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ABSTRACT Obtaining the prescribed microwave filter response is highly desirable for proper frequency
selectivity in RF transceivers. As the traditional microwave filter design methods do not take into account
finite unloaded quality factors, lossy resonators cause significant deviations from the prescribed filter
response, especially in filters with narrow bandwidths or of high orders. This deviation gets more severe
as the resonator losses increase. Building on the lossy filter design techniques by using an active shape
correction mechanism, this paper proposes a new approach to recover the filter response when the filter
has moderately-to-highly lossy resonators. Being different than most active filter topologies, where all of
the resonators are loss-compensated, this study aims at achieving the shape correction with N − 2 active
elements. To characterize the design, a novel lossy-active coupling matrix is introduced by extending the
(N + 2) × (N + 2) lossy coupling matrix. The proposed theory is verified with the design and fabrication
of two 3rd order 5 % bandwidth filters operating at 1 GHz and employing resonators with quality factors
of 100 and 28, respectively. It has been shown that the method can recover the response in both designs and
the theoretical and measured responses are in good agreement.

INDEX TERMS Lossy microwave filters, active filters, coupling matrix, lossy coupling matrix, active
coupling matrix.

I. INTRODUCTION
Analogmicrowave filters are among the most important com-
ponents of the front-end modules of radio frequency (RF)
transceivers. As the filter response significantly affects the
overall transceiver performance, obtaining the ideal (pre-
scribed) response is highly desirable.

The most common method of designing a bandpass fil-
ter is to use the g-coefficients for a lowpass prototype and
have a lowpass-to-bandpass conversion [1], [2]. This method
assumes that the filter resonators are lossless and makes it
possible to obtain almost any desired filter response. As filters
are miniaturized, the reduced resonator quality factors (Q)
cause the filter shape to be perturbed, which makes it diffi-
cult to design narrow-band and/or higher-order filters with
resonators of low-Q. The shape perturbation is tolerable
for microstrip-, cavity-, or dielectric-resonator-based filters,
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especially when the filter order is low. However, it causes
significant selectivity and overall shape degradations when
lumped element resonators are used, such as in monolithic
microwave integrated circuit (MMIC) based filters.

To overcome the effects of finite-Q and electronically
perform loss compensation, various topologies of active
microwave filters have been proposed. In [3]–[6], coupled
negative resistance approach with field-effect transistors
(FET) are used. To have a negative resistance effect, para-
metric amplification is used for loss compensation in [7] and
a further coupling manipulation is used for shape and selec-
tivity enhancement in [8] for narrow-band filter realization.

As the major origin of the loss is identified as the lumped
inductors, the concept of active inductor design for narrow-
band MMIC filter applications was performed with FET
transistors in [9] and [10] and with the inverted collector tech-
nique based bipolar transistors in [11] and [12]. Furthermore,
dynamic range and nonlinearity considerations of active
inductors were presented in [13] and [14]. In [15]–[17],
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GaAs FETs are used to link the resonant structures to not
only compensate for the loss, but to produce gain within the
passband. Finally, the transversal active MMIC filter topol-
ogy is used in [18] and [19] to improve the shape of the
response.

A different technique to recover the filter response is the
design of lossy filters [20]–[31]. In its essence, the concept
is based on correcting the filter response and selectivity by
accepting additional insertion loss (IL) within the passband.
This technique was initially proposed in [20] as the classical
method of predistortion, where the design is based on shifting
the poles of the transfer function (S21) on the complex plane
to account for the losses. It was further enhanced in [21] by
distributing the loss among the resonators using hyperbolic
rotations and resistive cross-coupling among non-adjacent
nodes. Two other examples that include filters with non-
uniform dissipation are given in [22], [23].

Within the context of lossy filters, the lossy couplingmatrix
is introduced in [25]–[27]. In [25], the lossy filter is charac-
terized as a lossless filter with an input and an output attenu-
ator. The lossy coupling matrix is constructed by transferring
the series resistances within the lumped element model of
the attenuators towards the filter resonators. Drawing on
that idea, the generalized lossy N × N and the transversal
(N + 2) × (N + 2) coupling matrices (N being the filter
order) are introduced in [26] and [27], respectively. In [26],
the complex coupling matrix is synthesized from the lossy
Chebyshev polynomials by considering its diagonalizability
to its eigenvalue matrix. Following that, the transversal lossy
coupling matrix is generated directly from the lossy admit-
tance polynomials by using their residues in [27].

To distribute the losses evenly among the resonators or to
manipulate the routing topology of lossy filters, hyperbolic
rotations are used in [26] and [27]. In that regard, performance
metrics of inline and transversal lossy filter structures are
compared in [28] and loss equalization methods are proposed
in [30] and [32]. The hyperbolic matrix rotations produce
purely imaginary and/or complex inter-resonator coupling
mechanisms, which pose a challenge in terms of the practical
implementation of lossy filters. While that issue is briefly
addressed in [26], a more exact passive realization method
based on resistive decomposition of the lossy coupling mech-
anisms is presented in [32].

Based on waveguide filter-amplifier co-design tech-
niques, [33] proposes an (N + 3) × (N + 3) active coupling
matrix for an X-band second-order filter-amplifier cascade.
In [33], the inter-resonator coupling values were calculated
using the g-coefficients while the additional entries due to the
cascaded amplifier were found from the admittance matrix
of the small-signal model of an FET. A more comprehensive
(N + 4) × (N + 4) active coupling matrix was proposed
in [34], where the amplifier network was included within
the inter-resonator path, linking noise figure (NF) and the
coupling matrix. The lossy design approaches discussed so
far are proposed for macro-scale filters where the resonators
have moderate-to-high quality factors (Qu > 100).

In the current study, a new approach of using active res-
onators within the concept of lossy filter design is presented.
The objective is to recover the filter shape in the presence
of moderate to highly lossy resonators. Unlike the common
active filter approaches, where all the resonators are loss-
compensated, the proposed design usesN−2 active elements
for the shape correction. Furthermore, the lossy coupling
matrix in [25] is extended to propose the novel lossy-active
coupling matrix for the first time. To prove the concept,
two third-order 20 dB equiripple 5% fractional bandwidth
(FBW) filters with different loss levels are designed and
implemented. The first design recovers the shape of the filter
with aQu of 100 at each resonator, whereas the second proto-
type, illustrating the use of highly lossy resonators, recovers
the response at a Qu of 28 at each resonator.

II. THEORY
Drawing upon complex coupling matrix theory, this section
begins with the design of an inline passive lossy filter struc-
ture that includes resonators with non-uniform quality factor
distribution. Proceeding with the design, integration of the
active element is explained and the design of an N th order
lossy-active filter is presented. To characterize the design,
the lossy-active coupling matrix is introduced. The concept is
illustratedwith a third-order 20-dB equiripple (when lossless)
filter with 5% fractional bandwidth.

FIGURE 1. (a): Schematic of a conventional bandpass filter of order N
with the inclusion of loss as shunt resistors. (b): The lossless
(N + 2)× (N + 2) coupling matrix and the coupling diagram.

A. LOSSY FILTER DESIGN
Using conventional filter design procedure, Fig. 1 (a) depicts
anN th

−order bandpass filter structure. As observed, Ln is the
equivalent inductance and Cn is the equivalent capacitance of
the nth parallel resonator, resonating at a center frequency of
ω0 = 1/(

√
LnCn). Representing the loss in each resonator,

shunt resistors are shown as the dashed lines, labeled as Rn.
The admittance inverters that produce the coupling between
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the nth and mth resonator are denoted as Jnm, such that n,m ∈
{1, 2, . . . ,N } and the input and output inverters are denoted
as JS1 and JNL , respectively. Characterizing the lossless filter,
i.e., Rn → ∞ ∀n, the lossless (N + 2) × (N + 2) coupling
matrix and the coupling diagram are depicted in Fig. 1 (b).
For this configuration, the coupling matrix entries are calcu-
lated as:

mn,n+1 =
1

√
gngn+1

n ∈ {1, 2, . . . ,N },

ms1 =
1

√
g0g1

, mNL =
1

√
gNgN+1

. (1)

The traditional design practices of using the g-coefficients
assume that the filter resonators are lossless, just as in
the lossless coupling matrix. In practical lossy resonators,
the unloaded quality factor of the nth resonator is calculated
as Qun = Rn/(ω0 Ln). To visualize the effect of the loss,
the finite Qu can be introduced to the coupling matrix by
replacing the complex frequency variable s with s + 1/
(FBW · Qu). Here, s is in the form of the bandpass variable
such that s = (j/FBW )(ω/ω0−ω0/ω), where ω is the radian
frequency.

FIGURE 2. Effect of decreasing resonator Qu on the filter response. S11 is
plotted with the solid line and S21 is plotted with the dashed line. The
responses of a 5% FBW 20-dB equiripple design having resonators of
infinite Qu, Qu = 100, and Qu = 28 are depicted.

The reflection (|S11|) and the transmission (|S21|)
responses of a lossless third-order 20-dB equiripple, 5%
FBW bandpass filter are depicted in Fig. 2 with the black
trace. To show the effect of decreasing Qu, the figure also
depicts the filter responses for two other filters with different
resonator quality factor values. It should be pointed out that
the resonators in each individual filter have equivalent quality
factors, i.e., R1 = R2 = R3 and L1 = L2 = L3 for each
example. As observed, the desired lossless filter response,
such that Qun → ∞ ∀n, has the highest selectivity and
the best reflection response. As the Qu of each resonator is
reduced, the transmission response starts to have rounded
passband edges and increased return loss at a Qu of 100 and
a completely perturbed selectivity, weak reflection response,

FIGURE 3. (a): The lossy filter model in [25] as a starting point. (b): The
resistor-admittance inverter-resistor based model of the attenuators in
(a) with an attenuation factor of k in linear scale. (c): The synthesized
lossy filter including loss in the input and output resonators [25]. (d): The
(N + 2)× (N + 2) lossy coupling matrix and the coupling diagram of the
filter in (c). In the coupling matrix and the diagram, S denotes the source,
L denotes the load and NRN is for the non-resonating nodes.

and a distorted passband flatness when the Qu of each res-
onator is 28.

To correct the shape of the filter response when the res-
onators have finite quality factors, an N th order lossy filter
is synthesized with the method in [25]. The design is based
on the lossy synthesis method emulating the cascade of two
attenuators at the input and output of the lossless filter, each of
which has an attenuation factor of k , as depicted in Fig. 3 (a).
The reflection and transmission responses of the lossy filter
(S lossy11 and S lossy21 ), are formulated in terms of those of the
lossless one as:

S lossy11 = k2S lossless11 ,

S lossy21 = k2S lossless21 , (2)

where k is the attenuation factor in linear scale. In (2),
the lossless filter responses (S lossless11 and S lossless21 ) are char-
acterized by the conventional polynomial synthesis method
and are given as in the following [1]:

|S lossless21 |
2
= 1− |S lossless11 |

2
=

1
1+ ε2|KN (s)|2

, (3)

where |KN (s)| is the N th degree characteristic polynomial of
the filter function and ε is the ripple factor.
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Modeling the input and output attenuators as resistor-
admittance inverter-resistor cascade as in Fig. 3 (b), shifting
the series resistors towards the filter resonators as shunt con-
ductances, and scaling the input/output inverters to unity as
in [25], the circuit in Fig. 3 (c) is obtained. The lossy coupling
matrix and the coupling diagram of that filter are depicted
in Fig. 3 (d).

To achieve an attenuation factor of k with the attenuator
model in Fig. 3 (b), the admittance inverter and the pair of
resistors need to have the following relation [25]:

J = ±
1

√
1− R2

, k =

√
1− R
1+ R

, (4)

where J is the value of the admittance inverter and R is
the value of the resistor pair. The additional entries in the
coupling matrix, including the shunt conductances at the non-
resonating nodes (g′S and g′L) and at the lossy resonators
(g′1 and g

′
N ), are formulated as in the following:

g′S = g′L = R =
1− k2

1+ k2
,

m′S1 = ±mS1
√
1− R2, m′NL = ±mNL

√
1− R2,

g′1 = Rm2
S1, g′N = Rm2

NL . (5)

Considering (4), the initial parameter to be determined in
the lossy filter design is the attenuation factor k , as it deter-
mines the required unloaded quality factors of the input and
output resonators. To obtain the admittance inverter values
in Fig. 3 (c) from the coupling matrix entries, the entries
need to be scaled according to the source/load resistances,
the operating frequency, and the FBW of the bandpass filter.
The required quality factors at the input/output resonators
depend on the attenuation factor and the operating frequency.

Further observing Fig. 3 (c) and (d), one can realize that
there is no loss in the resonators through 2 to N − 1. With
the use of hyperbolic rotations and resistive cross-coupling
among different nodes, the loss could have been uniformly
distributed among the resonators of the filter [21], [24], [25],
however, that is beyond the scope of this study. Until this
point, the resonators through 2 to N − 1 are still considered
to be lossless.

B. LOSS COMPENSATION IN RESONATORS
The lossless resonators in Fig. 3 (c) have been realized with
the use of waveguides, cavities, or dielectric structures to
achive high unloaded quality factors, typically greater than
1000 for the microwave frequencies [25]–[27]. However,
resonators with those quality factors are not achievable in
PCBs or MMICs, therefore in this study, they are realized
using active resonators.

In Fig. 4, an active resonator with a coupled feedback
amplifier is depicted. The amplifier is coupled to the res-
onator with the external quality factors of Q1 and Q2 through
the impedance inverters K1 and K2.
The external quality factors Q1 and Q2 are dependent

on both the impedance inverter values K1 and K2 and the

FIGURE 4. Illustration of an active loss compensated resonator.

input/output impedances of the amplifier. Assuming that the
input and output impedances of the amplifier are matched to
50 �, the external quality factors are given as:

Q1 =
K 2
1

50ω0Lr
and Q2 =

K 2
2

50ω0Lr
. (6)

With the external quality factors of the amplifier loop,
the effective active negative resistance that is seen at the lossy
resonator side can be calculated as [35]:

Rnegative =
(
−

K2
2

50

2GAmp
K2
K1
− 1

)
‖

(K 2
1

50

)
, (7)

where GAmp is the voltage gain of the amplifier in linear
scale. As mentioned in [35], the full loss compensation at
the lossy resonator is achieved when the negative resistance
in (7) has the same magnitude as the resistance of the par-
allel resonator Rr . That equality will be achieved when the
relationship between the amplifier gain (GAmp), the unloaded
quality factor of the resonator (Qur ), and the external quality
factors Q1 and Q2 have the following relation [35]:

GAmp =

√
Q1Q2

2
·
(
Q−1ur + Q

−1
1 + Q

−1
2

)
. (8)

In addition to (8), it is important that the phase response of
the amplifier feedback loop is an integer multiple of 360◦ for
full loss compensation.

In the loss-compensated resonator, it is highly desirable
to minimize the additional noise figure contribution of the
active portion. It has also been discussed in [35]–[37] that
the minimum noise with an active resonator can be achieved
when the following relationship is satisfied:

Q2 = G2
AmpQ1. (9)

Combining (8) and (9), one can obtain the following
relationships between the external quality factors and the
amplifier gain:

Q1 =
G2
Amp − 1

G2
Amp

Qur and Q2 = (G2
Amp − 1)Qur . (10)

Therefore, it is important to satisfy the relations in (10) to
have a fully loss compensated resonator with minimum addi-
tional noise figure from the amplifier. This design technique
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FIGURE 5. (a): The lossy-active filter with loss compensation in the resonators 2 through N − 1. (b): The lossy-active coupling matrix that characterizes the
network in (a). (c): The routing diagram of the filter. NRNin and NRNout represent the non-resonant nodes at the input and output. NRNai denotes the i th

amplifier loop as a single non-resonating node that acts like a negative resistance.

provides the flexibility of using resonators with arbitrary
unloaded quality factors to start with as long as the impedance
inverters providing the external quality factors (Q1 and Q2)
are realizable. For convenience, the resonators 2 through
N − 1 are chosen to be identical to the first and the last
resonator of the filter in this study.

Apart from the input and output coupling of the ampli-
fier (K1 and K2), the NF of the active resonator stage is
determined by several factors. These include the external
quality factors that are introduced to the resonator, the gain
of the feedback amplifier, and most importantly, the unloaded
quality factor of the passive resonator. Considering that
the relations in (10) are satisfied for the active resonator
in Fig. 4, the minimum noise figure of the resonator stage is
given by [35], [37]:

Fmin = Fpassive +
Qe
Qu

M ,

where

M =
(

F − 1

1− 1
G2
Amp

)
and Fpassive = 1+

Qe
2Qu

. (11)

In (11), M is the noise measure of the amplifier [35] and
Fpassive is the NF of the passive resonator when the amplifier

network (including K1 and K2) is not connected. A funda-
mental observation regarding (11) is that the noise figure of
the active resonator has to be greater than Fpassive and it is
highly dependent on the noise measure of the amplifier. The
effect of slight variations of K1, K2, and the noise measure
on the noise figure of the resonator was thoroughly discussed
in [35]. It is important to emphasize that the noise figure given
by (11) is the noise figure of the single active resonator and
not the overall filter. The effect of the noise figure of active
resonators on the entire filter is dependent on different factors
including the order of the resonators and the placement of the
active resonator among them. Those factors were discussed
and a noise figure estimate was done for a band-eliminate
filter in [36].

C. THE LOSSY-ACTIVE COUPLING MATRIX
Having a coupling matrix representation of the filter makes
the design more versatile. In this section, the new lossy-
active coupling matrix is introduced as an extension to the
lossy coupling matrix. The goal is to integrate the feedback
amplifier network as an additional non-resonating node.

The circuit schematic in Fig. 5 (a) depicts the final lossy-
active filter when all resonators have the same unloaded
quality factor and the resonators 2 through N − 1 are loss-
compensated with the method described in Section II-B.
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FIGURE 6. (a): The alternative representation of the lossy-active coupling matrix and (b): the routing diagram for the coupling matrix in (a). This
representation includes the input and output nodes of the amplifier as NRN

ain
i

and NRN
aout

i
, respectively.

The new lossy-active coupling matrix is depicted in Fig. 5 (b)
and the routing diagram is given in Fig. 5 (c). The lossy-
active coupling matrix has the same entries as the lossy
coupling matrix except for the included loss at the resonators
2 through N − 1 (highlighted in black) and additional active
non-resonating nodes that include the amplifier loops as neg-
ative resistances. As all the resonators have the same Qu
without the loss compensation, g′1 = g′2 = . . . = g′N
should be satisfied. To be considered a coupling matrix entry,
the negative resistances at the non-resonant nodes should
be normalized with respect to the center frequency and the
bandwidth. This is done by substituting the external quality
factor values at the ith active resonator (Q1i and Q2i ) in (6)
for the non-normalized negative resistance in (7) and scaling
it so that the ith resonator in Fig. 5 (a) resonates at ω0 =

1/
√
LiCi for i ∈ {2, 3, . . . ,N − 1}. Therefore, each negative

normalized conductance (gai ) in the lossy-active coupling
matrix in Fig. 5 (b) is found by:

gai =
1

FBW

[ 1
Q1i
−

1
Q2i

(
2GAmpi

√
Q2i

Q1i
− 1

)]
,

where i ∈ {2, 3, . . . ,N − 1}. (12)

When the external quality factors Q1i and Q2i and the
amplifier gain in each active resonator GAmpi satisfy the
equality given in (8), it can be shown that the normal-
ized negative conductance gai has the exact same magnitude
as g′i in the lossy-active coupling matrix. For the lowest
noise figure contribution, they also need to attain the values
given in (10).

The value of the additional coupling coefficient, miai
in Fig. 5 (b), is also critical for coupling each active
non-resonant node to the resonating node of the ith active
resonator. It can be found by considering the fact that the
coupling matrix entries between the nodes are normalized
admittance inverter values. In that regard, for the ith resonant
node such that i ∈ {2, 3, . . . ,N − 1} to see the exact shunt
negative conductance of (12), the value of the coupling coef-
ficient is given as: miai = ±gai .

The lossy-active coupling matrix model that is proposed
in this section models the input and output coupling of the
amplifier as embedded within the active non-resonant node
rather than considering them as separate coupling coeffi-
cients. An alternative model is given in the next section.

D. ALTERNATIVE REPRESENTATION OF THE
LOSSY-ACTIVE COUPLING MATRIX
Rather than considering the loss compensation network as a
single node, the input and output nodes of the amplifier can
also be considered as separate non-resonant nodes.

Splitting up the input and output nodes of the amplifier
network, an alternative representation of the lossy-active cou-
pling matrix is depicted in Fig. 6 with a new routing diagram.
The new nodes NRNaini

and NRNaouti
in the routing diagram

represent the input and the output nodes of the ith feedback
amplifier, such that i ∈ {2, 3, . . . ,N − 1}. In this coupling
matrix, the shunt conductances at the amplifier input and
output are denoted as gaini and gaouti

, respectively. Their values
are found by separating the negative normalized conductance
in (12) as:

gaini =
1

FBW · Q1i
,

gaouti
= −

1
FBW · Q2i

(
2GAmpi

√
Q2i

Q1i
− 1

)
,

where i ∈ {2, 3, . . . ,N − 1}. (13)

The coupling coefficient between the amplifier input and
its corresponding resonator is given by: miaini = ±gaini ,
whereas the coupling between amplifier output and the res-
onator is given by: miaouti

= ±gaouti
. It should be noted

that the coupling configuration in Fig. 6 does not take into
account the coupling between the amplifier input and output,
however, the effect of the input signal on the output is already
embedded in (13).

III. DESIGN AND ANALYSIS
To verify the proposed approach and demonstrate designs of
different order, this section evaluates the performance of the
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FIGURE 7. (a): Recovery of the filter responses with the use of the proposed approach. Four different filter examples with quality factors of 200, 100, 50,
and 28 in each resonator are depicted. For comparison, the responses of traditional design with the same quality factors on each resonator are also
shown. The solid lines demonstrate |S11| and the dashed lines illustrate |S21| of each filter. (b): Theoretical noise figure responses of the proposed
designs in (a). The figure shows the noise figures for an amplifier with different noise figure values. (c) and (d): Noise figure responses when the
amplifier input and output coupling inverters are not properly tuned.

method for different loss levels. For that purpose, filters of
third-, fourth-, and fifth-order are designed using the circuit
topology given in Fig. 5 (a).

The third-order filter examples include designs with res-
onator quality factor values of 200, 100, 50, and 28 which
correspond to insertion loss values of 1.49 dB, 3 dB, 6.17 dB,
and 12 dB, respectively. The fourth- and fifth-order design
examples include filters with insertion loss values of 3 dB and
12 dB. To have these insertion loss values, the corresponding
quality factors are calculated as 108 and 31 for the fourth-
order and 114 and 32 for the fifth-order filters. The designs
are performed by denormalizing the lossy-active coupling
matrix for a center frequency of 1 GHz and 5 % FBW.

The transmission and reflection responses of the filters
are depicted in Fig. 7 (a) for the third-order case and in
Fig. 8 (a) and (b) for the fourth- and fifth-order designs,
respectively. The same figures also show the responses of the

conventionally designed (i.e., using the g-coefficients) filters
when each of their resonators has quality factors of 200, 100,
50, and 28 for the third-order, 108 and 31 for the fourth-order,
and 114 and 32 for the fifth-order. Other parameters of the
eight different designs, including the attenuation factor (k),
noise figure, and insertion loss are listed in Table 1.

As observed in Fig. 7 (a), the third-order filters designed
with the proposed approach have the prescribed equiripple
responses with the desired FBW and center frequencies. Not
only can the proposed design reconstruct the response of the
filter having a Qu of 200 for each resonator, but it can also
accomplish that for the severely perturbed transmission and
reflection responses of the filter having a Qu of 28 in each
resonator. Further observing Fig. 7 (a), it should also be noted
that the shape recovery is achieved at the cost of additional
IL for the third-order designs. This additional loss will be
referred to as the accepted loss (AL) and is defined as the
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FIGURE 8. Filter responses of the fourth- and fifth-order design examples are depicted in (a) and (b) whereas their noise figure responses are depicted
in (c) and (d), respectively. As in Fig. 7, the filter responses are compared with the corresponding design examples which have resonators of the same
quality factors as in their lossy counterpart.

TABLE 1. Parameters of the design examples of order three, four, and
five. In the table, k denotes the attenuation factor, IL denotes the
insertion loss, AL stands for the accepted loss, RcL is for recovered loss,
and NF depicts the noise figure of the filters when amplifier external
quality factors satisfy (9).

difference between the insertion loss of the traditional and
the proposed designs. Comparing the responses in Fig. 7 (a),
it is observed that both the insertion loss and the accepted loss
levels increase with the reduced resonator quality factors.

The fourth- and fifth-order filter responses, which are
designed to have insertion loss values of 3 dB and 12 dB,
are shown in Fig. 8 (a) and (b). As observed, these designs
also have the prescribed filter responses. The shape pertur-
bation in the conventional designs gets more severe as the
filter order increases, which emphasizes the importance of
the proposed method. While resonator quality factors at the
order of 100 can produce acceptable filter responses using
the traditional design of third-order, the same resonators yield
significant filter shape degradation and additional insertion
loss for the fourth- and fifth-order designs.

Unlike the third-order case, for the response of fourth-
and fifth-order designs, the insertion loss of the proposed
approach is lower than that of the conventional method.
This is due to the fact that the number of loss-compensated
resonators increases in the higher-order filters. In that case,
the difference between the insertion loss of the traditional
and the proposed approach is referred to as the recovered loss
(RcL) in Table 1.

To examine the noise figure of the designs and the effect
of the feedback amplifier noise figure on it, Fig. 7 (b) depicts
the simulated filter noise figures for three different amplifiers.
These simulations are performed in AWR (Cadence Design
Systems, San Jose, CA) design environment. The simulation
models contain closed-form lumped and distributed elements.
Furthermore, the compensation network uses the non-linear
amplifier model with a flat gain of 15 dBwithin the frequency
band of 0.5 GHz to 1.5 GHz. The input and output of the
amplifier are matched to 50 � and the specified noise fig-
ure values in Fig. 7 (b) are for a 50 � source.

For the amplifier noise figure values of 0.7 dB, 1.5 dB, and
3 dB, the simulated noise figures of the third-order designs
are depicted in Fig 7 (b) when the external quality factors due
to the amplifier (Q1 and Q2) satisfy the minimum noise con-
dition in (9) and (10). As observed, an increase of 2.3 dB in
the amplifier noise figure yields a filter noise figure increase
of 0.54 dB and 0.46 dB when filter resonator quality factors
are 28 and 100, respectively. Considering these results, it is
seen that the increased amplifier noise figure has a minor
impact on the overall noise figure of the third-order designs,
as long as (9) is satisfied.
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FIGURE 9. The lossy-active coupling matrices of the FML and the FHL. The matrices are denoted as MFML and MFHL, respectively. In the illustrations,
the feedback amplifier network is considered as a negative resistance, as presented in Section II-C.

Another important point is that the external quality factors
Q1 and Q2 greatly affect the overall filter noise figure. It was
shown in [35]–[37] that slight external coupling variations
that violate (9) yield significant filter noise figure degrada-
tions. To illustrate that, the third order designs with resonator
Qu values of 100 and 28 are simulated with detuned amplifier
input and output coupling as given in Fig. 7 (c) and (d).
The corresponding S11 and S21 responses of the filters in
Fig. 7 (c) and (d) match the ones in Fig. 7 (a) as Q1 and Q2
still satisfy the loss compensation condition given by (8).
The effect of the increasing amplifier noise figure is exac-
erbated by the detuned coupling mechanisms. In particular,
the 2.3 dB of amplifier noise figure increase yields a noise
figure increase of 0.79 dB when Q2/G2

amp Q1 = 0.5 and
1.9 dB when that ratio is 0.1 for the case of Qu = 100.
Therefore, this noise figure sensitivity should also be taken
into account if the minimum noise figure is desired.

Finally, the noise figure responses of the fourth- and fifth-
order designs are depicted in Fig. 8 (c) and (d), respectively.
It should be noted that the amplifiers at the active networks
in each design are identical and have a gain of 15 dB as in
the third-order case. The noise figures of the active filters
increase further beyond their corresponding insertion losses,
as the order of the filter increases. Furthermore, the sensitivity
of the filter noise figure also increases when the noise fig-
ure of the amplifiers gets higher in the higher-order designs.

IV. METHODS OF IMPLEMENTATION
Among the examples in the previous section, the third-order
filters with resonator quality factors of 100 and 28 are imple-
mented using microstrip technology. These prototypes are
referred to as the filter with moderate loss (FML) and the
filter with high loss (FHL), respectively. Their correspond-
ing lossy-active coupling matrices are depicted in Fig. 9.
As observed, the lossy-active couplingmatrices have negative
imaginary entries at the diagonal elements, which represent
the loss at each resonating and non-resonant node. Further-
more, each matrix also includes a diagonal entry with a posi-
tive imaginary term, representing the negative conductance at
each active node. The magnitude of the normalized resistance
at the second resonating node is equal to the magnitude of

the active negative resistance, which corresponds to full loss
compensation in themiddle resonator of the lossy-active filter
prototypes.

Using the lossy-active coupling matrices, the initial
step in filter implementation is design of the lossy res-
onators, according to their lumped equivalents in Fig. 5 (a).
Considering that half-wave open-ended microstrip lines
emulate parallel RLC resonators, the equivalent lumped
impedance parameters are given as in the following [38]:

Rm =
Z0
αl
, Cm =

π

2ω0Z0
, Lm =

1

w2
0C
, (14)

where Rm,Lm, and Cm denote the equivalent resistance,
inductance, and the capacitance of the microstrip resonator
and α is the attenuation constant (Nepers/m). Using (14),
the quality factor can be calculated as Qum = Rm/ω0 Lm.

While the quality factor of 100 can be achieved with a
microstrip resonator alone, the required Z0 to get aQu of 28 is
impractically high. Therefore, shunt resistors are used at both
ends of the half-wave microstrip lines to reduce the Qu of the
resonators down to 28 for the FHL.

The inter-resonator coupling mechanisms are imple-
mented using parallel edge-coupling and the desired coupling
strength (Mij) is achieved using:

Mij = FBW · mij, (15)

where mij is the coupling coefficient between ith and jth

resonator in the coupling matrix given by Fig. 5 (b).
The input and output admittance inverters are realized

using quarter-wave transformers in both designs. Their char-
acteristic impedances are calculated by denormalizing the
coupling matrix entries (m′S1) and (m′3L). The unit impedance
inverters connected to the first and last resonators in the
coupling matrix of Fig. 5 (b) are scaled to have quarter-wave
lines with realizable characteristic impedance values.

To implement the amplifier coupling at the middle res-
onator, edge coupling is used. The external quality fac-
tors Q1 and Q2 are calculated using (10). The amplifier for
achieving an infinite Qu at the middle resonator is chosen to
have a flat gain of 15 dB at the 0.8 to 1.2 GHz band.

The circuit-based simulations of the designs are carried
out in AWR, whereas the electromagnetic (EM) simulations
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FIGURE 10. The HFSS layouts of the filters. (a): Layout of the FML with
magnified 3-D views at the non-resonant node and the amplifier network.
(b): Layout of the FHL. The characteristic impedances, resonating and
non-resonant nodes, and the resistors of both prototypes are marked and
their values are shown in Table 2.

are done in HFSS Electromagnetic Suite (ANSYS, Cannons-
burg, PA). The HFSS layouts of the prototypes are depicted
in Fig. 10. In that figure, transmission line impedances within
the filter network are marked with the superscripts of Z0. The
characteristic impedances of the FML and FHL resonators are
denoted as ZFML0 and ZFHL0 . Similarly, the termination resis-
tors of the amplifier are denoted with Ramp, shunt resistors at
non-resonating nodes of FML and FHL are shown as RFMLNRN
and RFHLNRN , and the shunt resistors to adjust the quality fac-
tors of FHL resonators are called as RFHL , respectively. The
values of these parameters after tuning are shown in Table 2.

The physical dimensions of the FML and FHL are given as
(14.6 cm × 13.9 cm) and (14.6 cm × 11.3 cm), respectively.
It should be noted that no attempts were made to miniaturize
the prototypes as the goal of this study was to demonstrate
the shape correction.

V. FABRICATION AND MEASUREMENTS
To validate the proposed method, both prototypes were fab-
ricated on a RO 4350B LoPro (Rogers Corp., Chandler, AZ)

TABLE 2. The characteristic impedance and resistance values of the FML
and FHL, as depicted in Fig. 10.

30-mil-thick substrate with a copper thickness of 17.5 µm.
For precise board patterning, an LPKF ProtoLaser U4 (LPKF,
Garbsen, Germany) was used. For the lumped capacitors at
the amplifier network, multilayer ceramic capacitors from
Murata Electronics (Kyoto, Japan) and for the RF-choke
inductors, Murata spiral inductors were used. For the ampli-
fiers of the loss compensation networks, PGA-103 low noise
amplifier from Mini-Circuits (Brooklyn, NY) was used with
its prescribed stabilization network [39].

FIGURE 11. The fabricated prototypes. (a): FML, (b): FHL, (c): A single
resonator of FML, (d): A single resonator of FHL, and (e): The feedback
amplifier in the loss compensation network.

The fabricated prototypes of the FML and the FHL are
depicted in Fig. 11 (a) and (b), respectively. To account for
the discrepancies between simulated and actual resonator
properties, a single resonator of each design was fabricated
and measured. In order to measure the resonant frequencies
and quality factors of the resonators, they are weakly coupled
to the input and output ports using edge coupling, as depicted
in Fig. 11 (c) and (d). The measured quality factors of the
single resonators at 1 GHz are 132.2 and 24.6 for the FML
and FHL, respectively. After tuning for the slightly higher
measured Qu, it was observed in the simulations that the
FML yields a response with approximately 4% of FBW at an
insertion loss level of 3 dB. For the case of FHL, themeasured
quality factor was close enough to the simulated one, so it did
not noticeably change the response.

To precisely determine the forward gain, phase contri-
bution, noise figure, and the non-linearity of the amplifier,
a single amplifier network is also fabricated and measured,
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as depicted in Fig. 11 (e). The gain of the amplifier is mea-
sured to be approximately 15.6 dB and the noise figure is
around 0.69 dB at a frequency of 1 GHz. To get accurate
phase response measurements, the SMA connector lengths
were de-embedded from the measured amplifier parameters
in simulations. The 1-dB input and output compression points
(IP1dB andOP1dB) of the amplifier are measured as 7.9 dBm
and 22.5 dBm whereas the input and output third-order inter-
cept points (IIP3 and OIP3) are measured as 26.5 dBm and
41.9 dBm. Furthermore, the DC power consumption of the
prototypes are measured as 0.5 W. For an N th order active fil-
ter using the proposed design technique, therefore, the power
consumption is approximated as (N −2)×PAmp, where PAmp
is the power consumption of the feedback amplifier within its
linear operating region.
S11 and S21 measurements of the both prototypes are

performed using an Agilent PNA N5225A (Keysight Tech-
nologies, Santa Rosa, CA) network analyzer. The noise fig-
ure measurements were taken with an Agilent PSA E4448A
spectrum analyzer and an Agilent 346B calibrated noise
source. For the noise figure measurements, the Y-Factor
method [40] was used with a measurement bandwidth
of 1MHz and 10 averages. Furthermore, an external LNAwas
cascaded to the network and the noise figure of a 15 dB atten-
uator is measured with the same setup to verify the accuracy
of the measurements. IP1dB and OP1dB of the prototypes
at 1 GHz are measured using an Agilent signal generator,
the Agilent PSA E4448A spectrum analyzer, and a highly
linear Mini-Circuits power amplifier (ZHL-10W-2G+) with
43.4 dB gain, 41.72 dBm OP1dB, and 53.5 dBm OIP3. The
IIP3 and OIP3 levels of the prototypes are measured using the
same signal source, power amplifier, and spectrum analyzer
with 1 MHz tone spacing.

The theoretical and measured S-parameters for the FML
and FHL are depicted in Figure 12. As observed, there is good
agreement between the measured and theoretical responses
for the FML. The measured insertion loss of FML is 2.92 dB
at 1 GHz and its FBW is 4.2 %. The slightly narrower
bandwidth is a result of re-tuning the design in order to
account for the slightly higher measured quality factors than
expected. For FHL, the measured and theoretical transmis-
sion responses are in good agreement with the fabricated
prototype having an insertion loss of 11.82 dB. Considering
the reflection response, the three pole locations are at the
correct frequencies, however, the slightly detuned input and
output coupling inverters cause a slight mismatch between the
measured and theoretical responses. Overall, both prototypes
have the desired filter response and selectivity.

The theoretical and measured noise figures of the FML and
the FHL are also depicted in Fig. 11. The measured noise fig-
ure values of the designs are 5.19 dB for FML and 14.2 dB for
FHL at 1 GHz, whereas the theoretical values are 3.76 dB and
12.97 dB, respectively. It should be noted that the theoretical
noise figure results come from the AWR simulations with
closed-form lumped elements and do not take into account
the losses due to the microstrip line inverters. The reason

FIGURE 12. Comparison of the theoretical and measured responses. The
first row depicts the filter responses of FML and FHL whereas the second
row demonstrates the noise figure responses. For the filter responses,
the solid lines depict the |S11| and the dashed lines illustrate the |S21| of
each filter.

for including those simulation results was to demonstrate
the theoretically achievable noise figure for both prototypes.
Another reason for the discrepancies between the simulated
and measured noise figures is the re-tuned input and output
coupling inverters of the amplifier to achieve the best shape
correction.

Finally, the non-linearity performances of the prototypes
are depicted in the table of Fig. 13. As both prototypes
attenuate the input signal, the input-related non-linearity met-
rics (IP1dB and IIP3) and the output-related measurements
(OP1dB and OIP3) are considered separately. As observed,
the input compression point of FML is much higher than
that of the FHL for a simple reason that the insertion loss
difference between the amplifier ON and OFF states is much
higher in FHL. In other words, a higher percentage of the
energy is passing through the amplifier in FHL to compensate
for the lower quality factor. An important point to be observed
is that the input compression point and the third intercept of
both prototypes are better than that of the amplifier that is
used within the design of the prototypes. This is a result of
the input power to the filter being shared within the resonators
and the active network. This way, the amplifier is exposed to
less power than the incoming input power to the active filter.

The table in Fig. 13 provides a comparison of several
performance metrics of the related studies in the literature.
The compared studies include the applications of active filters
and lossy filters separately. To that end, the proposed method
in this study is a hybrid implementation of lossy filters and
active filters. Results of the two example prototypes show
that the proposed design approach is realizable and the shape
correction can be achieved using resonators with arbitrary
quality factors. It should be noted that the shape correc-
tion is achieved at the cost of increased noise figure and

VOLUME 9, 2021 35085



G. Ariturk, H. H. Sigmarsson: Lossy Microwave Filters With Active Shape Correction

FIGURE 13. Table of comparison with other relevant studies in literature.

non-linearity when the resonator quality factors are very low.
Therefore, the initial consideration with this design approach
is to use resonators with the highest achievable quality factors
within the design limits. Depending on the design, a pre-
amplifier stage might be required to compensate for both the
noise figure and the insertion loss if the available resonators
have very low quality factors. This results in the prescribed
filter selectivity with no insertion loss and reduced noise
figure, which cannot be achieved by amplifying a perturbed
filter response.

VI. CONCLUSION AND DISCUSSION
Using the coupling matrix theory for highly lossy applica-
tions has always been a challenge for filter designers due
to severe response shape degradations. In this study, a new
method of synthesizing lossy filters with the use of an active
quality factor enhancement method is presented. Unlike most
active filter approaches, in which the active quality factor
enhancement is used in every resonator, this study aims to
minimize the number of active elements within the design.

For the design stage, a new concept of lossy-active cou-
pling matrix is introduced. With that approach, this study
represents an initial transfer of the lossy filter design theory
to the highly lossy applications such as PCB-based or MMIC
filters. Using the lossy-active coupling matrix and possible
matrix rotations, higher-order filters can be designed using
resonators with arbitrary quality factors. This will require
future solutions including active inter-resonator coupling
mechanisms. Therefore, the design theory in this study pro-
vides a new step towards implementing high selectivity fil-
ters with prescribed responses using resonators with limited
quality factors. This proposed method facilitates the future
integration of analog filters with improved performance into
receiver front ends in system-on-a-chip applications.
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