-
tain conditions. Some of the best known classical methods
are Cell Decomposition (CD), Potential Field (PF), Road
Map. etc [194].

a: CELL DECOMPOSITION METHOD

The cell decomposition method divides the robot’s surround-
ing environment into grids or cells of two kinds. One kind is a
free cell, in which no object is present, and the other has items
in it. These methods are generally used to construct graphs
which can be later used with graph-based search algorithms

for optimal path planning. The basic algorithm structure is as
follows; [18], [194]:

« Divide the search region into connected simple regions
called a cell.

o Determine the cells that have no object as open cells

« Identify the open cells which are closed to each other
and construct a “‘connectivity graph”

« Find the cells which have the initial and final goal point
and determine a collision free path in the connectivity
graph from the start cell to the final cell.

During traveling, open cells are considered to achieve path
planning, extending from the primary and final (goal) points.
Closed cells (cells that contain obstacles) adjacent to the
path are further apportioned into two sections to attain an
open cell. Figure 14 shows how cell decomposition methods
model an environment. The cell decomposition method has
the problem of requiring a lot of memory to analyze the
surrounding environment.

b: ARTIFICIAL POTENTIAL FIELD

The potential of the workspace is described and the robot
calculates a repulsive force from field activity in this method.
The goal point will act as an attractive force for the robot and
the potential function can be described as [195], [196]:

Ux) = Uun(x) + Urep(x) (18)
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P-initial

FIGURE 14. Cell Decomposition Method [8].

where, U, is the attractive potential and U, is the repulsive
potential. U, can be written as:

SIO2 (x.Xgoal)
2
where & is the positive gain factor and x, xgo4 is the Euclidian
distance between the robot and the target destination. Thus

the attractive force can be represented as:

For = =VUs(x) = g(xgoal —Xx) (20)

Uur(x) = (19)

The repulsive potential is possibly be denoted by the
formula:

n ! 1 )2 o
—(———— — —), fpxxps <

Uep(X) = 1 2 pxXobs o P obs = o 2D
0, otherwise.

where 7 is a scaling factor. Thus, the repulsive force can be
given as:

Frep
= —VUu(x)
( 1 ) 1 X — Xobs if
n. . . , 1 pxxops < p,
= P-X-Xobs — Po )O(x)2 p(x)Z . ’
0, otherwise.

(22)

The artificial potential field algorithm has a number of

issues:

o There might be a local minimum depending on the
dimension and configuration of the objects around the
robot points

« Another problem arises for objects that are of concave
shape which causes more than one minimal distance to
arise creating oscillations on the resultant paths

¢: PROBABILISTIC ROAD MAP APPROACH

The probabilistic road map (PRM) method relies on the
arrangement of space which can be represented as a set
of all configurations the robot can obtain which is used to
identify the collision function. Then, sampling of a grid in
the configuration space is undertaken by checking whether
or not the grid point is in free space using the collision check
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function. All the grid points in free space are treated as nodes
in the graph. The nodes are then connected by lines which are
called edges [197].

The PRM method chooses the points in the configuration
space randomly and tests whether the point is in free space
using the collision check function. If the node is in free space,
then it tries to see if it can connect with the closest existing
node and create a path. The boundaries between the random
samples can be thought of as road-maps that form a net-
work that hopefully spans the free space in the configuration
space [198]. Two popular road map approaches are the Visi-
bility graph and Voronoi graph.

A visibility graph is a diagram where the vertices of all
polygonal obstacles are thought of as nodes for the sampling
free space along with the initial and final goal node. All
the lines connecting the vertices and the initial and final
node are identified as edges of the road-map. So the roads
are very close to the obstacles; hence the resulting path in
almost all cases would be a minimum-length solution [8].
This method is very slow and inefficient in environments with
many objects.

The Voronoi graph is the opposite of a visibility graph
in the sense that it tries to stay as distant as possible from
the obstructions. It describes a summation of equidistant
points from the next two or more obstacles, containing the
configuration space [199]. Thus it ensures maximization of
the interval within the bot and the obstacle. Its primary disad-
vantage is that localization sensors with a short-range might
fail to detect the obstacles as it keeps maximum distance from
obstacles. Figure 15 shows how PRM methods connect the
shortest paths together.

3) GRAPH-BASED SEARCHING ALGORITHMS

These are known as the most straightforward methods for
finding a path for the robot which needs to know the environ-
ment and the robot’s primary and terminal position before-
hand for working purposes. Some of the most notable heuris-
tic algorithms are [13]: Dijkstra’s algorithm, A*, D*, etc.

a: DIJKSTRA'S ALGORITHM

This algorithm is applied to find the shortest route out of
several possible paths in a graph by dividing it into a grid
cell [200]. The algorithm focuses on two components; nodes
and weighted edges. The algorithms work by calculating
edge weights between two nodes and calculates the minimum
value as it gets closer to its target node.

b: A* SEARCH ALGORITHM

One of the major problems of Dijkstra’s algorithm is while it
pursues the route that seemed the shortest currently, it isn’t
concerned about its direction of approach. To solve this,
the A* algorithm has been proposed based on Dijikstra’s
algorithm with some modifications which also accounts for
the Euclidian space [200]. The algorithm uses the evaluation
function: f (n,,).

f(ny) = g(ny) + h(ny) (23)
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FIGURE 15. Artificial Roadmap Approaches; (a) Voronai Graph and (b) Visibility Graph [8].

where, g(n,,) is the actual cost and h(n,,) is the heuristic
function. This algorithm has much higher efficiency than
Dijkstra’s algorithm.

¢: D* SEARCH ALGORITHM

Although the A* algorithm works well in a static environ-
ment, its performance drops in dynamic environments where
objects may change with time. To tackle this, the D* search
algorithm was introduced [201]. It is capable of planing
real time-optimal path. It works similar to A*, but while
with A*, the edge weights are constant, with D¥, it is ever-
changing. So as A* discards the information about the nodes
it has visited, D* keeps that information to plan and re-plan
efficiently [202].

4) EVOLUTIONARY ALGORITHMS

Evolutionary algorithms work really well when the envi-
ronmental model is unavailable or unrealistic, and dynamic.
These algorithms are inspired by stimulus-response, which
is the biological reaction to any action. Reactive planners
including fuzzy logic, particle swarm optimization, neu-
ral network, artificial bee colony, ant colony optimization,
genetic algorithm, shuffled frog leaping algorithm and several
miscellaneous algorithms have been used researched.

a: GENETIC ALGORITHM

The genetic algorithm (GA) solves the problem of path plan-
ning by addressing the issue as a chromosome. The possible
solutions are addressed as populations. The mechanism of
the GA is moving from one community of chromosomes to
another using an operation called “Selection.” There is a
fitness evaluation function that evaluates and ranks all the
communities [203], [204].

b: ANT COLONY OPTIMIZATION ALGORITHM
This algorithm has been modeled after the ant’s movement
in search of food. While searching for food, ants release
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FIGURE 16. Basic Architecture of Artificial Neural Network [209].

secretion after short intervals leaving it as a reference so that
other ants can follow the path. This secretion is known as a
pheromone. The more pheromone is there in a path, the more
optimized that way is. Only one path will have a pheromone
after the optimized path is found [205]-[207].

¢: ARTIFICIAL NEURAL NETWORK

Artificial neural networks (ANN) follow the operation of
the neuron of a human brain consisting of input, output,
and hidden layers with weights. These weights are randomly
initialized at the beginning but change accordingly to get opti-
mum results. The connections also have activation functions
with the weights. With simple weights activation functions,
ANN can learn almost anything with the right amount of
training data [208]. Figure 16 shows a basic neural network
with two hidden layers, along with the input and output
layers.
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d: PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) follows a familiar pat-
tern with a bunch of particles in which individual scrap
presents a possible accomplishment. It is employed nowa-
days as a solution to the navigation problem of robots.
Mohemmed et al. [210] proposed a PSO-based algorithm that
finds the shortest path from A to B. Zhang ef al. [211] devel-
oped a multi-destination PSO to make the robots navigate in
uncertain and dangerous environments where many hazards
may lie. Figure 17 shows a basic working diagram of the
particle swarm optimization algorithm.

e: RAPIDLY-EXPLAINED RANDOM TREE ALGORITHMS
Modern autonomous indoor robots are developed to perform
some more tasks related to interact with the external environ-
ment. This robot and environmental interaction have various
styles and types such as the systems where reconstruction
of shapes of any three-dimensional object [212] and also a
navigation system based on vision, which is mostly used in
drones [213].

The aforementioned tasks can be easily done by employing
a rapidly-explained random tree (RRT) approach which is
designed to administrate the nonholonomic constraints and a
higher degree of freedom [215]. In [215], the algorithm was
successfully applied to all kinodynamic, holonomic, and non-
holonomic planning problems with degrees of freedom up to
twelve. Table 6 highlights different path planning approaches.

E. OBSTACLE AVOIDANCE

Obstacle avoidance mainly refers to the change of trajectory
of the robot, which allows navigation in some unknown
environment by avoiding collisions. In various researches,
obstacles have been avoided in different methods, including
in [252], a method is proposed based on the artificial potential
fields principle, which has been extended in [253] with the
addition of schema motors, and a method for swarm robots
to avoid obstacles is described in [254] which is based on the
self-organizing migration method.

If the robot cannot estimate the presence of, and avoid,
any obstacle in its trajectory, it will not accomplish its
end position which obviates the main purpose of a mobile
robot. Basically, this feature can save the robot from any
kind of crash which makes the movement less restrictive
or fragile. The resultant gait contains both the function
of recent or current reading of the robot sensors and also
the goal position or its relative location to the goal posi-
tion. An indoor mobile robot comprises various functions,
of which avoiding obstacles is a vital part, which is a must to
keep overall monitoring of the architecture for maneuvering
tasks [256].

There are also some systems where the mapping is inte-
grated with obstacle avoidance, where during the robot’s
travel toward its goal the sensor data sampled continuously
along with building the map with an immediate update and
the algorithms for obstacle avoidance continue the work of

mapping-information simultaneously [257].
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optimization
error)
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FIGURE 17. Basic Block Diagram of Particle Swarm Optimization
Algorithm [214].

Some algorithms presented here regarding obstacle avoid-
ance depending on varying degrees in the global map exis-
tence and the appropriate information of the robot about its
relative position towards the described map.

1) BUG ALGORITHM

The bug algorithm is considered as one of the earliest of
all algorithms [258], [259] which can enable the naviga-
tion of the whole periphery of the encountered obstacle.
It also allows the robot to decide the most suitable way to
move toward the goal [12]. The robot can compute the new
path [260] from its departure point (x, y1) to the destination
point (x2, y2) using two equations to find the slope m and
y-intercept c.

m = arctan 2N (24)
X2 — X1
C =y —cx (25)

This is an inefficient approach but it ensures that the robot
reaches the goal area. However, it only leaves when it can
move in the direction of the goal, as the trajectories are shown
in Figure 18.

VOLUME 9, 2021



M. A. K. Niloy et al.: Critical Design and Control Issues of Indoor Autonomous Mobile Robots: A Review

IEEE Access

TABLE 6. Summary of Path Planning Algorithms.

Algorithm type ~ Method Ref. Intuition Application Recent
developments
Classical Algo- Cell  decomposition [216], [217], Divides the environment into occupied space ~ Mainly  used  for [219]
rithm method [218] and free space core environment
modelling
Artificial Potential [195], [196], Models the environment using potential field  Global and local path [221], [222]
field approach [220], [8] theory and uses elements of environment as  planning
positive and negative potentials to do path
planning
Probabilistic [197], [223], Assumes the environment as a configuration ~ Global and local path [228], [229]
Roadmap approach [199]. [224], space and uses obstacle and a sampling-based  planning
[225], [226], algorithm to determine the path
[227]
Graph- Dijkstra’s algorithm [230] Used to search the quickest route out of a  Global path planning D#* extra lite [231],
based  search number of possible paths in a graph HCTNav  [232],
algorithms nafisnav [233]
A* search algorithm [200] Improved version of Dijkstra’s algorithm  Global path planning
with heuristics which is capable of tracking
its direction
D* search algorithm [201] Improved version of A* with dynamic path  Global and local path
planning capabilities. planning
Evolutionary Genetic Algorithm [234], [235],  Applies the process of evolution in biological =~ Dynamic path plan-  neuro-fuzzy [239],
algorithms [235], [236] ,  bodies to the robot path planning problem. ning Deep-learning
[237], [238] [240],
Shuffled frog
Leaping [241],
PSO [242],
ACO [243],
RRT [244], [245],
[246]
Ant Colony Optimiza- [205], [206], Motivated by how ants find optimized paths = Dynamic path plan-
tion [207] through their pheromone ning
Artificial neural net- [247], [248] Creates intelligent path planning models in-  Global and local path
works spired by the backbone of biological brains,  planning
neurons.
Particle swarm opti- [249], [210],  Models the social-behaviour of clusters of an- ~ Dynamic path plan-
mization [211] imals such as bird-flocks or fish-schools. By ~ ning
mimicking behaviours of these social animal,
the algorithm optimizes any search problem.
RRT [215], [250],  special kind of graph called a tree. Dynamic path
[251] planning and obstacle
avoidance
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FIGURE 18. Trajectories of Bug Algorithm [255].

IBA [255] is the improved Bug algorithm but it can also
be inefficient in certain situations. There are many more Bug
algorithms such as Tangent Bug [261], I-Bug [262] etc.
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2) THE VECTOR FIELD ALGORITHM

The Vector Field Algorithm is basically an updated version of
the virtual force field (VFF) method [263]. The VFF method
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employs only a single step technique but VFA works with a
two stage data reduction technique. While piloting the robot
simultaneously in the direction of the target, these algorithms
allow the detection of any unknown obstacles and also allow
the robot to avoid the collision [12].

The cost function is [264], G = a. target_direction + b.
wheel_orientation + c. previous_direction

This real time obstacle avoidance method can control vehi-
cles to allow them to enter any slender passage such as narrow
corridors without compromising the speed or colliding with
any unexpected obstacles even in a very densely cluttered
place [265].

3) THE BUBBLE BAND TECHNIQUE

The concept of a bubble is mainly the highest subset (local) of
free place around the configuration given to the robot where
it can move in any direction and travel without any collision.
The bubble can be created with the help of a simplified model
along with a range of information that are available in the map
of the robot [266].

With the help of a simplified model of the geometry of
robots, the actual shape of the robots can also be taken into
account while calculating the size of the bubble. This widely
adopted idea, which is considered an extension of vehicles
which are nonholonomic of the elastic band concept [267].

4) THE CURVATURE VELOCITY TECHNIQUE

The Curvature Velocity Technique prefers operating inside
the velocity space rather than in the Cartesian or configu-
ration space of the robot [268]. In addition, the commands
of this method are chosen by the maximization of objective
functions which increase the vehicle navigation, and obstacle
avoidance properties such as the speed, direction of move-
ment towards the goal and also safety. This technique consists
of two methods.

a: THE BASIC CURVATURE VELOCITY APPROACH

This basic method [268] develops the full kinematic and also
some dynamic constraints, which are taken into account to
avoid obstacles. This is considered as an advantage, adding
the physical constraints both from robots and the environment
towards the velocity space, consisting of the translational
and also rotary velocity. For this, the robot is assumed to be
travelling along arcs of circles only.

b: THE LANE CURVATURE METHOD

The Lane Curvature method (LCM) is an improved approach
than the previous one which is based on the CVM, but here the
problem with guiding a robot through the corridor’s intersec-
tions [269]. This upgraded method has been able to provide
better results in various experiments than the previous CVM
one.

5) THE DYNAMIC WINDOW APPROACH

Another common method for robot kinetic constraints is the
dynamic window method for obstacle avoidance [270]. Two
such approaches are mentioned below.
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a: THE LOCAL DYNAMIC WINDOW APPROACH

In Local Dynamic Window Approach [270], the robot kine-
matics are considered with the help of searching a fine veloc-
ity space, which is set to be an angular velocity. In this method
it is considered that the robots only move in some circular
arcs, during one time period at least, to represent each tuple.
There an objective function [8] can be described preferring
three criteria; the fast forward motion, the alignment to goal
heading and also maintaining large distance to obstacles.
Figure 19 shows the basic working procedure of dynamic
window procedure. The objective function,

O = x.heading(m, k) + y.velocity(m, k)+z.distance(m, k)
(26)

90 cm/sec

Velocity

Dynamic Window

- 90 degree/sec 90 degree/sec

FIGURE 19. Dynamic Window approach [270].

Here, heading is expressed as a measurement of progress in
the line of the location which is our goal, velocity is the robot’s
forward velocity (fast movements encouraged) and distance
is the distance towards the obstacle closest to the trajectory.

b: THE GLOBAL DYNAMIC WINDOW APPROACH

This advanced method comes along with the universal con-
ception addition of the local approach. It can solve several
problems with definite global thinking, real time and also at
high speed minimal free obstacle avoidance, increasing the
cycle frequency, and robot speed.

6) THE NEW HYBRID NAVIGATION ALGORITHM (NHNA)
Mainly based on two layers, one deliberative and another
reactive layer, the New Hybrid Algorithm focuses on the
navigation and obstacle avoidance process, where both the
layers work independently to each other [271], [272]. In this
algorithm, the deliberative layer can plan a reference path
based on storing the previous information with the help of the
A* search algorithm. On the other hand, the reactive layer is
an independent layer steering robot towards the planned track
by the deliberative layer.

7) VISION SENSOR-BASED ALGORITHM

Vision sensor-based algorithms are the highest efficiency
algorithms that are able to detect obstacles and also iden-
tify the regions which are obstacle free. Some of the vital
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TABLE 7. Overview of Different Algorithms Used for Obstacle Avoidance.

Method ref Sensors Used Robots type Efficiency Observations

Name

Schegel’s [274] Laser Scanner (360°) Forklift Tricycle, Cir- High but takes up more  This method permits the change in shape

Method cular Synchro drive memory. apart from circular.

Nearness [275], [279] Laser Scanner (180°) Circular Holonomic Higher than VFH method. This method ban deal with unknown,

Navigation unstructured and dynamic environment

Diagram

The [280] Distance Sensor  Approximately circu-  High This grid global path planning method

Gradient (180°) lar Non holonomic works on closeness to obstacles to gen-

Method erate continuous interpolations.

Bug Algo- [258],[259] Distance sensors like Low. May bring the robot  Easy to operate but accuracy level is not

rithm IR sensors, tactile sen- way out of the goal. even close to acceptance rate. Selects
SOrs, sonar Sensors paths that are very long.

Vector [263], [281],  Sonar Sensors Non holonomic  High in calculation accu-  High computations are required ending

Field [282] (GuideCane) And racy but consumes more up eating more memory also difficult for

Histogram also Synchro-drive  power, processor and also  micro-controllers.

(VFH) (Hexagonal) memory

The [283] Distance sensors like Low in accuracy in calcu-  Selects shorter path so required time is

Potential IR sensors, sonar sen- lations. less.

Field SOrS.

method

The [284] Ultrasonic sensors, li- Very high. Able to find Unable to work for objects of ‘U’

Follow dar Sensors, camera shortest path toward the  shaped.

the Gape optical velocity sensor goal.

Method

The Vision [285] Kinect camera sensor, Very high Depending on  Consumes more time for calculation.

Sensor Sonar sensor. the equipment used calcu-  Best for larger use rather than mini

Based lations are quite accurate. robots with micro-controllers and also

Method requires higher processors and specific

software such as MATLAB

The New [286] Laser sensors, Sonar Medium But more efficient ~ Calculations takes more time for better

Hybrid Sensors than the Bug and Hybrid accuracy.

Navigation algorithms.

Algorithm

achievements unlocked by this method can be figured out in
three basic steps [273]:
1) A new learning scheme for the monocular disparity
estimation
2) The use of pixel classification with a view to finding
the obstacle inequality estimation
3) And finally, generation of regions which are obstacle
free
These regions, which are free from all the obstacles are
applied in drawing a zone which is free from collision to find
the safest path for the robot.

8) OTHER APPROACHES

The methods described above are some of the most popular
ones. There are some more that are vastly used and have
more complex designs but can solve the obstacle avoidance
problems more precisely along with others. These are The
obstacle avoidance approach by Schlegel [274], Nearness dia-
gram for navigation [275], the Gradient method, the method
by Tzafestas & Tzafestas [276], which is an integrated
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mapping and obstacle avoiding method, the method by Chen
and Quinn, which is inspired by nature [277], a novel obstacle
avoidance algorithm “Follow the Gap Method” [278] and
so on. Table 7 consists of an overview of some of these
techniques.

VI. INTEGRATION OF DEEP LEARNING IN MOBILE
ROBOTS

Deep learning leverages the power of neural networks to
make rules for observable things, making decisions based on
observations without developing rules for a task, which is
normally done to develop an algorithm for a specific task.
Deep learning or so-called learning-based methods worked
because of the massive amount of data that started generating
because of the internet and the computational power is pow-
erful enough to handle the big data. Three key advantages
to using deep learning methods in mobile robot systems
are [19]:

o Deep learning-based methods can generate universal
models that can automatically extract features from the
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data without much mathematical modeling for differ-
ent conditions such as abnormal lighting, blur motion,
or cases where the camera needs calibration by hand,
which is hard to do [287]. These models are able
to match in some ways human-level reasoning and
apply it in methods such as SLAM to create semantic
maps [288], [289], or taking visual odometry to the next
level [290], [291].

o These methods have the ability to learn from past expe-
riences and improve their accuracy and make decisions
in dynamic scenarios. These abilities can be leveraged
to solve some challenging problems in robotics such
as navigation [292], ego-motion detection from unla-
belled videos [293], and decision making in dynamic
environments [294].

« Probably the most crucial aspect of deep learning is that
it can leverage the increasing power of our computers
and the amount of sensor data that can be used in the
current world. The growing number of possible sensors
we can use to perceive the environment is increasing
day by day. To get close to human-level perception,
combining these sensor data seems to be the way to go.
Recent advances in processing power mean that parallel
computing can process a large amount of data efficiently,
and deep learning models thrive with big data, giving
better performance than traditional algorithms. Hence
deep learning-based solutions seem to be the way to go
forward.

Deep learning-based methods have been rapidly researched
in the sector of robotics in the last decade. For autonomous
mobile robots, some of the core difficulties, for instance,
odometry estimation, SLAM, navigation, etc., have seen a
more cognitive performance; thanks to deep learning-based
approaches.

A. ODOMETRY

Deep learning has enhanced visual odometry (VO) that local
position and orientation with only vision sensors and also
have improved sensor fusion methods such as visual-inertial
odometry (VIO) as well. While normal VO methods relied on
hand-coded features to work, which is very time consuming
and can vary for different rooms altogether, DL based meth-
ods are able to extract rich features from video frames, auto-
matically taking VO to another level. These methods can be
classified into End-to-End VO and Hybrid VO. End-to-End
VO uses only deep neural networks to do supervised or unsu-
pervised learning to solve the VO problem. Supervised VO is
trained on labeled images extracted from video frames to cap-
ture the transformation from frames to motions. Some earlier
works are [295], [296] although they failed to achieve end to
end learning. DeepVO [290] was able to achieve end-to-end
learning with a combination of a CNN and an RNN to extract
features from video frames and map them to robot motion.
It outperformed the likes of VISO2 [297], ORBSLAM [298]
in KTTI dataset [299]. DeepVO was further improved
by [300]-[302] for better generalization and memory
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function to upgrade the accuracy of pose estimation. Unsu-
pervised methods have also been of great interest with works
such as [293], [303]-[305]. However, these still perform
well below supervised methods and still have problems. VIO
models uses sensor fusion techniques for perception using
inertial sensors like IMU and vision sensors to reduce sensor
noise for better pose estimation [306]-[309]. Hybrid methods
combining classical models and deep learning approaches
have seen a higher accuracy in terms of performance. Some
hybrid algorithms like D3VO [291]) even outperform VIO
algorithms such as DeepVIO [309], VIOLearner [307] as
well as classical VO systems such as DSO [310], ORB
SLAM [298] in KTTI benchmarks.

B. SLAM

Deep learning has also been applied to SLAM, another
key element of mobile robotics. Classical SLAM systems
today are quite robust and solved to some extent, but several
key problems still have attracted the deep-learning commu-
nity’s attention. Bundle adjustment, accumulative error are
some of the optimization problems related to localization in
SLAM. LS-Net [311] tried to solve the Bundle adjustment
problem by using deep neural networks to learn analyti-
cal parameters needed to satisfy local constraints for the
pixel to motion transformation. BA-Net [312] integrated the
Levenberg-Marquardt algorithm [313] inside a CNN towards
achieving end-to-end learning for solving the bundle adjust-
ment problem. A major problem for mobile robots has been
the accumulative error, which occurs when a robot is operated
for a prolonged time. As DNN is very robust when it comes
to extracting rich features from a scene and predicting pose,
it was evident for practitioners to use DNN to reduce accu-
mulative errors. These DNN algorithms have been used in the
back end of an established SLAM system in order to mitigate
the accumulative errors over time while traversing. Some
recent examples would be CNN-SLAM [314] which works
on the back-end of LSD-SLAM [87], DeepTAM [315] which
feeds both pose and depth information extracted through a
DNN to a classical system DTAM [172]. These learning
systems optimize the overall global pose of the robot. Another
common problem throughout the years for the SLAM com-
munity has been loop closure. This is a unique problem and
has been much harder to solve, using only lidar-based SLAM
solutions. Classical systems used bag-of-words [316] to store
features of already seen geometry in order to use them later on
using handcrafted features to solve the loop closure problem.
The process is very complex and often fails in adverse condi-
tions such as a change in light intensity, weather, or dynamic
objects. Hence CNN has been used in some models to rec-
ognize high visual features for resolving the loop closure
problem. One earlier work on this is [317]. Later, CNN
words [318] was introduced, which uses CNN to extract the
features on a higher level and incorporate BoW in it to get
better accuracy in reducing loop closure. Some deep auto-
encoder based solutions were proposed, which can encode
complex features and stores them automatically [319]-[321].

VOLUME 9, 2021



M. A. K. Niloy et al.: Critical Design and Control Issues of Indoor Autonomous Mobile Robots: A Review

IEEE Access

Very recently, OverlapNet [164] was proposed, which over-
laps scans from two similar 3d lidars and training a DNN
using this data, which can be integrated with an existing
lidar-only SLAM system to eradicate loop closure.

C. NAVIGATION

Safe and successful navigation is the primary goal of a mobile
robot. Though standard navigation in terms of a mobile robot
hovering around a static environment and getting from point
A to point B is considered solved, the real-world scenario
is not so easy. Reinforcement learning has received much
attention in order to achieve human-level awareness while
traversing through a densely populated dynamic environ-
ment. It is an algorithm that mimics the human learning
process, which works by repeating the trial and error process
until the objective is completed. The reward system drives this
process as the system tries to achieve as maximum reward
as possible. In a mobile robot’s case, the robot is operated
in the actual environment it will operate in. The robot needs
to perceive its environment and decide what its next course
of action will be, and each action will be given a reward.
The goal is to maximize the reward hence choose the best
next state possible. Q-learning has been used to navigate
robots in dynamic and, in some cases, unknown environ-
ments [322]. In order to improve efficiency, auxiliary tasks
like value function [323] and prediction-based reward [324]
has been added. Only visual-based solution [325] and visual
plus language based solutions [326], [327] have also been
researched. However, the shortcomings of RL have been its
operation area being limited to small configuration spaces
and fail to replicate a high level of complex performance in
large action space.

The inclusion of Deep learning in the reward-based sys-
tem has seen more promising results in robot navigation.
Deep learning enables robots to perceive the environment at
a higher level, learn the attributes of the sensor data auto-
matically, which enables robots to navigate in more com-
plex environments. Some wheel robot-based methods have
been proposed which generalizes well across training and
real-life scenarios and can deal with noisy data, and well
versed in obstacle avoidance capabilities [328], [329]. Ini-
tially, value-based DRL solutions were proposed to advance
the navigation purpose of mobile robots. One example of it
is the use of a Deep Q-network [329] to navigate a mobile
robot in a corridor using only an RGB-D sensor. But this only
works for discrete environments. TO work the robot contin-
uously in much bigger environments, policy-based methods
have been introduced which work on the basis of formulat-
ing and finishing policies rather than working for a reward.
DDPG [329], NAF [330], multi-threading DDPG [331] etc
are some of the continuous control policy-based methods. the
combination of these two approaches has been later adopted
in A3C network [332]. It constitutes an actor and a critic
network which uses multi-threading to avoid overfitting.
Zhu et al. [292] used A3C network in a target-driven
approach using only visual sensors and solved the problem of

VOLUME 9, 2021

generalization and data inefficiency. This was later adopted
by [333] to navigate in indoor environments. Quan et al. [334]
proposed a novel architecture for robot navigation combin-
ing DDQN with Recurrent Neural Network, which improves
global pathfinding capacities around 5 percent than other
existing algorithms. Some other DDQN based methods
are [335], [336] etc. Another proposed to combine CNN
with DRL to predict the steering action of the robot more
accurately while traversing [337].

VII. DISCUSSION ON FUTURE TRENDS OF MOBILE
ROBOTICS

In every department of mobile robotics, there have been sig-
nificant developments. From building 2D maps to 3D dense
maps with rich semantic information, navigation in static
mapped environments to dynamic unknown environments,
performing in a case study scenario to actually getting used
daily in real-life cases, it is clear that mobile robotics has
come a long way, and integrating deep-learning seems to be
the way to go forward in the future. While the integration of
deep learning into robotics has caused significant improve-
ment in some sectors, it also brought a set of new challenges
going forward.

A. ACHIEVING A COMPLETE END-TO-END LEARNING
SOLUTION

While deep learning solutions have brought significant
upgrades to the existing systems, there has also been research-
ing to use only deep learning models to complete a task such
as SLAM or navigation. However, unfortunately, end-to-end
learning based models have yet to reach the performers of
hybrid models. Deep learning models are data-driven models;
hence their performance is hugely affected by the size, qual-
ity, and features of the training data. There is also a concern
of these approaches being a black-box solution in some ways
as tuning these models to achieve generalized performance
across any environment may be tricky, as we often are not sure
tweaking which parameter will deliver better results. Hence
going forward, achieving end-to-end models for navigation,
SLAM, or odometry estimation seems to be an area of devel-
opment to be worked on in the next decade.

B. DEVELOPING MODELS FOR EDGE DEVICES

In the last decade, one of the most promising sectors was
decreasing the size of our computers while increasing power.
We now have these small computers that can fit into our
pockets. These are called edge devices and are perfect for
mobile robotics. Thus, developers around the world have
dedicated time and effort in developing applications that can
run on these edge devices as it is of great convenience to
run applications on the go rather than transferring data on
the server for analysis. Some existing devices currently on
the market are raspberry pi [338], Nvidia Zetson [339] etc.
However, deep learning models need high-level GPU to run
properly, which these edge devices cannot provide. Hence,
optimized versions of the existing deep learning models are
being developed. There is also research ongoing to lower the
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cost of edge devices and increase their computing capabili-
ties. In the next decade or so, developing optimized models
which can work in real time in low-cost edge devices seems
to be a real challenge.

C. LONG TIME CONSISTENCY

Though mobile robots are being used in many real-life cases
in the current world, these robots still lack the capability to
run fully autonomously consistently for a long time. As time
goes on, the current generation of robots is prone to making
errors. Thus regular maintenance and human intervention are
necessary even in places where robots are supposed to be
fully autonomous. The goal is to achieve fully autonomous
capabilities for the life-cycle of the robot and minimizing
human contacts as possible, reducing robot operators. These
sectors still need lots of works going forward.

Apart from these, there are also some common issues: map-
ping complex environments and handling dynamic objects,
dealing with uncertainty in environments, dealing with unin-
tended failures, and integrating new sensors such as ther-
mal camera, event camera, loop closure, map re-usability,
and working with multi-agent. These are general problems
in mobile robotics and still open topics for research in the
future.

VIIl. CONCLUSION

The modernization of the world makes the nation more
dependent on autonomous robots to perform their daily rou-
tine. Nowadays, the mobile robot is becoming popular in both
sectors of home and industrial purpose. Thus, the accuracy
and characteristics of the operations of the mobile robot must
be efficient and real-time. Any misleading information of the
mobile robot about their working place may lead to serious
damage to both the human life and the working place. Thus,
the modeling and control approaches of the mobile robot must
be efficient to handle any uncertainty or system dynamics.
This research article has investigated all the factors of the
mobile robot such as locomotion, perception, navigation,
and cognition in a comparative model. These factors have
been analyzed in terms of mathematical modeling, integra-
tion issues, critical challenges, and control issues. Different
control approach in various sectors has been reviewed in this
article to make the mobile robot more accurate and control-
lable. The review on the integration of deep learning in the
mobile robot and the future trends will help the researchers
to take this sector to a new level.
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