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ABSTRACT Traffic forecasting is a fundamental and challenging task in the field of intelligent trans-
portation. Accurate forecasting not only depends on the historical traffic flow information but also needs
to consider the influence of a variety of external factors, such as weather conditions and surrounding POI
distribution. Recently, spatiotemporal models integrating graph convolutional networks and recurrent neural
networks have become traffic forecasting research hotspots and have made significant progress. However,
few works integrate external factors. Therefore, based on the assumption that introducing external factors
can enhance the spatiotemporal accuracy in predicting traffic and improving interpretability, we propose
an attribute-augmented spatiotemporal graph convolutional network (AST-GCN). We model the external
factors as dynamic attributes and static attributes and design an attribute-augmented unit to encode and
integrate those factors into the spatiotemporal graph convolution model. Experiments on real datasets show
the effectiveness of considering external information on traffic speed forecasting tasks when compared with
traditional traffic prediction methods.Moreover, under different attribute-augmented schemes and prediction
horizon settings, the forecasting accuracy of the AST-GCN is higher than that of the baselines. The source
code of the AST-GCN is available at https://github.com/lehaifeng/T-GCN/AST-GCN.

INDEX TERMS Traffic forecasting, graph convolutional network, external factors, spatiotemporal models.

I. INTRODUCTION
As one of the essential components in intelligent trans-
portation systems (ITSs), traffic forecasting can provide a
scientific basis for the management and planning of urban
transportation systems [1]–[3]. According to predicted traffic
states, transportation departments can deploy and guide traf-
fic flows in advance, thereby improving the operating effi-
ciency of road networks and alleviating traffic jams [4], [5].

The starting point of traditional traffic forecasting meth-
ods is generally to learn historical traffic characteristics to
predict traffic at future moments [6]. However, it is difficult
to achieve accurate traffic forecasting because future traffic
states not only depend on historical states but can also be
affected by a variety of static and dynamic external factors.
Among them, the static factors will not change continuously
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over time, but the traffic state at a certain timewill be affected.
For example, on a road section with a large number of restau-
rants, the traffic state during the dining period will be sig-
nificantly different from other periods; the latter will change
over time and lead to changes in traffic conditions. Taking
weather conditions as an example, when the weather shifts
from sunny to heavy rain, the traffic speed will generally
decrease. These factors create randomness in traffic states and
make it challenging for accurate traffic forecasting.

Aiming at the problem that traditional models cannot
comprehensively consider factors affecting traffic conditions,
we propose an attribute-augmented spatiotemporal graph
convolutional model (AST-GCN). We consider the external
factors as attributes of road sections in the road network
and model the attributes and traffic features of road sec-
tions simultaneously to obtain the augmented feature vectors.
By this means, the model’s perception of the external infor-
mation is enhanced, thereby improving forecasting accuracy.
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The main contributions of this article are as follows:
(1) This article proposes a novel traffic prediction

model AST-GCN that can capture external information
in combination with the spatiotemporal graph convolution
model.

(2) The proposed AST-GCN model can integrate both
dynamic and static external information related to the road,
such as weather and surrounding POIs.;

(3) We evaluate the model using real data, and
the experimental results show that the prediction results of
the AST-GCNmodel outperform the baselines, indicating the
effectiveness of modeling external information.

The remaining sections of this article are organized as
follows. The second section reviews related works and devel-
opment trends of traffic forecasting. Section 3 introduces
the details of our method. In section 4, experiments are
conducted on real-world data to evaluate the performance
of the proposed method compared with baselines, and a
perturbation analysis is carried out to test the robustness of
our model. The summary and conclusion of future works are
given in section 5.

II. RELATED WORKS
Traffic forecasting is an essential part of ITS and plays an
important role in urban traffic control and development. The
traffic forecasting methods have undergone different stages
of evolution. The traditional analysis is mainly based on
mathematical statistics to predict traffic states at the begin-
ning. Among them, the principle of the historical average
model (HAM) uses historical average data as the prediction
result, which is simple to calculate but has low prediction
accuracy [7]. Time series models such as ARMA [8] and
its variants [9], [10] utilize the relationship between current
data and historical data for forecasting and perform modeling
and analysis considering the periodicity and trend of data.
However, they are based on the time series stability assump-
tion and are thus unable to capture traffic flow mutations.
Later, traffic forecasting models based on machine learning
emerged. The k-nearest neighbor algorithm (KNN) was first
applied to the prediction of traffic flow [11], followed by stud-
ies using the Bayesian inference method [12], and support
vector machine (SVM) [13].

These algorithms can model more complex characteristics
of traffic flows but have limited ability to capture nonlinear
patterns. In recent years, deep learning has attracted the
attention of researchers due to its advantages in capturing
nonlinear and complex patterns.Many deep learningmethods
have been applied to traffic forecasting, such as deep confi-
dence networks (DBNs) [14], [15] and stacked autoencoding
neural networks (SAEs) [16]. One of the disadvantages of
these methods is that they independently process the traffic
flow information at each time and do not directly model the
dependencies in traffic flows in the time series. Therefore,
using recurrent neural networks (RNNs) based on sequence
prediction to predict traffic flow was studied. However,
recurrent neural networks suffer from short-term memory

due to the vanishing gradient during backpropagation.
Therefore, researchers turned to long short-termmemory net-
works (LSTMs) [17], [18] and gated recurrent units (GRUs)
[19], [20], which were created as solutions to short-term
memory to extract the temporal dependencies of traffic flow
data.

Although these models can capture temporal dependencies
in traffic flows, researchers have gradually recognized the
importance of spatial dependencies and have made improve-
ments by introducing convolutional neural networks (CNNs)
to extract spatial information and combining them with
LSTMs [21], [22], which has improved prediction accuracy.
Since CNNs were designed for Euclidean space, such as
images and grids, they have limitations in transportation net-
works with non-Euclidean topology and thus cannot essen-
tially characterize the spatial dependence of traffic flows.
Emerging graph convolutional neural networks (GCNs) are
dedicated to processing network structures [23], [24], which
can better model the spatial dependence of road segments on
traffic networks [25], [26].

However, the traffic prediction task not only relies on
historical traffic information and spatial relationships but is
also affected by a variety of external factors, such as weather
conditions and the distribution of surrounding POIs. How to
integrate the information about external influence factors in
the model is the main problem of the current traffic task.
In previous studies, there have been considerations for mul-
tisource data. For example, Liao et al. [27] integrated an
encoder based on LSTM [28] to encode external information
and model multimodal data as a sequence input. The model
proposed by Zhang and Kabuka [20] is mainly based on the
GRU model [19] and realizes the traffic forecasting task with
external weather information based on the feature fusion of
the input features and weather information.

In summary, the existing methods do not fully consider
the impact of internal and external factors simultaneously.
How to combine multisource data to realize the task
of traffic prediction is an urgent problem to be solved.
Therefore, this article proposes an attribute-augmented spa-
tiotemporal graph convolutional model (AST-GCN) for traf-
fic forecasting, which regards external factors as attribute
information of the road segments in the road network.
The attribute information and traffic characteristics are
then integrated to enhance the model’s perception of
external information, thereby improving traffic forecasting
accuracy.

III. METHOD
A. PROBLEM DEFINITION
The goal of traffic forecasting is to predict future traffic states
based on historical states and auxiliary information. While
the traffic states of road sections are mainly described by the
average traffic volume, speed, and occupancy rate, we take
the average traffic speed as an example to illustrate our work.
Therefore, the traffic forecasting task of this article is mainly
based on the traffic speeds in the past period of time and
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external factors that affect the traffic to predict the traffic
speed in the future.

Definition 1: Road network G. We use a road network
G = (V ,E) to represent the connection relationship between
road sections. V = v1, v2, . . . , vn represents the collection
of road sections, n is the number of road sections, E =
e1, e2, . . . , em is the collection of edges that indicate the
connectivity between two road segments, and m represents
the number of edges.Without loss of generality, the adjacency
matrix A is used to illustrate the connectivity of the road
network. A is a matrix composed of 0 and 1 when G is an
unweighted network, where 1 suggests that corresponding
road segments are connected, and 0 otherwise.

Definition 2: Traffic feature matrix X . In this article,
the traffic speed is regarded as an inherent attribute of each
node on the urban road network, represented by a matrix X ,
while x ti represents the traffic speed on the i-th road section
at time t.

Definition 3: Attribute matrix K . In this article, the exter-
nal factors that affect traffic conditions are regarded as the
auxiliary attributes of the road segments on the urban road
network. These factors can form an attribute matrix K =
{K1,K2, . . . ,Kl}, where l is the category number of auxiliary
information. The set of auxiliary information of type j is
represented asKj =

{
j1, j2, . . . , jt

}
, and jti is the j-th auxiliary

information of the ith road section at time t.
In summary, the traffic prediction problem can be under-

stood as learning the function f on the basis of the basic topol-
ogy G, feature matrix X and attribute matrix K of the road
network to obtain traffic information in the future period T,
as shown in Eq.1:

[xt+1, xt+2, . . . , xt+T ] = f (G,X | K ). (1)

B. EXTERNAL FACTORS
Without loss of generality, this article analyzes the impact
of external factors on traffic states from static and dynamic
perspectives:

(1) Static factors, which mainly refer to static geographic
information that does not change with time but still exerts
influence on traffic states. For example, the distribution of
POIs around a road section can determine the visiting pattern
of people and the attractiveness of the road section, which is
reflected by its traffic states in return. Fig.1-(a) shows the dis-
tribution of three different kinds of POIs (catering, transporta-
tion, and accommodation) around two road sections. Fig. 1-b
shows the variation in traffic speed on two road sections
on the same day. Road 1, with more restaurants and fewer
traffic facilities, has a higher traffic speed than road 2 between
12:00-20:00, which validates that the difference in the
distribution of POIs will lead to a difference in traffic states.

(2) Dynamic factors, such as the weather condition, which
is a time-varying determinant of road conditions and visions
while driving, can directly affect the traffic states. As an illus-
tration of the influence of weather conditions, Fig.2 shows the
change in traffic speed over time of a certain road section on

FIGURE 1. Illustration of the influence of POIs on traffic states.

FIGURE 2. Illustration of the influence of weather conditions on traffic
states.

FIGURE 3. Framework.

separate days with different weather conditions. Specifically,
one day has heavy rain from 16 o’clock to 18 o’clock and then
turns into light rain; the other day is sunny all day. It can be
seen that the traffic speed decreased greatly during the rainy
hours compared to the counterpart on a sunny day, which
indicates the great impact of weather on traffic states.

C. FRAMEWORK
By integrating the spatiotemporal graph convolution network
and the attribute augmentation unit, we propose a traffic
prediction model (AST-GCN) that can integrate the exter-
nal influence information (weather condition and surround-
ing POIs in experiments) to facilitate traffic forecasting.
The framework of our work is shown in Fig. 3, which is
mainly divided into four parts: data preprocessing, attribute
augmentation, spatial-temporal dependency modeling, and
prediction.

D. ATTRIBUTE AUGMENTATION UNIT
To comprehensively consider factors that affect the traffic
states, this study models external factors as the dynamic
(D) and static (S) attributes of the road segments in the

VOLUME 9, 2021 35975



J. Zhu et al.: AST-GCN for Traffic Forecasting

FIGURE 4. The architecture of an AST-GCN cell.

road network. Then, the traffic feature matrix X and the
attribute matrix K = {S,D} are fed into the attribute
augmentation unit (A-Cell) to derive augmented matrices.

(1) Incorporating static attributes S.
S ∈ Rn×p is a collection of p different static attributes
{ Es1, Es2, . . . , Esp}. Since the attribute values do not vary with
time, the whole matrix S is constantly used, while the corre-
sponding column in X is extracted in the process of gener-
ating the augmented matrix at each timestamp. Specifically,
the matrix augmented by static attributes at time t is formed
as:

E ts = [X t , S], E ts ∈ R
n×(p+1). (2)

(2) Incorporating dynamic attributes D.
Different from S,D ∈ Rn×(w∗t) is a collection ofw different

dynamic attributes {D1,D2, . . . ,Dw}. Notably, considering
that the traffic states are subject to the cumulative effects of
dynamic factors over a period, instead of selecting attribute
values corresponding to time t, we expand the selecting
window size to m + 1 when forming E t , that is, select-
ing Dt−m,tw = [Dt−mw ,Dt−m−1w , . . . ,Dtw] for each dynamic
attribute submatrix Dw. Finally, through the attribute aug-
mentation unit (A-Cell), the augmented matrix containing
both static and dynamic external attributes as well as traffic
characteristic information at time t is formed as:

E t = [X t , S,Dt−m,t1 ,Dt−m,t2 , . . . ,Dt−m,tw ], (3)

where E t ∈ Rn×(p+1+w∗(m+1)).

E. ATTRIBUTE-ENHANCED SPATIOTEMPORAL GRAPH
CONVOLUTION MODEL (AST-GCN)
Based on the spatiotemporal graph convolutional network,
we propose a traffic forecasting model AST-GCN that per-
ceives information of external factors with attribute aug-
mentation units. As shown in Fig. 4, firstly, the attribute
augmentation unit expands the dimension of the original
feature matrix by incorporating static and dynamic external
attributes for every timestamp. At time t , X t is extracted from
the original traffic feature matrix X , {Dt−m, . . . ,Dt } is the
collection of dynamic information from time t − m to t , S is
the static attribute, which is constantly the same for different
timestamps, and E t is the enhanced matrix after the fusion of
the external attributes and original traffic features.

The enhancement matrix E is then used as the input of the
model f to obtain the final prediction result ŷ:

ŷ = f (A,E). (4)

FIGURE 5. The architecture of the GCN model.

FIGURE 6. The architecture of the GRU model.

Since traffic flows on connected road sections, modeling
spatial dependencies on the network is essential in the traf-
fic forecasting task. Moreover, traffic states can constantly
change over time in the real world. To achieve the purpose
of capturing the spatiotemporal dependencies in real-world
traffic data, Graph convolutional networks (GCNs) [23] and
Gated Recurrent Units (GRUs) [29] are combined to con-
struct the model f .
Specifically, the main purpose of using GCN is to obtain

the representation of each road section while considering the
influence of connected road sections. The modeling process
of GCN can be expressed as yl+1 = σ

(
D̃−

1
2 ÃD̃−

1
2 ylWl

)
. σ

is the activation function, Ã = A+ I represents the adjacency
matrix with self-loops, D̃ is the corresponding degree matrix,
Wl is the weight matrix of the l-th convolutional layer, yl
is the output representation, and y0 = E t when modelling
spatial characteristics at time t . With the enhanced matrices
E of multiple time steps and the adjacency matrix A of the
road network as inputs, GCN generates representations of
road sections that capture the spatial dependencies on the road
network at different time steps.

Then, these time-varying representations are fed into
GRUs to model the temporal dependencies and derive hidden
traffic states. The GRU model can be regarded as composi-
tions of reset gates and update gates. Consider gates at t for
example, rt is the reset gate used to combine previous traffic
state ht−1 with the representation of the road section at time t
to derive the candidate hidden state ct . ut refers to the update
gate that can be used to determine how much of previous
traffic state ht−1 to discard and what new information of ct
to incorporate to derive the final hidden traffic state ht . This
procedure can be formulated as Eq.5-8:

ut = σ
(
Wu ·

[
gc
(
E t ,A

)
, ht−1

]
+ bu

)
, (5)

rt = σ
(
Wr ·

[
gc
(
E t ,A

)
, ht−1

]
+ br

)
, (6)

ct = tanh
(
Wc ·

[
gc
(
E t ,A

)
, (rt , ht−1)

]
+ bc

)
, (7)

ht = ut ∗ ht−1 + (1− ut) ∗ ct , (8)
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where gc(·) represents the graph convolution operation, W
and b are learnable parameters.
The goal of traffic forecasting is to make the prediction

result approximate the real traffic states as much as possible.
Therefore, the objective of the loss function is to minimize
the prediction error.

Loss =
∥∥yt − ŷt∥∥+ λLreg, (9)

where yt and ŷt are the ground truth and prediction, Lreg
represents the L2 regularization, and λ is a hyperparameter
that controls the regularization rate.

IV. EXPERIMENTS
A. DATASETS
The following datasets are used in the experiment:

(1) SZ_taxi [25]: this dataset (available at https://www.git
hub.com/lehaifeng/T-GCN) contains Shenzhen taxi trajec-
tory data collected from January 1 to January 31, 2015.
January 1 to January 3, 2015, is the New Year’s Day holiday
in China. During this period, traffic flows may show different
patterns than usual. However, the remaining 28 days, which
dominate, are regular days.Moreover, the selected dataset can
help us mimic real scenarios better since we do not bypass
holidays in traffic forecasting. Therefore, the combination of
holidays and original days manifests the diversity of data,
which is capable of facilitating better generalization. A total
of 156 major road sections in the Luohu District are selected,
and their connectivity is modeled by a 156*156 adjacency
matrix. The traffic speed time series of selected sections are
calculated and form a feature matrix, where rows are indexed
by road sections and columns are indexed by the timestamps.

(2) SZ_POI: this dataset provides information about POIs
surrounding selected road sections. The POI categories can be
divided into nine types: catering services, enterprises, shop-
ping services, transportation facilities, education services,
living services, medical services, accommodations, and oth-
ers. After calculating the distribution of POIs on each road
section, the type of POI with the largest proportion is used as
the feature of the road section. Therefore, the obtained static
attribute matrix is of size 156*1.

(3) SZ_Weather: this auxiliary information contains the
weather conditions about the study area recorded every
15 minutes in January 2015. The weather conditions are
divided into five categories: sunny, cloudy, fog, light rain,
and heavy rain.With the information of time-varying weather
conditions, we construct the dynamic attribute matrix with
size 156*2,976.

B. EVALUATION METRICS
To evaluate the prediction performance of the proposed
model, we use the followingmetrics to evaluate the prediction
results.

(1) Root mean square error (RMSE):

RMES =

[
1
n

n∑
t=1

(
yt − ŷt

)2] 1
2

. (10)

FIGURE 7. The influence of the selection of epochs on the prediction
performance.

The smaller the RMSE value, the smaller the prediction error,
and the better the performance of the model.

(2) Mean absolute error (MAE):

MAE =

∑n
i=1

∣∣yt − ŷt ∣∣
n

. (11)

MAE describes the average of the sum of the absolute differ-
ence between the predicted result and the ground truth. It is
mainly used to evaluate the prediction error.

(3) Accuracy:

Accuracy = 1−
‖y− ŷ‖F
‖y‖F

, (12)

where ‖ · ‖F represents the Frobenius norm. The closer this
value is to 1, the better the performance.

(4)R2:

R2 = 1−

∑
t=1

(
yt − ŷt

)2∑
t=1 (yt − ȳt)

2 .
(13)

R-square is mainly used to measure the predictive ability of
the model, and the larger the R2, the better the prediction
results.

(5) Explained variation (VAR):

Var = 1−
Var(y− ŷ)
Var(y)

. (14)

VAR measures the proportion to which the proposed model
accounts for the variation in real traffic states. It is mainly
used to measure the predictive ability of the model.

C. PARAMETER SETTINGS
The AST-GCN model is trained with Adam optimizer. While
the learning rate, batch size and proportion of the training set
are manually set to 0.001, 64 and 0.8, the other parameters
are searched through experiments.

First, training epochs in set [500, 1,000, 1,500, 2,000,
3,000, 3,500] are tested to analyze the change in model per-
formance. Fig. 7 shows the evaluation results under varying
training epoch settings. As the value of the training epoch
increases, the changes in the evaluation metrics become sta-
ble, and the turning point is 3,000. Then, when the training
epoch is fixed to 3,000, the number of hidden units is selected
from the candidate set [8, 16, 32, 64, 100, 128]. As shown
in Fig. 8, when the number of units reaches 100, the model
becomes stable. Therefore, the training epoch is determined
to be 3,000, while the number of hidden units is 100.
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TABLE 1. Performance comparison of different models for traffic forecasting on the Shenzhen dataset.

TABLE 2. Ablation Experiments under different experimental settings.

FIGURE 8. The influence of the selection of units on the prediction
performance.

D. BASELINES
We compare the proposed AST-GCN with the following
baselines: (1) autoregressive integral moving average model
(ARIMA) [30], (2) support vector regression (SVR) [31], (3)
graph convolution model (GCN) [23], (4) gated recurrent unit
model (GRU) [32], (5) temporal graph convolution model
(TGCN) [25], (6) diffusion convolutional recurrent neural
network (DCRNN) [33], (7) spatio-temporal graph convolu-
tional network (STGCN) [34], and (8) Graph-WaveNet [35].
The hyperparameters of these baseline methods are the same
as those in the original article or released codes.

E. EXPERIMENTAL RESULTS
Limited by the data sources, this article simply uses the POI
distributions and weather conditions to exemplify the impor-
tance of enhancing the model’s ability to perceive external
factors. The experiments are designed from five perspec-
tives: the comparison of forecasting accuracy with base-
lines, the influence of introducing different kinds of external
information, the influence of different predicting lengths,
the interpretability of the proposed model, and the model’s
robustness.

1) FORECASTING COMPARISON WITH BASELINES
To verify the effectiveness of the AST-GCN model in the
traffic forecasting task, the prediction accuracy is compared
with baselines, as shown in Table. 1.

From the experimental results, it can be found that the
prediction accuracy of the methods based on deep learning

methods (AST-GCN,GCN, GRU, TGCN,DCRNN, STGCN,
and Graph-WaveNet) is higher than that of other methods.
Compared with the SVR and ARIMA models, the RMSE of
the attribute-aware AST-GCN model is reduced by approx-
imately 44.19% and 40.49%, respectively. From the spa-
tiotemporal perspective, compared with the GCN and GRU,
which only focus on spatial or temporal relationships,
the RMSE of AST-GCN, which considers both, is reduced
by approximately 28.58% and 20.44%, respectively, and the
overall evaluation given by other metrics is also significantly
improved. From the perspective of attribute enhancement,
the AST-GCN model, which considers external factors, out-
performs spatiotemporal models such as TGCN, DCRNN,
STGCN, and Graph-WaveNet, the RMSE is reduced by
approximately 0.99%, 10.52%, 11.91%, and 0.19%, respec-
tively; while the Accuracy is increased by 0.39%, 1.50%,
1.15%, and 0.26%, respectively. The comparison results
verify the effectiveness of the proposed AST-GCN model.

2) ABLATION EXPERIMENTS
We conduct ablation experiments to prove that dynamic and
static auxiliary information can play a role in the task of
traffic forecasting. The experimental setting is divided into
adding only static external information, adding only dynamic
external information, adding dynamic and static external
information, and not adding any external information. The
results are shown in Table. 2, and the fourth column is the
result of adding dynamic weather conditions, the fifth column
is the result of adding static POI distribution information, and
the sixth column is the result of adding both.

From the perspective of simply adding static external
information, the RMSE of AST-GCN (POI) is 0.68%,
10.25%, and 11.63% lower than that of the TGCN, DCRNN,
and Graph-WaveNet models. From the perspective of sim-
ply adding dynamic external information, the RMSE of
AST-GCN (weather) is reduced by approximately 0.78%,
10.33%, and 11.72% compared with the TGCN, DCRNN,
and Graph-WaveNet models. Though STGCN outperforms
AST-GCN with these two schemes by 0.01% and 0.11%
in RMSE. After adding both dynamic and static external
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TABLE 3. Performance comparison between the AST-GCN model and the baseline models for different prediction horizons.

information, the RMSE of AST-GCN (weather+POI) is
0.20%, 0.99%, 10.52%, and 11.90% lower than those of the
STGCN, TGCN, DCRNN, and Graph-WaveNet.

In summary, when considering the type of information
to introduce, the model enhanced with dynamic external
information is better than the model with static external
information, indicating that the impact of weather condi-
tions on traffic states is greater than that of the surrounding
POIs. In addition, adding both dynamic and static external
information, the model performs better than the model that
adds a single type of information. The prediction error is
lower by 0.21% and 0.31%, indicating the complementarity
of dynamic and static factors. In general, enhancing themodel
with external information can facilitate the traffic forecasting
task.

3) THE FORECASTING PERFORMANCE OF AST-GCN FOR
DIFFERENT PREDICTING HORIZONS
This experiment tests the performance of AST-GCN for
different prediction horizons (15 min, 30 min, 45 min,
and 60 min), and the performance comparison between
the AST-GCN model and the baseline models is shown
in Table. 3. We can observe that AST-GCN outperforms
baselines under each prediction horizon. For the predic-
tion horizon of 15 minutes, the RMSE of the AST-GCN
model is approximately 0.99%, 10.52%, 11.91%, and 0.19%
lower than that of TGCN, DCRNN, Graph-WaveNet, and
STGCN, respectively. For the prediction horizon of 30 min-
utes, the RMSE of the AST-GCN model is approximately
0.59%, 11.17%, 12.89%, and 0.60% lower than that of
TGCN, DCRNN, Graph-WaveNet, and STGCN, respec-
tively. For the prediction horizon of 45 min, the RMSE
of the AST-GCN model is approximately 0.52%, 11.27%,
13.00%, and 0.55% lower than that of TGCN, DCRNN,
Graph-WaveNet, and STGCN, respectively. When the pre-
diction horizon is set to 60 min, the RMSE of the AST-GCN
model is approximately 0.64%, 11.66%, 13.83%, and 0.77%
lower than that of TGCN, DCRNN, Graph-WaveNet, and

STGCN, respectively. Moreover, even when the performance
of all models deteriorates with the increase of the prediction
horizon, the difference of metrics between AST-GCN and
other models generally increases. Therefore, it can be con-
cluded that the AST-GCN model can maintain good perfor-
mance for different horizons and the capability for long-term
forecasting.

4) PERTURBATION ANALYSIS
Gaussian noises and Poisson noises are added to the data to
test the robustness of the model. The two types of noise obey
Gaussian distributionN ∈

(
0, σ 2

)
(σ ∈ 0.2, 0.4, 0.6, 0.8, 1, 2)

and Poisson distribution P(λ)(λ ∈ 1, 2, 4, 8, 16), respec-
tively. The experimental results are shown in Fig. 9, and the
robustness of the AST-GCN model is verified by the fact
that the changes in evaluation metrics across different noise
settings are negligible.

5) INTERPRETATION OF THE AST-GCN
To explain the predictive ability of the model more clearly,
this experiment visually compares and analyze the true
speed value of the test set and the prediction result of the
attribute enhancement graph convolution model (AST-GCN)
and explain the model from the following two perspectives:

(1) Long-term forecasting
Based on the historical one-hour data, the results of pre-

dicting traffic speeds for the next 15 minutes, 30 minutes,
45 minutes, and 60 minutes are visualized in Fig. 10-13.
The upper subfigure in each figure is the forecasting result

from January 26, 2015, to January 31, 2015, and the lower
image is the forecasting result for January 27, 2015. From
the visualization results, we can conclude the following:

• For different forecasting horizons, the model can well
predict the traffic speed value. The prediction result of
the model is similar to the changing trend of the real
speed;

• The performance of short-term forecasting is better than
that of long-term forecasting. Comparing the prediction
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FIGURE 9. Perturbation analysis.

FIGURE 10. The visualization results for the 15 minute prediction horizen.

results for 15 min and 60 min, it can be found that
the curve of short-term prediction is closer to the real
curve, which indicates that the model can better cap-
ture the short-range dependencies while losing some
information in long-term prediction;

• For the capturing of the turning points of the speed
changing trend, the AST-GCN model has considerable
deviations at high and low peaks. The reasonmay be that
the sudden change in traffic states is affected not only by
the weather and POI factors used in this study but also
by a combination of other factors.

(2) Attribute importance
To further study the validity of static and dynamic external

information, we visualize the results of the ablation experi-
ments. Fig. 14-16 show the visual comparison of forecasting

FIGURE 11. The visualization results for the 30 minute prediction horizon.

FIGURE 12. The visualization results for the 45 minute prediction horizon.

FIGURE 13. The visualization results for the 60 minute prediction horizon.

enhanced by static POI information, dynamic weather con-
dition information, and their combination with forecasting
without external information.

• External information improves the model’s perception
of peaks and turning points. Fig. 14-16 show that the
prediction results of the model with external information
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FIGURE 14. Comparison between forecasting enhanced by static POI
information and forecasting without external information.

FIGURE 15. Comparison between forecasting enhanced by dynamic
weather condition information and forecasting without external
information.

FIGURE 16. Comparison between forecasting enhanced by the
combination of static and dynamic information and forecasting without
external information.

are closer to the ground truth than the prediction result
without attribute auxiliary information at turning points
and peaks.

FIGURE 17. Comparison among forecasting enhanced by different
external information.

• From the visualization results in Fig. 17, it can be
found that the deviation between the predicted results of
AST-GCN (dynamic+static attribute) and the real speed
value is smaller than that of AST-GCN (static attribute)
and AST-GCN (dynamic attribute), which indicates that
the diversity of external information can better facilitate
forecasting.

V. CONCLUSION
This article addresses the problem that the traditional urban
traffic forecasting models cannot comprehensively consider
the external factors that affect the traffic states and pro-
poses an attribute-enhanced spatiotemporal graph convolu-
tionmodel AST-GCN. Themodel can integrate not only static
external information but also dynamic external data. Through
comparison with the baseline methods, the prediction results
verify the importance of considering external information
in traffic forecasting tasks. In addition, this article uses a
perturbation analysis to test the robustness of the model. Our
future work will extend to explore and model the interplay
between dynamic and static factors to better facilitate traffic
forecasting.
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