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ABSTRACT Forecasted global horizontal irradiation (GHI) can help for designing, sizing and performances
analysis of photovoltaic (PV) systems including water PV pumping systems used for irrigation applications.
In this paper, various deep neural networks (DNN) models for one day-ahead prediction of GHI at Hail
city (Saudi Arabia) are developed and investigated. The considered DNN models include long-short-
term memory (LSTM), bidirectional-LSTM (BiLSTM), gated recurrent unit (GRU), bidirectional-GRU
(Bi-GRU), one-dimensional convolutional neural network (CNN1D) and other hybrid configurations such
as CNN-LSTM and CNN-BiLSTM. A dataset of daily GHI recordings collected during January 1, 2000 to
June 30, 2020 from National Aeronautics and Space Administration (NASA) at an arid location (Hail, Saudi
Arabia) is used to develop and compare the above DNN-basedmodels. The parameters affecting the accuracy
of the models have been also deeply analyzed. Only historical values of daily GHI have been used to build
the DNN-based models whereas additional weather parameters such as air temperature, wind speed, wind
direction, atmospheric pressure and relative humidity are not considered in this work. Keras library and
Python language have been used to develop and compare the GHI forecasting models. The evaluation metrics
such as correlation coefficient (r), Mean Absolute Percent Error (MAPE), Mean Absolute Error (MAE),
cumulative distribution function (CDF) and standard deviation (σ ) are opted to evaluate the performance
of the prediction models. The obtained results showed that the DNN models have provided globally good
performances with a maximum reached value of r = 96%, for daily GHI forecasting.

INDEX TERMS Global horizontal irradiation, prediction, deep learning, recurrent neural networks, LSTM,
GRU, BiLSTM, BiGRU, CNN, CNN-LSTM, CNN-BiLSTM.

I. INTRODUCTION
Accurate forecasting of solar irradiation including global,
direct, diffuse and normal is a crucial task for designing
optimal solar energy systems (photovoltaic and thermal) [1].

During the last three decades, numerous studies used
machine learning (ML) techniques such as artificial neural
networks (ANNs) and support vector machine (SVM) for
forecasting global solar irradiation (GSR) [2]. The classical
methods including stochastic approaches and shallow ANNs,
recurrent neural networks (RNNs) have limited capability in
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capturing long-term dependency and the scalability issues
with large datasets [3] (e.g. the vanishing gradients problem
in RNNs). Recently, with the availability of a huge amount
of collected data across the globe and advances in computing
technologies, researchers working in this area are more and
more attracted towards deep learning (DL) techniques for
developing prediction models. The DL belong to broader
family of ML algorithms based on ANNs with representation
learning [4].

The DL based prediction models are playing an impor-
tant role in numerous areas such as optimal scheduling of
merchant-owned energy storage systems [5] and optimization
of networked distributed energy resources [6]. For instance,
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most works related to solar irradiation prediction are mainly
using offline models including ML and deep neural net-
works (DNNs).

Supervised learning is the most frequently used in solar
irradiation forecasting. Reinforcement learning could also
contribute to improve the forecasting accuracy in this area
since these learning techniques have proven their capability
in wind power forecast uncertainty [7] and frequency fore-
casting in distrusted systems [8].

Cyber-attacks are other issues having an important
impact on the power systems operation [9] including dis-
tributed generation [10], photovoltaic (PV) systems and
wind-turbine systems. Generally, in solar irradiation applica-
tions, cyber-attacks should be considered in order to secure
the stored data on which the operation of the networks is
based.

Currently, DNNs including long short-term mem-
ory (LSTM), gated recurrent unit (GRU), one-dimension
convolutional neural networks (CNN1D) and other hybrid
configurations such as CNN1D-LSTM are considered to
be the powerful tools in time series forecasting [11]. For
instance, a powerful deep learning NN, named Deep-Energy
was introduced for energy load forecasting [12]. In [13],
the authors developed a new model named ‘SEPNet’ for
the prediction of hourly electricity prices. Dividing input
data into different seasons has contributed significantly to
improve the prediction accuracy. However, to the best of
our knowledge, the application of DL in solar irradiation
forecasting is found to be very limited compared to other
fields of research. In fact, few attempts have been carried out
over the last couple of years. For example, an LSTM is imple-
mented to predict short-term hourly solar irradiance [14]. The
results revealed that LSTM outperformed the well-known
feed-forward neural network (FFNN) and SVM. The method
has been reported to be easily implemented using Keras deep
learning library [15].

Aslam et al. [16] confirmed the superiority of LSTM and
GRU algorithms in forecasting of GHI in two regions com-
pared with conventional ANNs (FFNN, RNN and SVM).
However, additional inputs are required (e.g. Clear-Sky) to
implement the model and improve its accuracy. A hybrid
model (C-LSTM) based on CNN and LSTM was proposed
in [17] for half-hour GHI forecasting. The proposed model
used CNN to extract GHI data features and LSTM to encap-
sulate the features to generate a low latency-based time series
GHI prediction model. Results showed that the GHI predic-
tion model outperform the other examined algorithms includ-
ing CNN, LSTM, DNN, decision tree (DT) and multi-layer
perceptron (MLP). Despite the good results, this hybrid con-
figuration (CLSTM) is relatively complex compared to other
DNNs (e.g. LSTM and GRU).

Sequence to sequence (S2S) DL models were used to
forecast 24-h ahead of GHI. The results revealed superiority
of LSTM over FFNN and gradient boosted regression trees
algorithms [18]. The method can generally be implemented
easily as it requires only historical GHI data. An LSTM

algorithm is developed for multi-step ahead forecasting of
GHI (36-h and 24-h) [19]. The models yielded acceptable
results in the investigated regions. However, additional mete-
orological data such as air temperature (T ), wind speed (WS ),
dew-point (Dp), relative humidity (RH ) and pressure (PR) are
needed in addition to the solar radiation (SR) components
(direct DHI and normal DNI). Therefore, the method became
relatively complex. Qing and Niu [20] used weather forecast
and an LSTM to predict hourly-day ahead of GHI. Although,
the model used is simple in implementation, its accuracy is
reported to depend mainly on the provided forecast data from
weather service organizations (WSO). Moreover, data from
WSO are not always accessible at different regions.

An LSTM was implemented to forecast one-step ahead
(hour and day in advance) of GHI for complicated weather
conditions [21] at three regions in USA: Atlanta, New York,
and Hawaii. Results indicated that for cloudy days the LSTM
performs better than conventional RNN. The clearness index
(Kt ) is used to classify days. Husein and Chung [22] devel-
oped a method based on LSTM for day-ahead forecasting
of GHI in four locations: Germany, U.S.A, Switzerland, and
South Korea. It was reported that the LSTM outperforms
FFNN of all investigated locations. The method is simple and
only historical values of GHI are needed.

A reliable approach for solar irradiance forecasting based
on Choquet Integral and LSTM was developed in [23]. Six
datasets collected from different regions in Finland were used
to assess the accuracy of the approach. Results indicate that
the proposed approach showed lower forecasting errors than
the other methods, such as autoregressive integrated moving
average (ARIMA). The approach is relatively complex com-
pared to other structures.

De Araujo [24] made a comparison between LSTM algo-
rithm and weather research and forecasting (WRF) model at
Gifu, Japan for radiation forecasting. Results demonstrated
that WRF model performed better with a lower prediction
error compared to the LSTM algorithm. The designed model
is simple and requires only GHI data to be implemented.
A Gramian Angular Field (time series used in image trans-
formation) and CovLSTM were developed [25] for one day
ahead forecasting of solar radiation, at Taiwan. The method
outperforms ARIMA, LSTM-FC, and CNN-LSTM. Never-
theless, the method is found to be relatively complex, since
raw data are converted into images by using the Gramian
Angular Field. GRU algorithm and weather forecasting data
are used to predict day-ahead of GHI [26]. The results showed
that the GRU performs well compared to other investigated
models. However, the accuracy depends mainly on the accu-
racy of the weather forecast variables.

The Prediction of accuracy of GHI depends on several
factors including the geographic location, climate and also
on the methods used as well as on the size and quality of the
available data.

Most papers claimed that LSTM, GRU, CNN and
Cov-CNN algorithms perform better, in terms of accuracy,
than other classical ML algorithms including conventional
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RNN, FFNN, SVM, and stochastic approaches such as
autoregressive (AR), AR moving average (ARMA) and
ARIMA. Thus, in this study we focus mainly on the devel-
opment of DNN algorithms including LSTM, BiLSTM,
CNN, GRU, BiGRU and a hybrid CNN-LSTM. This work
is not intended to compare the results with conventional
approaches. The novelties and contributions of this paper two
fold.

Firstly, development and evaluation of different DNN
structures (LSTM, BiLSTM, GRU, BiGRU, CNN,
CNN-LSTM, and CNN-BiLSTM) for one-day-ahead fore-
casting of GHI at Hail region, Saudi Arabia, which is the
first application in this region. Some DL algorithms were not
previously investigated with daily solar irradiation forecast-
ing (e.g. Bi-GRU, CNN-BiLSTM). Secondly, deep analysis
of the developed DNN-based models by varying different
parameters that can affect the forecasting accuracy (e.g. num-
ber of inputs, number of units within the hidden layer, number
of layers, batch size, epoch and size of dataset). This issue has
not been investigated in the previous studies.

To assess the performances of the DNN-based models,
different error metrics and statistical tests (r , RMSE, MAPE,
MAE, CDF and σ ) have been used [27].
The paper is organized as follows: Section II presents the

site location and the dataset used for developing the DNN
forecasters. A brief introduction on deep learning, includ-
ing the used deep neural networks (LSTM, BiLSTM, GRU,
Bi-GRU, CNN, CNN-LSTM and CNN-BiLSTM), is given
in Section III. Development of forecasting models is also
reported in the same Section. Results and discussion are
provided in Section IV.

II. SITE LOCATION AND DATASET
A. SITE LOCATION
The considered region (Hail, Saudi Arabia) is located at
(27◦23’11", 41◦38’49") geographic coordinates. Hail has a
hot desert climate (Köppen climate classification) with hot
summers and cool winters. It has a somewhat milder climate
than other Saudi cities due to its higher altitude, temperature,
humidity and insolation [28]. Moreover, Hail is known to
be among the most active region in agriculture for which
using solar energy for pumping water from deep wells can
be economically efficient. Note here that this study is the
first step in a research project aiming to implement a pilot
photovoltaic water pumping system (PVWPS) at Hail region.

B. DATASET REPRESENTATION
The dataset used for DNN-based models’ development is
collected from the National Aeronautics and Space Adminis-
tration (NASA) [29] during January 1, 2000 to June 30, 2020
(20 years and 6 months). Figure 1 depicts the distribution of
monthly GHI for the year 2019. Seasonal behavior as well
as a remarkable variance of GHI distribution are observed.
These patterns have been found to be the same for the other
years.

FIGURE 1. Distribution of daily GHI for each month of the year 2019 at
Hail location, Saudi arabia.

FIGURE 2. Deep learning process for developing prediction model.

III. METHODOLOGY
A. DEEP LEANING NEURAL NETWORKS
DL is a sub-field of ML where ANNs make up the backbone
of DL algorithms. Figure 2 shows a simplified process of a
DL algorithm implementation. As can be seen, the feature
extraction step is intentionally removed because DL algo-
rithms are able to learn and automatically extract features
from raw input data [4].

DL is a relatively new advancement in NNs and represents
a way to train DNNs since traditional NN-based methods
might be affected by problems such as over-fitting and dimin-
ishing gradients [30]. A short description of the commonly
used DNNs for GHI forecasting is detailed in the following
sub-sections.

1) LONG SHORT-TERM MEMORY
LSTM is a kind of RNN with some modification including
cell, input gate, output gate and forget gate [31]. An LSTM
layer can learn long-term dependencies. It is mainly used
for time series prediction. A simple configuration consists of
some LSTM cells and dense output layer. Figure 3 shows the
basic LSTM cell. It is composed of three main gates: input
gate, forget gate and output gate. The following equations
show the relationship between the three gates, input and
output [31].

ft = α
(
wf . [ht−1, xt ]+ bf

)
(1)

it = α (wi. [ht−1, xt ]+ bi) (2)
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FIGURE 3. The basic structure of an LSTM cell.

ot = α (wo. [ht−1, xt ]+ bo) (3)

Ct = ftCt−1 + it .th (wc. [ht−1, xt ]+ bc) (4)

ht = Ot .β (Ct) (5)

2) BIDIRECTIONAL-LSTM
Bi-LSTM is a modified version of LSTM [32]. It consists
of two separate hidden layers; firstly, it computes the for-
ward hidden sequence, then it calculates the backward hidden
sequence, and finally, it combines both to calculate the output.

3) GATED RECURRENT UNIT
The GRU is similar to LSTM with fewer parameters than
LSTM [33]. The parameters are learned through the gating
mechanism of GRU. GRU is computationally more efficient
considering fewer parameters and need less data to general-
ize. It can also learn long-term dependencies.

4) BIDIRECTIONAL-GRU
Bi-GRU is an improved version of GRU [32] having the same
structure as BiLSTM with fewer parameters. It consists basi-
cally of two separate hidden layers. The process is relatively
similar to BiLSTM.

5) CONVOLUTIONAL NEURAL NETWORK
CNN is a regularized version of thewell-known Feed-forward
NNs. CNN was firstly developed for 2D problems. It con-
sists of some layers, Conv2D, Max Pooling, Flatten and
Fully connected layer [30]. It could be also used for solv-
ing one-dimensional problems (CNN1D) such as time series
classification and prediction.

6) CNN-LSTM
CNN-LSTM combines CNN with LSTM. Its principle con-
sists of putting in cascade both configurations to get the
hybrid configuration (CNN-LSTM) [34], [35]. A simplified
schematic illustration of a one-dimensional CNN-LSTM is
shown in figure 4.

The CNN-LSTM includes one convolutional layer, one
max pooling layer, a flatten layer, an LSTM layer and a fully
dense layer (fully connected layer with one output). Com-
bining CNN with LSTM means that CNN (1-Dimensional)
is used to reduce the features of raw data, zt = CNN1D(xt)

FIGURE 4. One-dimensional CNN−LSTM structure used for daily GHI
forecasting.

using conventional filters. Where xt are the raw data, zt
is the output sequence obtained by the calculation of the
convolution matrix in the first layer, max-pooling in the
second layer which permits to reduce the matrix size, and
flatten layer to convert matrix to vector (flattening operation).
Therefore, this output (zi) is then used to feed the LSTM layer.
An example of the developed CNN-LSTM using Python and
Keras library [15] is given in the Appendix (Python code of
the developed CNN-LSTM).

7) CNN-BI-LSTM
CNN-Bi-LSTMhas the same structure as CNN-LSTMexcept
that the LSTM layer (See figure 4) is replaced by a Bi-LSTM.

B. FORECASTING OF DAILY GLOBAL SOLAR IRRADIATION
APPROACHES
Broadly forecasting of GHI based artificial intelligence (AI)
techniques including ML and DL can be achieved by three
ways [36], [37]. The first one uses only historical GHI records
(ground measurements):

(yt+1, .., yt+k)= f (yt−n, yt−n+1, . . . , yt) (6)

where variable yt is the actual GHI, yt−n is the previous value
of GHI, yt+k is the forecasted value of GHI at step k , and f
is a functional dependency between past and future samples.
t ∈ t ∈ {1, .., n}, n is the size of the sequence.
The second one relies upon forecasted meteorological

parameters by numerical weather prediction models (NWP)
such as T, RH, WS, PR and cloud index (CI).

(yt+1, .., yt+k)= f (x0t, x1t, x2t, x3t, x4t, . . .) (7)

where variables x0t, x1t, x2t, x3t and x4t correspond to T, RH,
WS, PR and CI respectively.
The third one combines the use of historical GHI data

records with meteorological parameters:

(yt+1, .., yt+k)

= f (yt+n, yt+n−1, . . . , x0t, x1t, x2t, x3t, x4t, . . .) (8)

These approaches could be used for one-step (k = 1) and
multistep (k >1) ahead forecasting.
In this paper, the first approach is considered, because

other meteorological variables recorded in-situ or forecasted
based on numerical weather prediction models are not always
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FIGURE 5. Example of input (actual) and output (predicted) sequences.

available in many locations including our case study (Hail
city, Saudi Arabia). In addition, we can cite the simplicity
of the forecasting models based only on historical values of
GHI. Thus, the described DNNs are used to forecast the next
value of daily GHI based on some past measurements of GHI.
In our case k = 1, so,

(yt+1, .., yt+k)= f (yt−n, yt−n+1, . . . , yt) (9)

Figure 5 shows an example of the adopted process for solar
radiation prediction [35].

The dataset is divided into three parts: a subset of 70% is
used for training the different DNNs, 15% for validation and
remaining 15% for testing the models. The dataset is firstly
normalized using the following MinMax equation [37]:

yN = (y−ymin) (ymax − ymin)
−1 (10)

where yN is the normalized value of GHI, ymin and ymax
are minimum and maximum values of GHI, respectively.
An example of inputs and output samples is shown in the
appendix (Case of 7 inputs and one output). Figure 6 shows
the flowchart of the forecasting method based on DNN.

To evaluate the performance of the investigated DNNs,
four performance measures have been selected: the r , the
RMSE and the MAPE in addition to other statistical tests
such as CDF and σ . To prevent the overfitting problem,
a dropout layer is added in addition to the decision of stop-
ping training process early when the convergence is reached.
As consequence, it is not needed to train the network for all
epochs. The investigated models have been developed using
the Adam optimizer [38]. The updated equations are also
shown in the Appendix (Adam optimization).

IV. RESULTS AND DISCUSSION
Different DNN models have been evaluated for the predic-
tion of one-day-ahead of GHI in Hail region, Saudi Arabia.
The experiments have been conducted on a laptop i7-4600U
CPU @2.10GHz, 2 Cores(s), 4 Logical Processor(s), 8 GB
of DDR3 RAM. The codes have been written using Python
programming language under Ubunto operating system.

To show the performance of the studied DNN-based mod-
els, CDF is firstly plotted in figure 7. As can be seen, the
majority of models have good correlation between measured
and forecasted daily GHI. However, in the case of GHI lower
than 4 kWh/m2/day, the models did not perform well (small
variation is observed) as can be observed in the zoom plot of
figure 7.

FIGURE 6. Flowchart of the forecasting method based DNNs.

FIGURE 7. V ariation of the cumulative distributed function (CDF) of the
investigated DNN based-models: LSTM, BiLSTM, GRU, Bi-GRU, CNN,
CNN-LSTM and CNN-BiLSTM.

To check the performance variation of the developed
Bi-LSTM, the µ and σ variation between measured and fore-
casted dailyGHI during the test period (1 July 2017 to 30 June
2020) are depicted in figure 8.

As can be seen from figure 8 (shading plot), there is no
big variation of the standard deviation (gray color) from the
µ values which indicates the good accuracy of the Bi-LSTM
forecaster.
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FIGURE 8. Variation of the µ and σ values in the case of Bi-LSTM: σ is the
standard deviation and µ is the mean between measured and forecasted
daily GHI (1 July 2017 to 30 June 2020).

FIGURE 9. The absolute error (AE) of different investigated DNN models
(red color indicates outliers which are greater than the maximum value.
The center of the box is the medium value and the blue box is the
variance).

The boxplot in figure 9 displays the calculated absolute
error (AE) for the investigated DNN models. Training accu-
racy is relatively the same with the test accuracy, which
indicates that there is no overfitting problem in our models.
We can observe from figure 9 that LSTM, GRU, Bi-LSTM
and Bi-GRU models present lower variance values. Never-
theless, for all models, outliers are similar (red color). CNN,
CNN-LSTM and CNN-BiLSTM have relatively larger vari-
ance values.

After several experiments, the optimal structures of the
investigated DNN models are listed in Table 1 including the
calculated error metrics (r , RMSE, and MAPE). The batch
size (BS = 64), the number of inputs (NI = 7), epoch =
100, number of units in the hidden layer (HL) of mostly
investigated models is NU = 100.

Table 1 shows that the r ranges between 92% and
96%. For all investigated models the RMSE do not
exceed 1 kWh/m2/day. The lowest MAPE is obtained by

TABLE 1. Error metrics between measured and forecasted Daily GHI for
the investigated DNN-Based models (LSTM, Bi-LSTM, GRU, Bi-GRU, CNN,
CNN-LSTM and CNN-Bi-LSTM).

FIGURE 10. Loss (MSE) evolution based on the variation of the batch-size
values (8, 16, 32, 64 and 128).

Bi-LSTM model. Several experiments have been carried out
in order to deeply assess the influence of some parameters
(such as BS, NU, NI, epoch, NL, and dataset size) on the
forecasting accuracy including the convergence time and the
complexity of the DNN models.

A. EXPERIMENT 1
To verify the impact of the batch size (BS) on the accu-
racy and the loss function, figure 10 displays the loss func-
tion (MSE) during the training phase through varying the BS
from 8 to 128.

In the zoomed part of figure 10, it has been observed
that high values of BS significantly increase the convergence
of the Bi-LSTM model during the training process (starting
from BS = 32). In all cases (values of BS), after 50 epochs,
the model converges to the same point.

B. EXPERIMENT 2
To verify the effect of the input size (number of inputs:
historical values of daily GHI) on the convergence time and
the accuracy of the examined Bi-LSTMmodel, several inputs
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FIGURE 11. Evolution of the calculated r and training time as function of
the number of inputs (1 day- 21 days).

FIGURE 12. Evolution of r and the training time as function of the
number of units (Cells in the hidden layer of the Bi-LSTM model).

size varying from 1 day to 21 days have been investigated.
Figure 11 displays the evolution of the calculated r and the
training time for different inputs sample sizes.

It can be pointed out from figure 11 that the optimal value
of r can be reached by using 7 past days as input, though
increasing the number of inputs (NI) up to 21 days conducted
to a significant increase in the convergence time with a slight
variation in r .

C. EXPERIMENT 3
The BS, the epoch and the NI are kept at 64, 100 and 7
respectively and the number of units is varied (from 10 to 250)
in order to see its influence on the convergence of the model
as well as the forecasting accuracy. The results are depicted
in figure 12.

Best results are obtained with 100 units. However, increas-
ing the number of units does not increase significantly the
accuracy based on the value of r which is found to globally
range between 91% and 96%. It can also be noticed that
increasing the number of units led to consuming more time

TABLE 2. Comparison between measured and forecasted daily GHI using
different structures of LSTM and GRU.

during the training process without significant improvement
of the accuracy.

D. EXPERIMENT 4
In this experiment, the number of hidden layers (HL) have
been varied for the cases of LSTM and GRU. For both DNN
models, the NU in the first HL is set to 100 units and 50 units
in the second HL (1st structure). NU in the first HL is set
to 50 units and 50 units in the second HL (2nd structure). The
results are reported in table 2. The BS= 64, epoch= 100 and
NI = 7.

As shown in table 2, the average value of r is 95%. It can
be concluded that the forecasting accuracy is not significantly
improved. In addition, much time is required during the train-
ing process and the configuration will be complicated. Hence,
one hidden layer is enough.

E. EXPERIMENT 5
To verify and confirm the influence of the size of the dataset
on the model performance, three sub-datasets have been
built: Dataset # 1: (7480 samples) 20 years + 6 months,
Dataset # 2 (3740 samples) 10 years + 3 months, and
Dataset # 3 (1870 samples) 5 years + 45 days. Results are
reported in figure 13a and figure 13b, showing a comparison
(superposition and scattered curves) between measured and
forecasted GHI using the Bi-LSTM model.

F. COMPARISON AND REMARKS
Table 3 reports a comparison between some recently devel-
oped methods for GHI forecasting and our method in terms
of the length of the dataset, time horizons and forecasting
accuracy. According to table 3, only few papers are related
to daily GHI forecasting using deep NNs. The large dataset
used is 15 years. LSTM model is the most investigated type
of DNNs. Generally, most evaluated DNN-based models pro-
vide good results with varying in complexity and accuracy
which are the main criteria to select the appropriate model.

With reference to the above experiments, the following
points can be highlighted:
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FIGURE 13. a. Measured versus forecasted daily GHI using BiLSTM-based model for the
second dataset (superposed and scatter curves): red color indicates the forecasted daily
GHI b. Measured versus forecasted daily GHI using BiLSTM-based model for the third
dataset (superposed and scatter curves): red color indicates the forecasted daily GHI.

- Using past seven days as input are largely enough to
obtain good results. The DNN models become more
complicated and take more time in the training process
(loss function convergence), when adding more inputs.

- In most examined DNNs, 100 epochs are enough, but in
some cases 50 epochs are sufficient to obtain acceptable
results.

- Increasing the value of batch-size (e.g. 8, 16, 32, 64 and
128) reduces significantly the convergence time of the

MSE during the training process, but there is no big
improvement in the accuracy. A small variation of the
r value is observed, therefore in our case BS= 64 is the
most appropriate.

- Complicated structures of the analyzed DNN-based
models, by increasing the number of hidden layers
(e.g. stacked LSTM and stacked GRU), do not increase
the forecasting accuracy. Therefore, adding more hidden
layers is not recommended in this application.
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TABLE 3. Comparison between DNNs forecasting methods used in recent selected papers (From 2018 to 2020) and our work.

- Increasing the size of the dataset in this area is not
needed, this can be explained by the seasonality varia-
tion of the data during the year. In contrast to other areas
of DL applications, where millions of data are needed
(e.g. pattern recognition, natural languages, speech,
video, etc.).

V. CONCLUSION
In this paper, various DNN-based models have been devel-
oped and evaluated for one-day-ahead forecasting of GHI at
Hail region, Saudi Arabia. It has been found that a simple
structure such as LSTM or Bi-LSTM can provide good fore-
casting accuracy (r = 96%).
It has been pointed out that parameters such as batch

size, number of units, epochs, and number of hidden layers
should be carefully selected. Other parameters such as filters
size in CNN, dropout rate and kernel size should be also
considered.

It has been verified that with a dataset of 7480 samples,
good performances can be achieved by the evaluated DNN
models in this specific climate (desert conditions). Globally,
the obtained accuracy is enough in our application which con-
cerns the design of PV water pumping systems in this area.
To increase the forecasting accuracy, more efforts should be
deployed particularly in terms of algorithms’ development.
Further contributions of the current study can be built around
what follows:

• Multi-step ahead forecasting of daily GHI based
sequence-to-sequence algorithms (e.g. encoder-decoder
LSTM) will be investigated.

• Application of reinforcement learning (e.g. Q-learning)
to improve the forecasting accuracy.

• Considering other meteorological variables such as air
temperature, wind speed and relative humidity.

APPENDIX
Python code of the developed CNN-LSTM (main)

CNN_LSTM = Sequential()
CNN_LSTM.add(TimeDistributed(Conv1D(filters = 64,

kernel_size =2, activation =’relu’),input_shape = (None,x_
train_sub.shape[2], x_train_sub.shape[3])))

CNN_LSTM.add(TimeDistributed(MaxPooling1D(pool_
size = 2)))
CNN_LSTM.add(TimeDistributed(Flatten()))
CNN_LSTM.add(LSTM(50, activation =’relu’))
CNN_LSTM.add(Dropout(0.5))
CNN_LSTM.add(Dense(1))
CNN_LSTM.compile(loss =’mse’, optimizer =’adam’)
CNN_LSTM.summary() ADAM optimization
The updated equations for each parameter wj can be sum-

marized as follows [38]:

vt = β1 ∗ vt−1 − (1− β1) ∗ gt (a1)

s = β2 ∗ st−1 − (1− β2) ∗ gt ∗ gt (a2)

1wt = −ρ
vt

√
st + ε

∗ gt (a3)

wt+1 = wt +1wt (a4)

ρ: Initial learning rate
gt: Gradient at time t along wj.
vt: Exponential average of gradients along wj.
st: Exponential average of squares of gradients

along wj.
β1 and β2: Hyper-parameters.
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Example of input and output samples

NOMENCLATURE
ANN Artificial neural networks
CNN Convolutional neural networks
LSTM Long-Short Term Memory
r Correlation coefficient
MAPE Mean absolute percentage error
RMSE Root mean squared error
GHI Global horizontal irradiation
S2S Sequence to sequence
GRU Gated recurrent unit
RNN Recurrent neural networks
DL Deep learning
ML Machine learning
BiLSTM Bidirectional LSTM
BiGRU Bidirectional GRU
ReLU Rectified linear unit
DT Decision tree
GSR Global solar radiation
MLP Multi-Layer Perceptron
GBRT Gradient Boosted Regression Trees
Kt Clearness index
CI Choquet Integral
T Air temperature
RH Relative humidity
WS Wind speed
PR Pressure
CI Cloud index
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