
Received February 9, 2021, accepted February 18, 2021, date of publication February 24, 2021, date of current version March 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3062034

Privacy-Breaching Patterns in NoSQL Databases
KANIKA GOEL AND ARTHUR H. M. TER HOFSTEDE
Queensland University of Technology, Brisbane, QLD 4000, Australia

Corresponding author: Kanika Goel (k.goel@qut.edu.au)

ABSTRACT NoSQL databases disrupted the database market when first introduced. Their contemporary
relevance has increased further in the era of big data due to the demands placed on (real-time) analytics.
NoSQL databases are well placed to meet these demands due to their performance, availability, scalability,
and storage solutions. Unfortunately, to achieve these features, compromises have been made with respect
to security and privacy. Growing community awareness and unease combined with increased legislative
requirements around data privacy have made such compromises less palatable, risky, or downright unac-
ceptable. And though there is a growing body of knowledge related to data privacy in NoSQL databases, it is
diverse and fragmented, and does not adequately address the challenges arising from the current environment.
This paper aims to systematically examine various privacy weaknesses of NoSQL databases in the form of
patterns. The patterns are shown to manifest themselves in well-known NoSQL databases and this evaluation
can be used for benchmarking purposes. Through a survey it is demonstrated that the patterns have been
observed in practice and are perceived as relevant. The pattern collection forms a repository of knowledge that
can serve as a starting point for future privacy-related research for NoSQL databases through its identification
of key problems, trade-offs, existing solution mechanisms, and its provision of terminology.

INDEX TERMS NoSQL, Databases, privacy, patterns.

I. INTRODUCTION
Technological advancements have resulted in an inconceiv-
able growth in data. The massive amounts of data gener-
ated on an everyday basis today have become the wealth
of organisations, harnessed for improved decision mak-
ing. NoSQL databases are part of the aforementioned tech-
nological advancements. NoSQL database is a term used
for modern web-scale databases that offer performance,
storage, availability, and scalability [1]. These databases
have become popular because of their simple yet flexible
architecture and their ability to handle a large amount of
unstructured data [2], [3]. However, to offer these bene-
fits, NoSQL databases often compromise on privacy-related
features [4]–[7].

Data privacy refers to having the privilege of control on
how data is collected and disclosed. It is a ‘data-owner-
oriented’ concept focusing on data owners, who may be indi-
viduals or groups, with the aim of maintaining their privacy
when using their data for analytics [6], [8]. Not maintaining
data privacy can have grave consequences. Recently, a uni-
versity professor in Melbourne was forced to quit because of
data related to Medicare and pharmaceutical benefits scheme

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

of over 2.5 million Australians being re-identifiable when
used for analysis. Using publicly available data, one could
determine the identity of the individual in the dataset [9].
Societal concerns related to data privacy are reflected by an
increasing number of privacy regulations surrounding the use
of data and the occurrences of egregious and high profile
privacy breaches. Clearly the need for data privacy cannot be
ignored or downplayed so easily.

With the growing awareness of the need for data pri-
vacy, an emerging stream of privacy-related research can be
observed in the field of NoSQL databases [10]. And while
this is clearly a trend in the right direction, the research
efforts are still quite diverse and fragmented and not yet
amounting to a cohesive program of work. As such, no sin-
gle resource exists that provides a comprehensive under-
standing and treatment of the various threats that NoSQL
databases can be exposed to in relation to data privacy.
Therefore, the research question we aim to address is, ‘‘What
data privacy-related issues exist in NoSQL databases?’’ To
address this question, a systematic analysis of privacy-related
literature in the context of NoSQL databases is conducted.
We use a patterns-based approach [11] to delineate core
recurring privacy-breaching issues, which we refer to as
privacy-breaching patterns. Patterns have the advantage of
being specific to a problem at hand, but also general enough

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 35229

https://orcid.org/0000-0002-6250-2589
https://orcid.org/0000-0002-5169-9232

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

to address future problems [12]. We collate and analyse the
literature to provide pattern descriptions, their manifestation,
their effect, methods of detection, and example strategies for
mitigation. A patterns-based approach has been shown to
be successful in capturing recurring phenomena [13], [14]
and has the advantage of being technologically independent,
sufficiently precise, and extensible.

The privacy-breaching patterns presented in this paper
offer a repository of knowledge about a range of
privacy-related issues that NoSQL databases can be exposed
to. Expressing privacy-breaching issues as patterns also
makes them more accessible to developers, administrators,
and users in the area of NoSQL databases. The pattern
collection enables benchmarking, i.e., selection of a suitable
database for a particular application and provides a founda-
tion for future work in the area of data privacy and NoSQL
databases.

The remainder of the paper is organised as follows. Related
work is highlighted in Section II. Patterns are introduced
in section III. In Section IV, eight major NoSQL databases
are evaluated in terms of their vulnerability to the patterns.
An initial empirical evaluation is presented in Section V. This
evaluation focuses on the pervasiveness and usefulness of
the patterns. Section VI summarises the paper and provides
avenues for future work.

II. BACKGROUND AND RELATED WORK
Recent technological developments have resulted in unprece-
dented volume of data generated by social networking web-
sites, sensor networks, Internet, healthcare applications, and
many other companies. This unstructured and voluminous
amount of data that is generated is also referred to as big
data [15]. Big data has become an active research area since
the past few years, with data privacy being an important area
of contribution [10].

A. DATA PRIVACY
Data privacy is the relationship between collection and dis-
semination of data, technology, and the public expectation
of privacy, legal, and political issues surrounding them [16].
Data privacy enforces appropriate methods to collect, store,
and analyse data such that sensitive information about users
is not exposed. According to Katal et al. [17] user’s privacy
can be breached under the following circumstances:

• When personal information is combined with external
datasets that may reveal new personal information about
individuals.

• When personal information is analysed to add value to
the business but it may result in knowing about personal
characteristics of an individual.

• When appropriate data management and governance
principles are not applied to sensitive user information.

For example, Amazon and Google can learn about the
shopping preferences and browsing habits of users [18].
Location based service providers collect, store, and process

information about the locations of the individual, which if
not handled properly can reveal personal information [8].
Furthermore, with more data being available on clouds, data
phishing is getting popular, which can breach the privacy
of individuals [10]. According to a 2019 Cisco data privacy
survey, 84% respondents commented that they care about
their data privacy and 80% said that they were willing to
take actions to protect it [19]. In addition to safeguarding
data from these issues, there is also a need to comply with
data protection regulations, such as general data protection
regulation (GDPR) [20].

B. DATA PRIVACY IN RELATIONAL DATABASES
Relational databases are databases that store data in the form
of tables. The columns hold the attributes of the table, and the
rows contain the values of the attributes. Relational databases
abide by ACID (atomicity, consistency, isolation, and dura-
bility) properties, which allows secure and reliable transac-
tions. Relational databases were developed in the 1970s and
focused on reducing data duplication [21].

Relational databases facilitate the implementation of
reliable restrictions to ensure data privacy [22]. Rela-
tional database management systems have features such as
role-based security, user-level permissions to allow access
to data, transfer of encrypted messages, support to control
access to a particular row or column, although these features
require significant licensing fees [23]. Regardless, some data
privacy issues such as SQL injections and insider attacks still
exist, for which a number of techniques have and are being
developed.

While relational databases are ubiquitous, they are not
capable of handling huge amounts of unstructured data or big
data. First, they have a rigid schema which data is expected to
follow. Further, scalability is required to store (ETL) massive
amounts of data. Relational databases offer vertical scalabil-
ity, however, it can be expensive as it utilises many cores
and/or CPUs that share RAM and disks [24]. Furthermore,
the inbuilt security features and operations undertaken in the
database (e.g., Cartesian product) make them slow on big
data [25]. This led to the introduction of NoSQL databases.

C. DATA PRIVACY IN NoSQL DATABASES
With rise of big data, databases to store huge amount of
data and process it effectively were required. This resulted
in the introduction of NoSQL, or ‘‘not only SQL’’ databases.
As opposed to relational databases, NoSQL databases are
distributed in nature and offer high concurrent reading and
writing with low latency, efficient big data storage, high
scalability and availability, and lower management and oper-
ational costs [26]. Developed in late 2000s, NoSQL databases
have a flexible schema and provide horizontal scalability,
which is less expensive than vertical scalability that relational
databases offer. However, in order to provide performance,
availability, and scalability, NoSQL databases often compro-
mise on privacy related features [3].

35230 VOLUME 9, 2021

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

Greater community awareness of privacy-related issues as
well as societal regulations on appropriate use of data have
resulted in technical developments in the domain of NoSQL
databases with a focus on security and privacy-related fea-
tures. Prior research illustrates a range of security and pri-
vacy issues NoSQL databases are exposed to. While some
papers focus on security issues related to particular NoSQL
databases, such as MongoDB and Cassandra [3], [27], oth-
ers provide a comprehensive overview of privacy-preserving
mechanisms that can be deployed when analysing big
data [2], [6]. Frameworks that support privacy-preserving big
data analytics have also been proposed [28], [29], though
not specific to NoSQL databases. These frameworks and
techniques elaborate on the different data encryption tech-
niques that can be used to store data (e.g., symmetric key
encryption) and the privacy models that can be employed
to prevent unauthorised access to data (e.g., k-anonymity,
l-diversity) [28], [29].

There has been some research conducted specifically in
the context of NoSQL databases on different techniques that
can be used to detect and mitigate privacy-related issues.
However, these techniques are database specific. For exam-
ple, for detection, a technique to detect anomalous behaviour
when conducting Map/Reduce queries on Hadoop has been
proposed [30], [31], and for mitigation, a strong encryp-
tion technique to protect data at rest has been tested and
advocated [32], [33]. Overall, prior work highlights the sig-
nificance of data privacy in NoSQL databases, and this is
evidenced by an increasing amount of published research
in this area. However, the resulting work is scattered, not
systematic, and does not yet add up to a coherent whole.
To the best of our knowledge there is no resource which
captures and systematically outlines the data privacy related
issues faced by NoSQL databases.

In this paper, we review and synthesise prior literature
to distill a number of privacy-breaching issues in NoSQL
databases as privacy-breaching patterns. Together these form
a repository for current knowledge in relation to data privacy
issues in NoSQL databases. They provide a structure around
key challenges and can be added to over time.

III. PRIVACY-BREACHING PATTERNS
This section presents six patterns that were distilled from
the literature. The patterns were obtained through a narra-
tive literature review of peer reviewed papers in the area
of privacy and NoSQL databases. A narrative literature
review aims to synthesise what has been written about a
particular topic, which in this case is privacy issues in
NoSQL databases. The initial keywords used to retrieve rel-
evant articles were ‘‘privacy’’ AND ‘‘NoSQL’’ OR ‘‘NoSQL
databases’’. The keyword ‘‘NoSQL databases’’ was also
replaced with specific names of databases such as Mon-
goDB and Cassandra as many studies were found to be
conducted on particular databases. Recurring themes related
to privacy-related aspects in NoSQL databases were col-
lated and synthesised to reveal six privacy-breaching patterns.

Documentation of NoSQL databases were also reviewed
to complement the findings. Furthermore, since NoSQL
databases are distributed systems, literature related to dis-
tributed systems, e.g., cloud computing and cloud architec-
ture, was reviewed to augment our findings. Each pattern
consists of six components: description (a brief explanation of
the pattern), example (an illustration explaining the pattern),
effect (impact of the pattern), manifestation (how the pattern
can occur in NoSQL databases), detection (examples of how
the pattern can be identified), and mitigation (examples of
how the pattern can be prevented).

A. PATTERN 1 - MALICIOUS QUERY INTRODUCTION
Malicious Query Introduction happens when a person with
malicious intent intrudes into the system and modifies a
NoSQL query so that it can read or modify a NoSQL
database or change data in a web application in an unin-
tended manner. Malicious queries enable users to manipulate
the back-end of NoSQL databases by adding, modifying,
or deleting data. Malicious query modification in NoSQL
databases can result from (i) NoSQL injection attacks [27]
or (ii) insider attacks [34], [35].
Example:MongoDBuses the $where operator (well-known

from SQL) as a simple filter or to check for a constraint.
An attacker could insert an arbitrary script (e.g. expressed in
JavaScript) in the $ where clause and through its execution,
triggered by evaluation of the query, obtain access to sensitive
data. Furthermore, people internal to the organisation (e.g.,
contractors) may also gain access to sensitive information if
appropriate access privileges are implemented.
Effect: Malicious Query Introduction may open up access

to sensitive data to attackers or unauthorised people inside
the organisation (insiders) through the use of arbitrary scripts.
In both cases, the privacy of data is at risk. Malicious Query
Introduction can also enable denial of service attacks. Fur-
thermore, the injection of malicious code may restrict access
to data for a long time [36]. For example, a command like
‘while(1)’ will force the target server to use 100% of its
processor time to process the infinite loop thus inhibiting
access to data.
Manifestation: Malicious Query Introduction can be a

result of NoSQL injection attacks or insider attacks. NoSQL
injection attacks involve injecting malicious code in the exe-
cutable code allowing the attacker to gain authority and hence
access to the information in the database. Hackers typically
insert malicious code in the input boxes ofweb applications or
in the URL of such applications [27]. Ron et al. [37] describe
5 classes of injection attacks relevant to NoSQL databases:
(i) tautologies- injecting code in conditional statement,
(ii) union queries- combines queries to bypass authentication
and extract data, (iii) javascript injections- allows execution
of javascript to perform complicated tasks, (iv) piggybacked
queries- exploits assumptions in the interpretation of escape
sequences’ special characters to insert additional queries,
and (v) origin violation- uses HTTP REST APIs to access
database from other domain. In insider attacks, people in

VOLUME 9, 2021 35231

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

the organisation abuse their power and use queries to gain
unauthorised access to information [34].
Detection: Malicious Query Introduction remains a threat

to the security of NoSQL databases, but there has been some
prior work aiming to address the issue. In Islam et al. [38]
a tool is described for detecting NoSQL injections using
supervised learning. The tool was tested on MongoDB and
CouchDB. They identify a number of features that point
to NoSQL injection. In Eassa et al. [39] a method named
DNIARS is proposed that compares patterns from static and
dynamic NoSQL statement structures to determine the pos-
sibility of a NoSQL injection attack. DIGLOSSIA is intro-
duced in [40] and it identifies tainted characters in a query
as indicators of a possible NoSQL injection or insider attack.
Furthermore, in Sauvanaud et al. [41] an anomaly detection
system is proposed for cloud services based on machine
learning algorithms. It is designed to detect errors related to
erroneous behaviour of the service and SLA violations in a
cloud service, which is useful in identifying insider attacks.
Mitigation: Developers of a database can add extra func-

tionality to validate input before it is being processed [27].
For example, if an input box expects seven digits, then it
should restrict the input to data type integer and enforce
a length of seven. This would help in preventing NoSQL
injection attacks. Additionally, minimising privilege for the
admin account is advocated so that even if an intruder attacks
the system and compromises this account, data access is
still restricted [34], which would assist in addressing insider
attacks.

B. PATTERN 2 - ACCIDENTAL RE-IDENTIFICATION
Accidental Re-identification happens when an individual can
be re-identified based on the output of a query, despite mecha-
nisms implemented to ensure privacy of data. This pattern can
happen through the execution of a sophisticated query which
results in a small output set where re-identification of one
or more individuals is possible. Naturally, this raises privacy
concerns. MapReduce or Aggregation framework [42] (an
expressive querymechanism provided byMongoDB) provide
ways in which these types of sophisticated queries can be
expressed.
Example: MapReduce is a popular data processing tech-

nique, which consists of two main functions: mappers, which
split an input job into smaller manageable units, and reducers,
which process the smaller jobs and write the results in an
output file. The output of a reducer can directly leak sen-
sitive information as it contains a global view of the final
computation [4]. For example, one may wish to know the
department, age, residential suburb, and medical details of all
employees with a salary greater than $200,000 in an organisa-
tion. The output of the mapper would be the department, age,
residential suburb, and medical details of all employees with
a salary greater than $200,000. The reducer then aggregates
the results. If the result consists of very few people only then
people could be re-identified based on other details such as
age and residential suburb.

Effect:Accidental Re-identification can result in disclosure
of sensitive information stored in the database. Considering
the number and variety of mappers and reducers and the fact
that the programmer has no control over the intermediate
output, the computed output from reducers may breach the
privacy of user data. Composite attacks can also occur, where
the adversary may link the output to some publicly available
information on Facebook or Twitter [43].
Manifestation: Accidental Re-identification results from

the usage of advanced queries or data processing abilities
such as MapReduce queries and Aggregation Framework.
MapReduce queries that run on NoSQL databases such as
MongoDB, Cassandra, or used with Hadoop, can have this
effect. Another similar querying capability is offered byMon-
goDB, known as the Aggregation framework, which can sum-
marise huge amounts of data [44] and can result in disclosing
sensitive data.
Detection: For this pattern, the output is dependent on the

content of the data set. Detection relies on a high degree
of familiarity with the data set as one can then envisage
problematic output [4]. However, this may not be practical
and also disregards the need for querying capabilities as
offered by frameworks such as MapReduce. Another way of
dealing with this pattern is to control access to the output
and only make this more widely available if it is safe to do
so.
Mitigation: Privacy-preserving techniques, which include

generalisation, anonymisation, suppression, and encryp-
tion [2], can be deployed in the data set to ensure that
even if the analysis returns specific values, they cannot be
related to unique individuals. Furthermore, different privacy
models have been proposed such as k-anonymity, l-Diversity,
t-Closeness, and e-Differential privacy [29]. These can be
applied to various attributes of the data set.

C. PATTERN 3 - WEAK AUTHENTICATION
Authentication is the process of verifying the identity given
to users to access data and resources stored in a system,
e.g., a NoSQL database [45]. It is an important process
for data privacy as it prevents illegitimate access to data.
NoSQL databases typically provide Weak Authentication to
users because of (i) poor password storage mechanisms [46],
and (ii) limited to no authentication capabilities [47].
Example: By default, authentication is disabled in Redis.

When enabled in the configuration file, the database sends
passwords in an unencrypted format [48], raising concerns
regarding authentication capabilities of the system. On the
contrary, MongoDB provides strong password storage mech-
anism, but does not enforce authentication in the sharded
mode.
Effect:Weak Authentication provides an intruder access to

the database. Once the access is gained the intruder can con-
duct intentional attacks such as masquerade attacks. In this
case a node (intruder) appears to be like other nodes access-
ing the system and it uses this as an opportunity to learn
more about the system [49]. Another possibility is that of a

35232 VOLUME 9, 2021

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

hijacking attack, where the intruder gains access to the
database and uses it to satisfy their own objectives [50].
Manifestation: Weak Authentication in NoSQL databases

happens due to limited authentication mechanisms in stan-
dalone mode, limited or no authentication in sharded mode,
and weak password storage mechanisms. Most NoSQL
databases have limited default authentication features, rely
on plaintext for communicating between the client and the
server, and use limited external encryption tools [46], [51].
For instance, MongoDB and Redis do not provide authenti-
cation by default, allowing an intruder to get access to the sys-
tem [1]. There is no data encryption performed during com-
munication between the client and server of Redis, as well as
other servers within the same or different cluster [25]. This
means that an intruder can gain access to the username and
password and hence the database, if the channel is sniffed.
Furthermore, Cassandra saves password using plaintext or
MD5 hash [52], which is a very weak password storage
mechanism, enabling authentication attacks.
Detection:Weak Authentication can result in an individual

with malicious intent gaining access to the system which may
culminate into attacks such as masquerade and hijacking. For
example, an attacker can get access to valid user credentials
and not be an administrator to carry out an attack in Mon-
goDB [53]. The presence of such attacks should indicate a
bypass through the authenticationmechanism of the database.
Furthermore, the logs of NoSQL databases may be audited on
a periodic basis to detect illegitimate access to data.
Mitigation: A careful examination of the documentation

of a NoSQL database is required to understand the authenti-
cation features provided. For example, Cassandra by default
has the setting Allowallauthenticator turned on, but this
needs to be turned off to enable authentication services [45].
Being aware of default settings and available features, and
configuring them depending on planned use can enable a
minimal required level of authentication measures to be in
place. Further, privacy-preserving mechanisms are suggested
to ensure that sensitive information is not leaked even if an
intruder gets access to data. For example, data anonymisation
or generalisation options should be explored [28]. Addition-
ally, Chang et al. [54] proposes a cloud computing adoption
framework that provides guidelines to overcome technical
challenges when using the cloud to deliver services, e.g., use
of directory and lightweight directory protocol (LDAP) for
access management.

D. PATTERN 4 - COARSE-GRAINED ACCESS CONTROL
Access control or authorisation is the process of controlling
access to data and resources in a system [55]. It is usually
performed by associating different types of users with certain
sets of rules based on their roles and responsibilities [45].
NoSQL databases provide varying degrees of support for
access control. Some types of support for access control are
role-based, while others are data-based. They can also be
combined (e.g., all users with manager privileges can access
salary information).

Example: In MongoDB, authorisation is not enabled by
default and there is no support for authorisation in sharded
mode [3]. When authorisation is enabled, it provides two
roles to the users: ready-only or read-and-write. The next
option is to provide no access at all. A person with read-only
privileges can access the entire data set, whereas a per-
son with read-and-write privileges can make changes to the
entire dataset. In either case, failure to have more granular
access control places the privacy of data at risk. Additionally,
specific role-based and data-based access is very weak in
NoSQL databases. For instance, an organisation may want
two specific data collections in a database to be accessed
by an employee living in New York, working in the finance
department, and having at least 10 years experience. This
kind of fine-grained role-based access can only be achieved
in MongoDB through extensions realised at the code level.
Effect: This pattern can provide illegitimate access to sen-

sitive data, which can be used for malicious purposes. Access
to confidential information represents a risk to the privacy of
data and has a potential for perpetrator to conduct malicious
crimes such as data theft, identity theft, monetary theft, and
more [56].
Manifestation: Many NoSQL databases do not provide

access control features by default and a user needs to enable
them. In addition, there are limited role-based access control
features [57]. Fine-grained role-based access control mech-
anisms are still in a very early stage for NoSQL databases
and very few control frameworks have been proposed for
document-oriented and column-family databases [58]. Fur-
thermore, access to data and resources (data-based access) is
at high levels of granularity [55]. For example, in MongoDB
the lowest level of data-access is at the collection level. Pro-
viding access to particular documents in a collection requires
programmatic changes to the database [59].
Detection: Unauthorised access to data can be detected

through observing consequences of attacks by people with
malicious intent, for example, monetary theft or identity
theft [56]. Kholidy and Baiardi [60] proposed an intrusion
detection system that can be deployed in clouds to deal with
masquerade attacks where an intruder may impersonate a
legitimate user. Gupta et al. [57] suggested the use of activity
monitoring systems for NoSQL databases enabling monitor-
ing of all activities of the system, creation of audit reports,
keeping an eye on database access, and generating security
alerts. Given the ubiquitous need of monitoring, there are
many external applications available in the market that enable
detection of inappropriate access, such as ‘agentless monitor’
by AppPerfect [61].
Mitigation: Authorisation features need to be enabled in a

NoSQL database. Next, it is essential that fine-grained access
control rules are defined in order to access data and resources.
For example, while MongoDB does not support this directly,
the use of a RESTful API behind a reverse proxy (a server
that sits behind a firewall) can enable fine-grained permis-
sions on the proxy server [3]. Furthermore, new techniques
can be integrated into NoSQL databases. Moreno et al. [51]

VOLUME 9, 2021 35233

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

proposed a technique for key-value databases in which data
is labelled with authorisation rights, enabling appropriate
access to data. Imam et al. [62] put forward a technique,
which automatically suggests a schema in the initial phases
of database development, which in turn improves the secu-
rity of the system. This initial schema can be considered
equivalent to the notion of views in relational databases. Ulu-
soy et al. [63] presented a framework to enforce fine-grained
access control within Hadoop.

E. PATTERN 5 - VULNERABLE DATA IN MOTION
NoSQL databases store data in a distributed manner in their
globally deployed shards, which is why computations take
place in a distributed environment. Data in motion in such
environment poses a risk to the privacy of that data because
of poor security mechanisms employed by the cluster, which
may compromise cluster operations (e.g., computations).
While this is not under the control of the database, the secure
transfer of data to the cluster and among the various shards
is.
Example: Many companies such as Google, Yahoo, Face-

book, and more, use MapReduce. The ANZ Bank is using
MapReduce to better target customer needs [64]. MapReduce
performs computations in a distributed manner. It is possible
that a cluster becomes compromised because of poor security
measures, resulting in the introduction of malicious mappers.
In this case sensitive financial data of customers may leak
thus potentially compromising their privacy.
Effect: Data in motion in distributed environments results

in loss of administrative control [55]. Organisations that are
storing data in public clouds assume that the cloud providers
involved have a trustworthy system administrator and secure
data management including maintenance controls. However,
a breach of such controls may result in malicious attacks
jeopardising the privacy of data [5], [64]. Data in motion also
results in an opaque physical architecture with the user having
no knowledge about the cloud’s architecture [31]. When the
nodes are malfunctioning, this can result in a number of
attacks such as an impersonation attack, when an adversary
pretends to be a legitimate user and performs computations
that may result in data leakage [65] or a denial-of-service
attack when the adversary becomes non-functional [66].
Manifestation: In a distributed environment, NoSQL

databases run on several nodes. The higher the number of
nodes the greater the opportunity for attacks as there are
more entry points for intruders [34]. Therefore, computa-
tions performed in such a distributed environment using data
processing techniques such as MapReduce, can be altered
with the assistance of malfunctioning nodes (adversaries).
Furthermore, rogue data nodes could be added to the cluster to
corrupt the environment and gain access to sensitive data [31].
Additionally, the transfer of data from one shard to another
needs to be secure. Currently NoSQL databases use frail
encryption techniques for data in transit, which can result
in data getting exposed if an intruder gains access to the
network [47].

Detection: With the prominence of privacy issues in dis-
tributed environments, certain algorithms and techniques to
detect compromised nodes in the MapReduce framework
are proposed: a) semantic analysis of system calls and logs
to detect misuse and attacks [65], and b) a computational
provenance system that analyses provenance of computa-
tional tasks to track user data and computations and also
detects anomalies that may have compromised these com-
putations [30]. Additionally, a multistage separate query
processing protocol that aggregates data from distributed
databases using homomorphic encryption has been proposed
to combat data privacy issues [67].
Mitigation: While distributed storage and computation is

an advantage of NoSQL databases, certain strategies should
be undertaken to mitigate the privacy risks associated with
data in motion. Examples are: a) a model allowing client
to read the data from any storage node(s), provided only
those clients who have been granted access to the datum by
access control policy hold the encryption key enabling them
to decrypt the data [68], b) two secure and practical solutions
(shuffle-in-the-middle and shuffle& balance) to prevent leak-
age of data from MapReduce operations observing the inter-
mediate transfer betweenmappers and reducers [69]. Shuffle-
in-the-middle securely shuffles all key-value pairs produced
by mappers and consumed by reducers, whereas shuffle
& balance prevents the adversary from observing the vol-
ume of data transferred between mappers and reducers [69],
c) using network encryption and using better data encryption
techniques when communicating with client and other clus-
ters [47], and d) employing different encryption techniques
such as DES, AES, Blowfish, RC5 and Idea for secure data
transmission [70].

F. PATTERN 6 - VULNERABLE DATA AT REST
While data is mostly in motion in NoSQL databases because
of the distributed nature of computations, there are times
when data is at rest. NoSQL databases have been designed
to provide high availability of and powerful processing capa-
bilities for big data compared to relational databases [34].
However, this means compromising the security of data at
rest as access needs to be quick and unimpeded. Balancing
availability and processing power on the one hand with secu-
rity of data at rest on the other is thus an issue for NoSQL
databases [71] and may manifest as weak encryption of data
at rest or use of data storage mechanisms susceptible to
external attacks.
Example: Redis is a key-value database and is often used

for session storage because of the speed it provides. To pro-
vide this feature, the database does not encrypt data at rest.
This data is stored as plain text, which raises privacy concerns
as all intruders need to do is to gain access in order to
compromise the data. This may reveal sensitive information
of users stored in the database. In this case, Redis prioritises
processing power over security of data at rest.
Effect: The impact of this pattern is either on processing

power of the database or the security and in turn the privacy

35234 VOLUME 9, 2021

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

of data. If complex storage mechanisms and data encryp-
tion techniques are used, operational complexity would be
increased negatively impacting the processing power of the
database. However, if processing power is to be maintained
the security of data is at risk. In Tang et al. [72] various issues
resulting from poor storage of data at rest are identified, such
as data loss, data breaches, and malicious insider attacks.
Manifestation: Balancing processing power and level of

security of data at rest is a consequence of the need to encrypt
data at rest and the usage of new data storage mechanisms
to handle big data [73]. Traditionally, multi-tiered storage
was used to handle data, with the database administrator
having total control over the tiers. However, with the need
to handle exponentially growing data, auto-tiering is adopted
by NoSQL databases [74], [75]. Auto-tiering places data of
frequent use in the upper tiers and less frequent data in lower
tiers. The security of tiers decreases from top to bottom.
However, the challenge here is that the database administrator
has no control over where data is stored. Furthermore, there
is dependence on external service providers as the cloud
vendor uses their own security protocols for the cloud where
the data is stored [76], who can also get clues based on
data transmission among the tiers. This poses a risk to data
confidentiality and integrity. Additionally, the lowest tier has
the least number of security features enabled [77] even though
it is possible that that layer contains sensitive information,
thus risking data privacy. Moreover, most NoSQL databases
store data at rest in plaintext format [28], [34]. This is because
encryption and decryption of data typically requires the use
of complex algorithms which in turn increases operational
complexity. However, this raises privacy concerns regarding
data at rest.
Detection: Detection of inappropriate access to data due

to poor data storage services or weak data encryption can
be achieved through the monitoring of issues such as data
loss, data breaches, or other malicious attacks. A cloud data
security model has been proposed [78] based on the business
processmodel and notation (BPMN)where simulation results
can reveal data security issues. There are four lanes: one
for users, one for data request messages, one for cloud data
centres, and one for intrusion detection. It is the fourth lane
which provides warning signs and indicates the need for
taking corrective actions.
Mitigation: Research suggests storing data at rest in an

encrypted manner and using a strong encryption technique,
e.g., AES encryption technique [32], [33]. A three layer
framework has been proposed [47], which outlines techniques
and mechanisms important for developing a protected envi-
ronment. With the implementation of proper mechanisms for
a protective environment along with strong encryption of data
at rest, privacy of data at rest can be improved.

IV. SYSTEM EVALUATION
We chose eight widely used NoSQL databases, two from
each category (i.e., key-value, document-oriented, graph, and
column-family) to validate the identified privacy-breaching

patterns. The databases used were: MongoDB 4.4.2,
CouchDB 3.1.1, Redis 6.0.9, Aerospike 4.8.0.3, Cassandra
3.11.9, HBase 2.3.2, Neo4j 4.1.4, andOrientDB 3.1.0. Table 1
summarises our analysis across all privacy-breaching pat-
terns, where ‘+’ indicates that none of the manifestations
of the pattern can be directly mitigated (other than e.g.,
through programmatic extensions) by the database and ‘+/−’
indicates that some (but not all) manifestations of the pattern
can be mitigated or that some manifestations cannot be fully
mitigated.

A. MALICIOUS QUERY INTRODUCTION
This pattern is evidenced to occur as aNoSQL injection attack
and insider attack in all selected databases (−).

B. ACCIDENTAL RE-IDENTIFICATION
This pattern can occur in all databases except Redis (+) and
Aerospike (+). The use of aggregation framework in Mon-
goDB and the use of MapReduce framework in MongoDB
and other databases (−) may result in the manifestation of
Accidental Re-identification.

C. WEAK AUTHENTICATION
In MongoDB, authentication features are disabled by
default. Password is stored using salted challenge response
authentication mechanism (SCRAM) [79], which provides
SCRAM-SHA-1 and SCRAM-SHA-256 hashing features
(+). CouchDB does not provide authentication by default,
but supports password based or cookie based authentication,
and uses the PBKDF2 hashing algorithm [80] to store pass-
words (+). When enabled, Redis supports password based
authentication, however, the password is saved in plaintext
(+/−). Aerospike uses password based authentication control
and supports external authentication, such as LDAP [81].
Nonetheless, a random hashing technique is used to store
passwords (+/−). Cassandra supports simple password based
authentication (+/−). HBase supports Kerberos [82] authen-
tication (+), when configured in the database. Neo4j does
not provide authentication by default, but supports pass-
word based authentication. It uses SHA-256 [83] to store
passwords, susceptible to dictionary and brute force attacks
(+/−). OrientDB supports password based authentication
and stores passwords using PBKDF2 (+).

D. COARSE-GRAINED ACCESS CONTROL
When enabled, MongoDB supports role-based access con-
trol, however, data-based access control is poor (+/−).
CouchDB enables access control at the level of only two
roles, admin and members. The granularity is at database
level (−). Redis does not implement access control at any
layer (−). Aerospike enables creation of roles with seven
pre-specified privileges. The maximum data-based granular-
ity is at namespace level (+/−). By default, access control is
disabled in Cassandra. When enabled, it supports creation of
roles and granting privileges at keyspace level (+/−). HBase
allows configuring role-based and data-based access control.

VOLUME 9, 2021 35235

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

TABLE 1. System evaluation results.

Cell-level access control is supported in HBase (+). When
enabled, Neo4j (+) and OrientDB (+) supports creation of
fine-grained role-based and data-based access controls (+).

E. VULNERABLE DATA IN MOTION
MongoDB supports transport layer security/secure socket
layers (TLS/SSL) to encrypt all of MongoDB’s network
traffic. Further, though not enabled by default, MongoDB
supports keyfiles or X.509 certificates for communica-
tion between clients and clusters (+). CouchDB supports
X.509 certificates for TLS to encrypt data in motion (+).
Redis does not support encryption of data in motion by
default, but provides built in encryption for data in motion
in its enterprise version, and supports TLS and X.509 certifi-
cates (+). Aerospike supports TLS (+), and when enabled,
Cassandra (+) and HBase (+) support TLS/SSL for secure
transmission of data. Neo4j (+) and OrientDB (+) support
configuration of SSL/TLS to protect data in motion.

F. VULNERABLE DATA AT REST
MongoDB uses GridFS for storing large files and supports
encryption of data at rest, but only in its enterprise version;
using AES 256-CBC (+). CouchDB does not support encryp-
tion of data at rest (−). Redis provides built in encryption
capability for data at rest, but only for replication groups,
and not for data present in-memory (+/−). Aerospike uses a
hybrid in-memory storage architecture and provides an option
to encrypt data at rest using the AES-128 (+). Cassandra uses
tiered storage and encrypts data at rest using AES-256 (+).
HBase supports Clouders and HDFS data encryption. HBase
stores data in regions, which is saved in different clusters (+).
Neo4j stores data in layers but does not allow encryption at
database level (+/−). OrientDB also supports encryption of
data at rest at database level using AES or DES (+).

On analysis of Table 1, it is evident that graph
databases (i.e., Neo4j and OrientDB) are resistant to most
privacy-breaching patterns, which may be attributed to their
architecture being quite similar to relational databases.
Inspection of other databases conveys that MongoDB is more
advanced in data privacy-related features. Our analysis also
reveals thatmost features are enabled for enterprise (i.e., paid)
versions. Furthermore, it is imperative that the documentation
of each database is reviewed before it is used, as we found
that some databases do not have complete documentation
which may jeopardise the understanding of available fea-
tures in a database. For example, NCache and Voldemort

FIGURE 1. Databases that the participants had experience with.

database do not provide detailed information regarding the
privacy-breaching issues mentioned in this paper.

V. EMPIRICAL EVALUATION
To empirically assess the privacy-breaching patterns,
we focused on their pervasiveness and utility. Pervasiveness
assists an understanding of how susceptible the databases are
to the identified patterns and utility provides knowledge about
how significant it is to address these patterns for data privacy.

We collected responses from participants who have expe-
rience in the area of NoSQL databases. A questionnaire was
distributed through LinkedIn groups and also by email to
known contacts. The questionnaire started with some demo-
graphic questions, such as NoSQL databases used, adminis-
tered, and created by the participants, and was then followed
by questions that aimed to evaluate the pervasiveness and
utility of the 6 identified patterns. A 5 point Likert scale was
used to obtain the responses of the participants.

We received 28 responses. The responses convey
that the participants had experience with varied NoSQL
databases and frameworks, which includesMongoDB, Redis,
CouchDB, Azure, Hadoop, Cassandra, and DynamoDB. Fig-
ure 1 provides an overview of the databases the participants
had experience with. Further, 100% of participants had cre-
ated a NoSQL database, whereas, 71.4% participants had
administered a NoSQL database.

78.5% respondents conveyed that privacy of data is a
concern for NoSQL databases. Next, we retrieved and sum-
marised the responses for all patterns. The responses commu-
nicate that at least 58% of the respondents have encountered
the patterns either often, sometimes, or rarely (see Figure 2),
validating the presence of the patterns across a wide range of
NoSQL databases.

35236 VOLUME 9, 2021

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

FIGURE 2. Pervasiveness of patterns.

FIGURE 3. Utility of Patterns.

Additionally, we also observe from Figure 3 that overall
89% of the participants find the patterns significant to under-
stand data privacy issues in NoSQL databases. The results
convey the pervasiveness and utility of the patterns, thereby
validating their value as a collection.

VI. CONCLUSION
Data privacy is of growing concern, which has resulted in
an emerging stream of privacy-related research in NoSQL
databases. However, this research is diverse and fragmented.
This paper used patterns based approach to review and syn-
thesise prior literature, and distil six privacy-breaching pat-
terns, which explain the privacy related vulnerabilities in
NoSQL databases, their manifestations, example detection
techniques, and possible mitigation strategies. The survey
results reveal the pervasiveness and utility of the patterns.
The patterns presented in this paper have been derived
after collating issues that have impacted multiple types of
NoSQL databases. Most of these issues have not been doc-
umented before. They may be part of the folklore of the
database community or are issues which have been addressed
well by some of the existing NoSQL databases – neither
of which is accessible to NoSQL database users. We cap-
ture these issues in a new and accessible way, a cata-
logue of privacy-breaching patterns with a consistent format.
The patterns provide a common point of reference and

terminology, which enables smooth communication about
privacy breaching patterns in NoSQL databases. The patterns
offer a repository of knowledge and contribute to two areas
of growing significance: privacy and NoSQL databases. They
provide guidance on how NoSQL databases can be extended
to address the privacy-breaching issues they are susceptible
to. The patterns can also be used for benchmarking purposes,
an example of which is present in Section IV.

We also acknowledge certain limitations. First, the patterns
are literature-based, however, we validate them through a
survey and also test them across eight NoSQL databases.
Second, the number of survey responses (28) may not be con-
sidered optimal, however, they were sufficient to comment on
the pervasiveness and utility of patterns. Finally, we acknowl-
edge that the patterns may not be complete, we present certain
examples extracted from literature (e.g., for detection and
mitigation). Nonetheless, the patterns provide a solid foun-
dation to advance research in privacy and NoSQL databases.

The patterns also open various avenues for future
research. First, the patterns can be refined and extended
using other forms of validation, such as qualitative feed-
back. Second, each pattern can be studied in further detail to
come up with detection and mitigation techniques that can be
used by multiple NoSQL databases. Finally, the paper shows
the utility of a patterns-based approach. This can be used
to understand other significant but under-explored areas in
NoSQL databases.

REFERENCES
[1] A. Zahid, R. Masood, and M. A. Shibli, ‘‘Security of sharded NoSQL

databases: A comparative analysis,’’ in Proc. Conf. Inf. Assurance Cyber
Secur. (CIACS), Jun. 2014, pp. 1–8.

[2] B. B. Mehta and U. P. Rao, ‘‘Privacy preserving unstructured big
data analytics: Issues and challenges,’’ Procedia Comput. Sci., vol. 78,
pp. 120–124, Dec. 2016.

[3] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, ‘‘Security
issues in NoSQL databases,’’ in Proc. IEEE 10th Int. Conf. Trust, Secur.
Privacy Comput. Commun., Nov. 2011, pp. 541–547.

[4] K. Grolinger, M. Hayes, W. A. Higashino, A. L’Heureux, D. S. Allison,
and M. A. M. Capretz, ‘‘Challenges for MapReduce in big data,’’ in Proc.
IEEE World Congr. Services, Jun./Jul. 2014, pp. 182–189.

[5] P. Derbeko, S. Dolev, E. Gudes, and S. Sharma, ‘‘Security and privacy
aspects in MapReduce on clouds: A survey,’’ Comput. Sci. Rev., vol. 20,
pp. 1–28, May 2016.

[6] H.-Y. Tran and J. Hu, ‘‘Privacy-preserving big data analytics a com-
prehensive survey,’’ J. Parallel Distrib. Comput., vol. 134, pp. 207–218,
Dec. 2019.

[7] E. Sahafizadeh and M. A. Nematbakhsh, ‘‘A survey on security issues in
big data and nosql,’’ Adv. Comput. Sci., Int. J., vol. 4, no. 4, pp. 68–72,
2015.

[8] T. Wang, Z. Zheng, M. H. Rehmani, S. Yao, and Z. Huo, ‘‘Privacy preser-
vation in big data from the communication perspective—A survey,’’ IEEE
Commun. Surveys Tuts., vol. 21, no. 1, pp. 753–778, 4th Quart., 2018.

[9] V. Teague, Melbourne Professor Quits After Health Department
Pressures her Over Data Breach. London, U.K.: The Guardian,
2020. [Online]. Available: https://www.theguardian.com/australia-
news/2020/mar/08/melbourne-professor-quits-after-health-department-
pressures-her-over-data-breach

[10] M. Binjubeir, A. A. Ahmed, M. A. B. Ismail, A. S. Sadiq, and M. K. Khan,
‘‘Comprehensive survey on big data privacy protection,’’ IEEE Access,
vol. 8, pp. 20067–20079, 2020.

[11] D. Lea, ‘‘Christopher Alexander: An introduction for object-oriented
designers,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 19, no. 1, pp. 39–46,
1994.

VOLUME 9, 2021 35237

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

[12] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. London, U.K.: Pearson, 1995.

[13] S. Suriadi, R. Andrews, A. H.M. ter Hofstede, andM. T.Wynn, ‘‘Event log
imperfection patterns for process mining: Towards a systematic approach
to cleaning event logs,’’ Inf. Syst., vol. 64, pp. 132–150, Mar. 2017.

[14] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, ‘‘Workflow patterns,’’ Distrib. Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.

[15] S. Yu, ‘‘Big privacy: Challenges and opportunities of privacy study in the
age of big data,’’ IEEE Access, vol. 4, pp. 2751–2763, 2016.

[16] L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, ‘‘Information security in
big data: Privacy and data mining,’’ IEEE Access, vol. 2, pp. 1149–1176,
2014.

[17] A. Katal, M. Wazid, and R. H. Goudar, ‘‘Big data: Issues, challenges,
tools and good practices,’’ in Proc. 6th Int. Conf. Contemp. Comput. (IC),
Aug. 2013, pp. 404–409.

[18] A.Mehmood, I. Natgunanathan, Y. Xiang, G. Hua, and S. Guo, ‘‘Protection
of big data privacy,’’ IEEE Access, vol. 4, pp. 1821–1834, 2016.

[19] Cisco. (2019). Consumer Privacy Survey Cisco Cybersecurity Series.
[Online]. Available: https://www.cisco.com/c/dam/en/us/products/
collateral/security/cybersecurityseries-2019-cps.pdf

[20] A. Dasgupta, A. Q. Gill, and F. Hussain, ‘‘A review of general data
protection regulation for supply chain ecosystem,’’ in Proc. Int. Conf.
Innov. Mobile Internet Services Ubiquitous Comput. Cham, Switzerland:
Springer, 2019, pp. 456–465.

[21] D. Maier, The Theory of Relational Databases, vol. 11. Rockville, MD,
USA: Computer Science Press, 1983.

[22] A. Meier and M. Kaufmann, SQL & NoSQL Databases : Models, Lan-
guages, Consistency Options and Architectures for Big Data Management.
Wiesbaden, Germany: Springer Vieweg, 2019.

[23] A. Bamrara, ‘‘Evaluating database security and cyber attacks: A relational
approach,’’ J. Internet Banking Commerce, vol. 20, no. 2, pp. 1–17, 2015.

[24] R. Cattell, ‘‘Scalable SQL and NoSQL data stores,’’ ACM SIGMOD Rec.,
vol. 39, no. 4, pp. 12–27, May 2011.

[25] P. Noiumkar and T. Chomsiri, ‘‘A comparison the level of security on top 5
open source NoSQL databases,’’ in Proc. 9th Int. Conf. Inf. Technol. Appl.
(ICITA), 2014, pp. 1–7.

[26] J. Han, H. E. G. Le, and J. Du, ‘‘Survey on NoSQL database,’’ in Proc. 6th
Int. Conf. Pervas. Comput. Appl., Oct. 2011, pp. 363–366.

[27] B. Hou, K. Qian, L. Li, Y. Shi, L. Tao, and J. Liu, ‘‘MongoDB NoSQL
injection analysis and detection,’’ in Proc. IEEE 3rd Int. Conf. Cyber Secur.
Cloud Comput. (CSCloud), Jun. 2016, pp. 75–78.

[28] P. Jain, M. Gyanchandani, and N. Khare, ‘‘Big data privacy: A technolog-
ical perspective and review,’’ J. Big Data, vol. 3, no. 1, p. 25, Dec. 2016.

[29] B. B. Mehta, U. P. Rao, N. Kumar, and S. K. Gadekula, ‘‘Towards privacy
preserving big data analytics,’’ in Proc. 6th Int. Conf. Adv. Comput. Com-
mun. Technol., Rohtak, India, 2016, pp. 28–35.

[30] C. Liao and A. Squicciarini, ‘‘Towards provenance-based anomaly detec-
tion in MapReduce,’’ in Proc. 15th IEEE/ACM Int. Symp. Cluster, Cloud
Grid Comput., May 2015, pp. 647–656.

[31] S. N. Khezr and N. J. Navimipour, ‘‘MapReduce and its applications,
challenges, and architecture: A comprehensive review and directions for
future research,’’ J. Grid Comput., vol. 15, no. 3, pp. 295–321, Sep. 2017.

[32] V. R. Pancholi and B. P. Patel, ‘‘Enhancement of cloud computing security
with secure data storage usingAES,’’ Int. J. Innov. Res. Sci. Technol., vol. 2,
no. 9, pp. 18–21, 2016.

[33] M. Derfouf, A. Mimouni, and M. Eleuldj, ‘‘Vulnerabilities and storage
security in cloud computing,’’ in Proc. Int. Conf. Cloud Technol. Appl.
(CloudTech), Jun. 2015, pp. 1–5.

[34] P. Raj and G. C. Deka, ADeep Dive into NoSQLDatabases: The Use Cases
and Applications, vol. 109. New York, NY, USA: Academic, 2018.

[35] G. Kul, S. Upadhyaya, and A. Hughes, ‘‘Complexity of insider attacks
to databases,’’ in Proc. Int. Workshop Manag. Insider Secur. Threats,
Oct. 2017, pp. 25–32.

[36] H. Shahriar and H. M. Haddad, ‘‘Security vulnerabilities of NoSQL and
SQL databases for MOOC applications,’’ Int. J. Digit. Soc., vol. 8, no. 1,
pp. 1244–1250, Mar. 2017.

[37] A. Ron, A. Shulman-Peleg, and A. Puzanov, ‘‘Analysis and mitigation
of NoSQL injections,’’ IEEE Security Privacy, vol. 14, no. 2, pp. 30–39,
Mar. 2016.

[38] M. R. U. Islam, M. S. Islam, Z. Ahmed, A. Iqbal, and R. Shahriyar, ‘‘Auto-
matic detection of NoSQL injection using supervised learning,’’ in Proc.
IEEE 43rd Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jul. 2019,
pp. 760–769.

[39] A. M. Eassa, M. Elhoseny, H. M. El-Bakry, and A. S. Salama, ‘‘NoSQL
injection attack detection in Web applications using RESTful service,’’
Program. Comput. Softw., vol. 44, no. 6, pp. 435–444, Nov. 2018.

[40] S. Son, K. S. McKinley, and V. Shmatikov, ‘‘Diglossia: Detecting code
injection attacks with precision and efficiency,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), 2013, pp. 1181–1192.

[41] C. Sauvanaud, M. Kaâniche, K. Kanoun, K. Lazri, and G. Da Silva Sil-
vestre, ‘‘Anomaly detection and diagnosis for cloud services: Practical
experiments and lessons learned,’’ J. Syst. Softw., vol. 139, pp. 84–106,
May 2018.

[42] E. Plugge, D. Hows, P. Membrey, and T. Hawkins, The Definitive Guide to
MongoDB: A Complete Guide to Dealing With Big Data Using MongoDB.
New York, NY, USA: Apress, 2015.

[43] S. U. Bazai, J. Jang-Jaccard, and X. Zhang, ‘‘Scalable big data privacy
with MapReduce,’’ in Encyclopedia Big Data Technol., vol. 1. Cham,
Switzerland: Springer, pp. 1454–1462, Mar. 2019.

[44] D. Merriman, E. Horowitz, and C. T. Westin, ‘‘Aggregation framework
system architecture and method,’’ U.S. Patent 8 996 463, Mar. 31 2015.

[45] U. Saxena and S. Sachdeva, ‘‘An insightful view on security and perfor-
mance of NoSQL databases,’’ inProc. Int. Conf. Recent Develop. Sci., Eng.
Technol. Singapore: Springer, 2017, pp. 643–653.

[46] M. K. Srinivasan and P. Revathy, ‘‘State-of-the-art big data security tax-
onomies,’’ in Proc. 11th Innov. Softw. Eng. Conf., 2018, p. 16.

[47] K. Ahmad, M. S. Alam, and N. I. Udzir, ‘‘Security of NoSQL database
against intruders,’’ Recent Patents Eng., vol. 13, no. 1, pp. 5–12, 2019.

[48] W. Zugaj and A. S. Beichler, ‘‘Analysis of standard security features
for selected NoSQL systems,’’ Amer. J. Inf. Sci. Technol., vol. 3, no. 2,
pp. 41–49, 2019.

[49] R. Datta, N. Marchang, S. Das, K. Kant, and N. Zhang, ‘‘Security for
mobile ad hoc networks,’’ Handbook on Securing Cyber-Physical Crit-
ical Infrastructure. Burlington, MA, USA: Morgan Kaufmann, 2012,
pp. 147–190.

[50] F. Al-Turjman, ‘‘Intelligence and security in big 5G-oriented IoNT: An
overview,’’ Future Gener. Comput. Syst., vol. 102, pp. 357–368, Jan. 2020.

[51] J. Moreno, E. B. Fernandez, E. Fernandez-Medina, and M. A. Serrano,
‘‘A security pattern for key-value NoSQL database authorization,’’ in Proc.
23rd Eur. Conf. Pattern Lang. Programs, Jul. 2018, p. 12.

[52] R. Rivest, The MD5 Message-Digest Algorithm, document RFC 1321,
Internet Activities Board, 1992.

[53] H. Kaur and K. J. Kaur, ‘‘A review: Study of document oriented databases
and their security,’’ Int. J. Adv. Res. Comput. Sci., vol. 4, no. 8, pp. 227–228,
2013.

[54] V. Chang, Y.-H. Kuo, and M. Ramachandran, ‘‘Cloud computing adoption
framework: A security framework for business clouds,’’ Future Gener.
Comput. Syst., vol. 57, pp. 24–41, Apr. 2016.

[55] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz, ‘‘Data
management in cloud environments: NoSQL and NewSQL data stores,’’
J. Cloud Computing, Adv., Syst. Appl., vol. 2, no. 1, p. 22, 2013.

[56] G. Smyth, ‘‘Using data virtualisation to detect an insider breach,’’ Comput.
Fraud Secur., vol. 2017, no. 8, pp. 5–7, Aug. 2017.

[57] S. Gupta, N. K. Singh, and D. S. Tomar, ‘‘Analysis of NoSQL database
vulnerabilities,’’ inProc. 3rd Int. Conf. Internet Things Connected Technol.
(ICIoTCT), 2018, pp. 26–27.

[58] P. Colombo and E. Ferrari, ‘‘Access control technologies for big data
management systems: Literature review and future trends,’’ Cybersecurity,
vol. 2, no. 1, pp. 1–13, Dec. 2019.

[59] G. S. Kapadia, ‘‘Comparative study of role based access control in cloud
databases and NoSQL databases,’’ Int. J. Adv. Res. Comput. Sci., vol. 8,
no. 5, pp. 51–57, 2017.

[60] H. A. Kholidy and F. Baiardi, ‘‘CIDS: A framework for intrusion detection
in cloud systems,’’ in Proc. 9th Int. Conf. Inf. Technol.-New Generat.,
Apr. 2012, pp. 379–385.

[61] AppPerfect. (2021). Agentless Monitor. [Online]. Available: http://www.
appperfect.com/products/agentless-monitor.php#docs

[62] A. A. Imam, S. Basri, R. Ahmad, J. Watada, and M. T. González-Aparicio,
‘‘Automatic schema suggestion model for NoSQL document-stores
databases,’’ J. Big Data, vol. 5, no. 1, p. 46, Dec. 2018.

[63] H. Ulusoy, P. Colombo, E. Ferrari, M. Kantarcioglu, and E. Pattuk,
‘‘GuardMR: Fine-grained security policy enforcement for MapReduce
systems,’’ in Proc. 10th ACM Symp. Inf., Comput. Commun. Secur., 2015,
pp. 285–296.

[64] J. Dyer, ‘‘Secure computation in the cloud using MapReduce,’’ Ph.D.
dissertation, Dept. Comput. Sci., Univ. Manchester, Manchester, U.K.,
2018.

[65] E. Yoon and A. Squicciarini, ‘‘Toward detecting compromisedMapReduce
workers through log analysis,’’ inProc. 14th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., May 2014, pp. 41–50.

35238 VOLUME 9, 2021

K. Goel, A. H. M. Ter Hofstede: Privacy-Breaching Patterns in NoSQL Databases

[66] W.Wei, J. Du, T. Yu, and X. Gu, ‘‘SecureMR: A service integrity assurance
framework for MapReduce,’’ in Proc. Annu. Comput. Secur. Appl. Conf.,
Dec. 2009, pp. 73–82.

[67] A. Kelarev, X. Yi, S. Badsha, X. Yang, L. Rylands, and J. Seberry, ‘‘A mul-
tistage protocol for aggregated queries in distributed cloud databases with
privacy protection,’’ Future Gener. Comput. Syst., vol. 90, pp. 368–380,
Jan. 2019.

[68] Y. Shalabi and E. Gudes, ‘‘Cryptographically enforced role-based access
control for NoSQL distributed databases,’’ in Proc. IFIP Annu. Conf. Data
Appl. Secur. Privacy. Cham, Switzerland: Springer, 2017, pp. 3–19.

[69] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss,
and D. Sharma, ‘‘Observing and preventing leakage in MapReduce,’’ in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 1570–1581.

[70] R. Kannan and D. R. Mala, ‘‘Analysis of encryption techniques to enhance
secure data transmission,’’ Int. J. Eng. Comput. Sci., vol. 7, no. 9,
pp. 24311–24318, Sep. 2018.

[71] V. N. Gudivada, S. Jothilakshmi, and D. Rao, ‘‘Data management issues in
big data applications,’’ ALLDATA, vol. 15, pp. 16–21, Apr. 2015.

[72] J. Tang, Y. Cui, Q. Li, K. Ren, J. Liu, and R. Buyya, ‘‘Ensuring security
and privacy preservation for cloud data services,’’ ACM Comput. Surveys,
vol. 49, no. 1, pp. 1–39, Jul. 2016.

[73] G. B. Tarekegn and Y. Y. Munaye, ‘‘Big data: Security issues, challenges
and future scope,’’ Int. J. Comput. Eng. Technol., vol. 7, no. 4, pp. 12–24,
2016.

[74] E. R. Osawaru and R. A. A. Habeeb, ‘‘A highlight of security challenges
in big data,’’ Int. J. Inf. Syst. Eng., vol. 2, no. 1, pp. 2265–2289, 2014.

[75] Z. Yang, M. Hoseinzadeh, A. Andrews, C. Mayers, D. T. Evans, R. T. Bolt,
J. Bhimani, N. Mi, and S. Swanson, ‘‘AutoTiering: Automatic data place-
ment manager in multi-tier all-flash datacenter,’’ in Proc. IEEE 36th Int.
Perform. Comput. Commun. Conf. (IPCCC), Dec. 2017, pp. 1–8.

[76] J. Sen, ‘‘Security and privacy issues in cloud computing,’’ in Cloud Tech-
nology: Concepts, Methodologies, Tools, and Applications. Harrisburg,
PA, USA: IGI Global, 2015, pp. 1585–1630.

[77] M. Strohbach, J. Daubert, H. Ravkin, and M. Lischka, ‘‘Big data stor-
age,’’ in New Horizons for a Data-Driven Economy. Cham, Switzerland:
Springer, 2016, pp. 119–141.

[78] M. Ramachandran and V. Chang, ‘‘Towards performance evaluation of
cloud service providers for cloud data security,’’ Int. J. Inf. Manage.,
vol. 36, no. 4, pp. 618–625, Aug. 2016.

[79] C. Newman, A. Menon-Sen, A. Melnikov, and N. Williams, Salted Chal-
lenge Response Authentication Mechanism (SCRAM) SASL and GSS-
API Mechanisms, document RFC 5802, Internet Requests for Comments,
2010.

[80] B. Kaliski, ‘‘Pkcs# 5: Password-Based Cryptography Specification Version
2.0,’’ document RFC 2898, Sep. 2000.

[81] V. Koutsonikola and A. Vakali, ‘‘LDAP: Framework, practices, and
trends,’’ IEEE Internet Comput., vol. 8, no. 5, pp. 66–72, Sep. 2004.

[82] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, ‘‘Kerberos
authentication and authorization system,’’ Project Athena Technical Plan,
Massachusetts Inst. Technol., Cambridge, MA, USA, Tech. Rep. Section
E.2.1, 1988.

[83] S. Gueron, S. Johnson, and J. Walker, ‘‘SHA-512/256,’’ in Proc. 8th Int.
Conf. Inf. Technol., New Generat., Apr. 2011, pp. 354–358.

KANIKA GOEL received the degree in com-
puter science engineering in 2009, the master’s
degree in information technology in 2012, and
the Ph.D. degree in information systems from the
Queensland University of Technology, Brisbane,
Australia, in 2018. She was with Tata Consultancy
Services for a year. She is currently an Asso-
ciate Lecturer with the School of Information Sys-
tems, Queensland University of Technology. She
is teaching business process automation, modern

data management, and lean six sigma. She is interested in exploring the
potential of data to transform business processes. Her research interests
include data analytics, modern data management, process mining, data qual-
ity, process management.

ARTHUR H. M. TER HOFSTEDE received
the Ph.D. degree from Radboud Universiteit
Nijmegen, Nijmegen, The Netherlands, in 1993.
He has been with the Queensland University
of Technology (QUT), Brisbane, Australia, since
1997, where he is currently a Professor and the
Head of the School of Information Systems. From
2010 to 2018, hewas a part-time Professor with the
Information Systems Group, Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands.

From 2010 to 2011, he was a Senior Visiting Scholar with Tsinghua Univer-
sity, Beijing, China. In 2010, he was a Visiting Professor with the Sapienza
University of Rome. He has managed the well-known YAWL initiative at
QUT.Hewas involved in thewell-knownworkflow patterns initiative. He has
coauthored over 200 publications, including over 90 journal publications. His
research interests include in the area of business process management, with
emphasis on business process automation and process mining.

VOLUME 9, 2021 35239

