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ABSTRACT Feature selection plays a key role in many machine learning problems. Especially as an
important data preprocessing method, robust and pragmatic feature selection methods can be applied to
extract meaningful features and eliminate redundant ones. As we all known, many feature selection methods
select features by using some certain feature evaluation criteria to obtain the corresponding score for every
feature, such that we can select high score features. Unfortunately, correlated features usually connect with
each other, which may result in large correlations between top ranked features, such that the redundancy
among the selected features is brought about. To solve this problem, we introduce the redundancy matrix A
in the AGRM (a novel auto-weighted feature selection framework via global redundancy minimization)
framework. Meanwhile, we introduce the adaptive redundancy matrix S and treat the redundancy matrix S
as an optimizing variable, rather than setting the redundant matrix S as a prior. In addition, we propose a
robust algorithm to efficiently address the constrained optimization problem. Finally, extensive experiments
on six datasets show the superiority of our proposed method.

INDEX TERMS Feature selection, linear discriminant analysis (LDA), redundancy minimization, sparse
regularization.

I. INTRODUCTION
In the age of big data, high-dimensional data have already
existed widely in many fields, such as machine learning,
bioinformatics and so on. However, it may result in large
requirement for time and space. At the same time, many
machine learning and data mining tasks may become difficult
in high-dimensional data. This is the so-called the curse
of dimensionality. Besides, data of high dimensionality can
also make learning model overfitting, which may result in
bad performance. To solve this problem, feature selection
techniques are devised to select the most relevant and rep-
resentative subset of features, which can greatly improve
model’s performance. When getting a relevant subset of fea-
tures, we can use traditional data techniques for effective
processing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Adnan Kavak .

According to the availability of label information, fea-
ture selection methods can be classified into unsupervised
[1]–[3], semi-supervised [4], [5] and supervised [6], [7].
From another perspective, feature selection algorithms can
also be divided into three categories roughly: filter [8], [9],
wrapper [10], [11], and embedded methods [12]–[14]. The
difference in these categories depends on how the learning
algorithm is incorporated in evaluating and selecting fea-
tures. Filter methods are not linked to any learning algorithm,
and select features by using the certain characteristics of
data. Therefore, filter methods are independent of the spe-
cific learning algorithm, and its characteristic is the use of
global statistical information. Wrapper methods are closely
related to the performance of a predefined learning algorithm,
which can usually get better performance under a specific
feature subset. However, the computational cost is very high.
Embedded methods have the advantages of filter and wrap-
per methods, which combine the feature selection with the
model training. Moreover, embedded methods can obtain
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better model’s performance and reduce the requirement of
time and space. Least square regression is usually applied to
embedded model. Wu et al. [15] proposed a novel supervised
feature selection method, which employed orthogonal least
square regression model with feature weighting. Besides,
with the development of neural network, some feature selec-
tion methods [16] have used neural network to minimize the
reconstruct errors.

Recently, sparse learning theory has an important influ-
ence on the improvement of algorithms. For instance, Liu
and Tsang [17], [18] applied sparse learning theory to their
framework, such that the decision tree can become easier
to interpret and understand in high dimensions. In addition,
Liu et al. [19] accelerated k-means clustering by using the
sparse learning technology. According to the structure of the
constraints, sparsity can be got from two types of regularizers:

1) Flat sparsity. The sparsity is realized by l1-norm or
l0-norm. Typical methods include LARS [20], linear gradient
search [21];

2) Structural sparsity. Group features are selected by the
l2,1-norm or l2,0-norm.
Many researchers have tried to apply the sparse regulariza-

tion to the embedded feature selection models as well. Tibshi-
rani [22] imposed l1-norm regularization term on the feature
selection model (Lasso). However, Lasso only works for
binary classification. For multi-class feature selection prob-
lem, we prefer to structured sparsity regularization, which can
select the features across all the classes with joint sparsity.
Besides, due to the virtue of l2,0-norm for its non-convex and
non-smooth properties, problem optimization may become
difficult. Therefore, people usually tend to consider the con-
vex l2,1-norm as the regularization term. Based on this,
Nie et al. [6] proposed an effective feature selection method
to select the representative features, which can be realized by
imposing joint l2,1-norm minimization on loss function and
regularization term. Besides, Yang et al. [23] combined the
discriminant analysis with l2,1-norm minimization to address
unsupervised feature selection problem. Yan et al. [24] per-
formed special processing on feature weight matrix, where
l2,1-norm was introduced and the non-negative constraint
was used to gain the row-sparsity. Moreover, because of
the unclear meaning of the regularization parameter for the
l2,1-norm constrained problem, some work is needed to seek
good regularization parameter. However, there is a better
solution to avoid this additional work. We can focus on the
original l2,0-norm constrained problem, because its regular-
ization parameter has a clear meaning, which is the num-
ber of features selected. Therefore, it is very important to
find a solution to address the original l2,0-norm constrained
problem. A pragmatic and robust algorithm was proposed by
Cai et al. [25], which was based on augmented Lagrangian
method to solve the original l2,0-norm constrained optimiza-
tion problem. Because its performance is sensitive to its
initialization algorithm, Pang et al. [26] proposed a new
framework to solve the original l2,0-norm constrained fea-
ture selection problem, which can associate the l2,0-norm

constrained feature selection problem with linear discrimi-
nant analysis (LDA). Besides, Wang et al. [27] proposed a
novel discriminative feature selection approach by enforcing
orthogonal l2,0-norm constraint, which applied a Structured
Sparse Subspace Learning module to solve subspace sparsity
problems.

Due to the good discrimination ability of LDA in feature
selection, Zhang et al. [14] made the most of the good virtue
of LDA to construct optimization problem and proposed an
effective and robust feature selection method by introducing
the l2,0-norm regularization term. As we all known, the prob-
lem of feature selection needs to be considered from two
aspects: the discriminant ability of features and the corre-
lation between features. In view of the feature redundancy
between the selected features, Nie et al. [28] presented an
auto-weighted feature selection framework via global redun-
dancy minimization (AGRM). However, Wu et al. [29] didn’t
treat redundancy matrix as a prior, but set it as a variable,
which can reduce the redundancy between relevant features
by adaptively evaluating the correlation between features.

Regarding the main contributions, we summarized as
follows:

1) we apply self-weighted linear discriminant analysis
(SLDA) method and introduce l2,0-norm to SLDA problem.
2) In order to reduce redundancy between selected features,

we introduce the redundancy matrix A in the AGRM frame-
work to our constrained optimization problem. Meanwhile,
we introduce the adaptive redundancy matrix S and treat the
redundancy matrix S as a variable, rather than setting the
redundancy matrix as a prior.

3) For the optimization of the algorithm, we propose
an efficient algorithm based on the augmented Lagrangian
method to solve the constrained optimization problem, such
that the global optimal solution can be obtained.

4) In multi-classification task, extensive experiments on
six datasets show the superiority of our proposed method
compared with other seven state-of-the-art feature selection
methods by using two classifiers as K-NN and linear SVM.

II. SPARSE LEARNING BASED FEATURE SELECTION
For several binary feature selection methods based on sparse
learning, it can be described as the following problem [25]:

min
W,b

∥∥∥XTw+ b1− y
∥∥∥2
2

s.t. ‖w‖0 = k (1)

where X ∈ Rd×n is the training data. y ∈ Bn×1 is the binary
label. w ∈ Rd×1 is the learning model. 1 ∈ Rn×1 denotes a
column vector whose entries are 1. k denotes the number of
the selected feature.

However, optimization of the problem (1) is NP-hard.
In some cases, the constraint can be relaxed with the follow-
ing formulation:

min
W,b

∥∥∥XTw+ b1− y
∥∥∥2
2
+ λ ‖w‖0 (2)
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where λ ∈ R+ is the regularization parameter. However,
the solution to address (2) remains challenging. To simplify
the issue, we usually choose the l1 norm instead of the l0
norm. The problem can be described in the following form:

min
W,b

∥∥∥XTw+ b1− y
∥∥∥2
2
+ λ ‖w‖1 (3)

This type of problem has been extensively studied.
Furthermore, a closed form solution can be obtained through
theoretical proof.

Of course, we can take some strategies to extend the above
model to deal with multi-class tasks, such as one-versus-all
and one-versus-one, but some structural sparsity is preferred
which can select features across all the classes.

To solve the problem, Nie et al. [6] proposed a structured
sparse regression model with imposing joint l2,1-norm mini-
mization on loss function and regularization term to solve the
multi-class tasks. The specific description is as follows:

min
W

∥∥∥XTW− Y
∥∥∥
2,1
+ λ ‖W‖2,1 (4)

where Y ∈ Bn×c denotes the binary label matrix and
W ∈ Rd×c denotes the learned model.

In fact, from the sparsity perspective, we prefer the
l2,0-norm regularization term. An effective and practical fea-
ture selection approach was proposed by Cai et al. [25] to deal
with the original l2,0-norm constrained problem. The model
is described as follows:

min
W,b

∥∥∥XTW+ 1bT − Y
∥∥∥
2,1

s.t. ‖W‖2,0 = k (5)

In [25], a robust and pragmatic algorithm was used to
solve the problem (5), which was based on the augmented
Lagrangian method. By using their method, we can avoid
spending some time to adjust the regularization parameter.
Because the regularization parameter in (5) has a clear mean-
ing which refers to the number of selected features.

III. THE PROPOSED METHOD
Based on the relevant technology in the previous section,
the proposed method is presented as follows:

A. SELF-WEIGHT LINEAR DISCRIMINANT
ANALYSIS (SLDA)
For training data matrix X = [x1, x2, . . . , xn] ∈ Rd×n, data
point xi (1 ≤ i ≤ n) has a corresponding label yi ∈ {0, 1}c×1,
whose corresponding label matrix isY = [y1, y2, . . . , yn]T ∈
Bn×c. Moreover, d denotes dimension of feature and n
denotes data number. Besides, the total-class scatter matrix
St , the between-class scatter matrix Sb and the within-class
scatter matrix Sw can be expressed as:

St = XHXT

Sb = XHY
(
YTY

)−1YTHXT

Sw = St − Sb = XH
(
I− Y

(
YTY

)−1YT
)
HXT

(6)

where matrix H = I − 1
n11

T is idempotent which has
following properties:

H = HT
= HHT

= HTH (7)

Based on the Eq. (6), we can formulate linear discriminant
analysis (LDA) as follows:max

W
Tr
(
WTSbW

)
= max

W
Tr
(
WTXLbXTW

)
min
W

Tr
(
WTSwW

)
= min

W
Tr
(
WTXLwXTW

) (8)

where Lb = HY
(
YTY

)−1YTH and Lw = H −
HY

(
YTY

)−1YTH.
According to the problem in (8), we can get a novel

self-weighted linear discriminant analysis where the optimal
weight can be obtained. The description is as follows:

max
W,λ

λTr
(
WT (Sb − λSw)W

)
= max

W,λ
Tr
(
WTX

(
λLb − λ2Lw

)
XTW

)
⇒ min

W,λ
Tr
(
WTXL(λ)XTW

)
(9)

where L(λ)
= λ2Lw − λLb is associated with the weight λ

which is introduced as a variable be optimized in (9).

B. CONSTRUCTION OF THE REDUNDANCY MATRIX A
For training data matrix X, X(i) and X(j) (i, j = 1, 2, . . . , d)
denote the i-th feature, the j-th feature respectively. Thus,
the i-th and the j-th centralized features can be expressed as:[

fi = HnXT
(i)

fj = HnXT
(j)

(10)

where fi ∈ Rn×1 and fj ∈ Rn×1 are all column vectors.
Therefore, we can obtain matrix A as

Ai,j =
(
Bi,j

)2
=

(
fTi fj
‖fi‖

∥∥fj∥∥
)2

(11)

We can see, A = B ◦ B, where ◦ is the Hadamard product.
Moreover, we can further obtain the following form as

B = DFTFD = (FD)TFD (12)

where F = [f1, f2, . . . , fd ] and D is a diagonal matrix, whose
element is 1

‖fi‖
, i = 1, 2, . . . , d . As can be seen from Eq. (12),

the matrix B is positive semi-positive.

C. SELF-WEIGHTED DISCRIMINATIVE FEATURE
SELECTION VIA REDUNDANCY MINIMIZATION
Although redundancy matrix A can measure the redundancy
between features, it is not appropriate to set redundant matrix
as a priori. As a result, we introduce the adaptive redundant
matrix S and treat S as an optimizing variable. So, the redun-
dancy among features can be reduced by minimizing the term
Tr
(
WT (A+ S)W

)
. Besides, we make projection matrix W

become a row-sparse matrix to gain the non-redundant
features. Therefore, optimization problem of our paper can be
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expressed as follows:

min
W,λ,S

1
2
Tr
(
WT

(
XL(λ)XT

+ A
)
W
)
+

1
2
Tr
(
WTSW

)
s.t. ‖W‖2,0 = k,S ≥ 0,Tr

(
S−1

)
≤ 1 (13)

where W ∈ Rd×m has only k nonzero rows and S ≥ 0
represents S is a positive semi-definite matrix. At the same
time, constraint Tr

(
S−1

)
≤ 1 is to avoid the potential trivial

solution that’s the zero solution of S.
Theorem 1: For the variablesW, λ and S, Problem (13) is

convex.
Proof: In problem (13), we can see that the first term

in the minimization problem is convex for all variables. For
the second term in minimization problem, it can be reformu-
lated as

Tr
(
WTSW

)
=

m∑
i=1

wT
i Swi

wherewT
i Swi is thematrix fractional function. If S ≥ 0, it can

be proved by [30] that the second term in the minimization
problem is a convex function w.r.t. wi. In addition, it is
proved by [30] that summation can preserve convexity, such
that Tr

(
WTSW

)
=
∑m

i=1w
T
i Swi is convex with respect to

W, λ, S. Thus, problem (13) is convex for the variable W,
λ and S.

IV. OPTIMIZATION ALGORITHM
A. GENERAL AUGMENTED LAGRANGIAN MULTIPLIER
(ALM) METHOD
The general augmented Lagrange multipliers (ALM) method
is applied to solve the following constrained optimization
problems:

min f (X) s.t. Tr(ϕ(X)) = 0 (14)

The augmented Lagrangian function of problem (14) can be
described as follows:

L(X,3,µ) = f (X)+ Tr
(
3Tϕ(X)

)
+
µ

2
‖ϕ(X)‖2F (15)

We can further have as follows:

L(X,3,µ) = f (X)+
µ

2

∥∥∥∥ϕ(X)+ 3µ
∥∥∥∥2
F

(16)

where µ is a positive scalar called the quadratic penalty
parameter and 3 is the Lagrangian multiplier. Accordingly,
Algorithm 1 summarizes the procedure of the ALM.

B. REFORMULATION AS A CONSTRAINED PROBLEM
By virtue of ALM method, we introduce the auxiliary vari-
able V. Eq. (13) can be reformulated as

min
W,λ,V,S

Tr
(
WT

(
XL(λ)XT

+ A+ S
)
W
)

+ µ

∥∥∥∥W− V+
3

µ

∥∥∥∥2
F

s.t. ‖V‖2,0 = k,S ≥ 0,Tr
(
S−1

)
≤ 1 (17)

Algorithm 1 Augmented Lagrange Multiplier (ALM)
Initialization:
1: Initialize 3.
2: Initialize µ > 0.
3: Initialize ρ ≥ 1.

repeat

1: Update X by argmin
X
f (X)+ µ

2

∥∥∥ϕ(X)+ 3
µ

∥∥∥2
F

2: Update 3 by 3+ µϕ(X)
3: Update µ by ρµ

until Converges

C. SOLVE THE ABOVE CONSTRAINED PROBLEM
To deal with the problem (17), we utilize a robust and efficient
algorithm, which is based on the general ALM.

1) Update λ withW, V, S fixed
When taking the derivative of problem (17) w.r.t. λ and

setting it to zero, we can obtain

λ =
Tr
(
WTXLbXTW

)
2Tr

(
WTXLwXTW

) (18)

2) Update S withW, V, λ fixed
The subproblem becomes,

min
S

Tr
(
WTSW

)
s.t. S ≥ 0,Tr

(
S−1

)
≤ 1 (19)

By using Cauchy–Schwartz inequality and Tr
(
S−1

)
≤ 1,

we can have

Tr
(
WTSW

)
= Tr

(
SWWT

)
× 1

≥ Tr
(
S

1
2

(
WWT

) 1
2
(
WWT

) 1
2 S

1
2

)
Tr
(
S−

1
2 S−

1
2

)
≥

(
Tr
((

WWT
) 1

2
))2

(20)

when equality holds, we have

γ
(
WWT

) 1
2 S

1
2 = S−

1
2 ⇒ γ

(
WWT

) 1
2
= S−1

where γ is an arbitrary constant. Besides, we can obtain

Tr
(
S−1

)
≤ 1 ⇒ γ =

1

Tr
((

WWT
) 1
2

)
According to the above, a redundancy matrix S can be got as

S−1 =

(
WWT

) 1
2

Tr
(
WWT

) 1
2

⇒ S = Tr
((

WWT
) 1

2
)(

WWT
)− 1

2
(21)

3) Update W with V, S, λ fixed
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By taking the derivative with respect toW and setting it to
zero, we can obtain

W =
(
XL(λ)XT

+ A+ S+ µI
)(

V−
3

µ

)
(22)

where I ∈ Rd×d is the identity matrix.
4) Update V withW, S, λ fixed
The subproblem can become,

min
‖V‖2,0=k

∥∥∥∥W− V+
3

µ

∥∥∥∥2
F

(23)

which can be tackled by Algorithm 2.

Algorithm 2 A Solution of Problem (23)
Input: W, 3, µ and k .

Process:
1: Compute W̃ =W+ 1

µ
3.

2: w = diag(W̃W̃T ).
3: Sort w, find out the indices vector q = [q1, q2, . . . , qk ]T

corresponding to top k sorted entries.
4: Set i-th row of W̃ to V if i ∈ q; set zero row of

0T ∈ R1×m if i /∈ q.
Output: V.

Algorithm 3 SSD-RM Method
Input: Training data X, training labels Y, The number of

feature selected k , Lb, Lw and Redundancy matrix A
Output: Projection matrixW ∈ Rd×m

Initialization:
1: W =W0
2: 3 ∈ 0d×m

Process:
1: repeat
2: Update λ←

Tr
(
WTXLbXTW

)
2Tr(WTXLwXTW)

3: Update S← Tr
((

WWT
) 1
2

) (
WWT

)− 1
2

4: Update L(λ)
← λLw − Lb, G = XL(λ)XT

+ A
5: UpdateW← (G+ S+ µI)−1

(
V− 3

µ

)
6: Update V by Alg.2.
7: Update 3 by 3+ µ (W− V)
8: Update µ by ρµ
9: until Converges

Therefore, we can iteratively update λ, S, W, V and our
algorithm is summarized in Algorithm 3.

V. EXPERIMENT
To demonstrate the effectiveness and superiority of our
method, we compare our method (called as SSD-RM) to
the several other state-of-the-art feature selection methods:

FIGURE 1. Convergence of the proposed SSD-RM on six data sets.

T-test [31], mRMR [32], TRC-FS [7], RALM-FS [25],
CR-FS [33] SSD-FS [14] and SDFS-ARM [29]. Besides,
we will use 50% of the input data as training set and the
remainder as test set in the experiment. Moreover, two clas-
sifiers, such as the conventional K-NN [34] with Euclidean
distance metric and linear SVM [35], [36], are used to com-
puting the classification accuracies on test set. Meanwhile,
the parameter C of linear SVM is set from {0.001, 0.01, 0.1,
1, 10, 100}, using 10-fold cross-validation. The parameter of
K-NN is set as K=1. In addition, The formula for calculating
classification accuracy is

Classification_Acc =
Num_Correct
Num_Test

× 100% (24)

whereNum_Correct andNum_Test denote correct numbers
of classified samples and whole samples on the test set.

At the same time, we can adopt the following for-
mula to computer the correlation (redundancy) among the
features:

Correlation (C) =
1

n(n− 1)

∑
fi,fj∈S,i 6=j

Ai,j (25)

where C is all the selected features, A is the redundancy
matrix which can be computed by the square cosine similarity
and n is the number of selected features in C .
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FIGURE 2. Comparison of the classification accuracy performed under two benchmark data sets.

TABLE 1. Datasets description.

A. DATA SETS DESCRIPTION
In this section, we use six real-world datasets, i.e., AT&T,1

COIL20,2 COIL100,3 FEI ,4 UMIST 5 and USPS,6 to verify
the performance of our proposed feature selection method.
Table 1 lists more details for each data set. Besides, we set
the parameter m = c for the fairness of the experiment.

B. CLASSIFICATION ACCURACY COMPARED WITH
THE PREVIOUS METHODS
Finally, both K-NN classifier and SVM classifier are per-
formed on six real-world datasets so as to obtain the

1http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/
att_faces.zip

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
4http://fei.edu.br/ cet/facedatabase.html
5http://eeepro.shef.ac.uk/vie/face.tar.gz
6http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html

classification accuracy of the feature selection methods.
Some of the experimental data comes from the experimental
results published in [14]. Bold face represents best result and
the underlined represents second best result.

In Figure 1, the convergent curves of our SSD-RMmethod
can be obtained on six data sets. In Table 2, we select top
80 features under 4 data sets: COIL100, UMIST , USPS and
FEI , such that the average classification accuracy and stan-
dard deviation can be compared. In Figure. 2, the classifi-
cation accuracies are compared by using increasing number
of features on the datasets AT&T and COIL20. Accord-
ing to Table 2 and Figure. 2, we can draw the following
conclusions.

1) Table 2 shows best results can be obtained by ourmethod
in most data sets. Besides, although our method cannot get
best results in several data sets, but suboptimal results may
be obtained. Therefore, our method outperform other feature
selection methods.

2) From Figure. 2, we can see that our method has better
performance than other methods in the case of most feature
numbers.

From the above conclusions, the proposed SSD-RM
method can select the discriminative and non-redundant fea-
tures by minimizing the redundancy between features. There-
fore, our method has better classification performance.
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TABLE 2. Classification accuracy (%) comparisons and standard deviation of the selected top 80 features on the dataset COIL100, UMIST, USPS and FEI.

TABLE 3. Classification accuracy and correlation of top 80 features via
K-NN classifier.

TABLE 4. Classification accuracy and correlation of top 80 features via
SVM classifier.

C. CLASSIFICATION ACCURACY AND CORRELATION
COMPARISONS WITHOUT THE MATRIX A
OR WITHOUT THE MATRIX S
From TABLE 3 and TABLE 4, we can see the adaptive redun-
dancy matrix S plays a vital role in our algorithm SSD-RM.
Besides, the redundancy matrix A has a certain improvement
in the performance of our algorithm. Besides, the correlation
among the selected features is largely reduced by introduc-
ing the adaptive redundancy matrix S and the redundancy
matrix A. Therefore, we can obtain non-redundant discrim-
inative features.

For this experimental results, we can analyze and explain
from a theoretical perspective. Firstly, the redundancy A

can only measure the initial correlation among the features.
However, we treat the adaptive redundancy matrix S as a
variable and use the adaptive redundancy matrix S to measure
correlation among the features in each iteration of the experi-
ment. Therefore, the above analysis confirms the experimen-
tal results.

D. COMPUTATIONAL COMPLEXITY
In this section, for validating the superiority of our proposed
method, we analyze the computational complexity of the
proposed SSD-RM method. From Algorithm 3, we can see
the computational complexity of SSD-RM algorithm can be
ascribed to the calculation of the matrix S and the matrixW.
Therefore, the computational complexity of SSD-RMmethod
is O(dmn + d2n), where d , n, m denote the numbers of
all features, samples and selectable features, respectively
(1 ≤ m < d).

VI. CONCLUSION
In this paper, we apply self-weighted linear discriminant
analysis (SLDA) method and introduce l2,0-norm to SLDA
problem. Because of directly solving the original l2,0-norm
constrained problem, we can avoid spending some time to
adjust the regularization parameters whose regularization
parameter has a clear meaning, which is the number of
selected features. As we all known, the problem of fea-
ture selection needs to be considered from two aspects: the
discriminant ability of features and the correlation among
features. For the feature redundancy problem, we introduce
the redundancy matrix A in the AGRM framework to SLDA
problem. Meanwhile, we introduce the adaptive redundancy
matrix S and treat the redundancy matrix S as an optimizing
variable. Finally, we propose an efficient algorithm to address
the constrained optimization problem, which is based on the
augmented Lagrangian method, such that the global optimal
solution can be obtained. In the future, we pay attention to
apply our algorithm to some computer vision tasks, such as
image segmentation [37], object detection [38] and so on.
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