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ABSTRACT This paper proposes a systematic method, based on rational approximation and value set
approach, to unravel the impact of commutation failure preventions (CFPREVs) onHVDC system dynamics.
First, some output variables in HVDC system dynamics are identified as performance indices, it is shown
that these indices are rational functions of CFPREVs parameters. Then a numerical approximation method
is used to determine the coefficients of the rational functions which describe the analytical relationship
between the suggested performance indices and parameters. To help understand the connotation of the
obtained expressions, a multi-index value set approach, which exploits the power of geometry and graphics,
is described in detail. Finally, the results of the rational approximation and value set approach are reported.

INDEX TERMS Commutation failure prevention, multi-index value set, multi-parameter analysis, rational
approximation.

I. INTRODUCTION
High Voltage Direct Current (HVDC) system [1] is a useful
technology for transmitting a large amount of electric power
over distance. It is well-known, however, that a HVDC
system is inherently vulnerable to voltage drops caused by
AC network faults. This is because inverters may experience
commutation failures if the AC voltage is below certain
threshold [2], [3]. Since most of the HVDC links deliver a
very large amount of power, the commutation failure of one
single link often induces a severe disturbance to the AC grid,
further increasing the risk of cascading faults [4], [5].

In order to reduce the likelihood of commutation
failures induced by AC voltage drops, many HVDC
links are equipped with commutation failure preventions
(CFPREV) [6]. CFPREV is an extinction angle controller that
can improve commutation margin by adjusting the inverter
firing angle during low voltage periods. The control also leads
to greater reactive power consumption, increasing the burden
of AC network [7]. As a result, in real world applications
CFPREVs need to be carefully tuned.
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Traditionally, the impact of controller parameters on
HVDC systems are studied through repeated dynamic
simulations. However, it is in general not easy to interpret
the vast output of simulations, as a result, it is a difficult task
to study HVDC control strategies using simulations alone.
Besides, the operatingmodels for control design often include
uncertain parameters. This situation is becoming worse due
to the penetration of renewable sources, resulting in a huge
computational burden. A systematic approach for tuning
CFPREVs is of interest, both to the practioner and academia.

Several attempts have been reported to cope with the
above challenge. Some early results using asymptotic
expansion methods were introduced in [8]–[10]. Polynomial
approximation based on Galerkin Method was recently
introduced in [11]–[13] to deal with parametric problems
in power systems. Optimization methods offer a systematic
way of tuning system parameters [14], [15], however, they
are less transparent as they do not provide much insight.
The reason is that optimization methods in general require
iterative computations [26], therefore the results they deliver
are computational rather than analytical or graphical. It is
also difficult to obtain robustness information using an
optimization method.
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FIGURE 1. Diagram of a CFPREV module in electromechanical transient simulation.

In this paper, our recent results [16]–[18] of robust stability
analysis are extended to cope with CFPREV parameter
tuning. The approach advocated in the work includes two
ingredients, these are, rational approximations [19] and value
sets. The rational approximations are used to represent the
relationship between key performance indices and CFPREVs
parameters, while the value sets are employed to unravel
the coupling effects of CFPREV parameters by exploiting
geometry and graphics.

The rest of the paper is organized as follows: in Section II,
the impact of CFPREV on HVDC dynamic performance is
introduced and several output variables in AC-DC system are
identified as key performance indices. Section III describes
the rationale why a rational approximation is preferred.
Section IV focuses on solving for the rational approximation
problem. In Section V, a multi-index value-set function is
established, and the corresponding value set plot is developed.
Finally, Section VI shows the effectiveness of the proposed
approach as applied to two HVDC systems.

II. THE IMPACT OF CFPREV ON HVDC DYNAMICS
As is well-known, an inverter valve needs some 300-1000 µs
to gain its forward-blocking capability [1]. If the extinction
angle γ of an inverter is below the threshold (usually 7◦ in a
50 Hz system), a commutation failure is unavoidable. In order
to reduce the likelihood of the commutation failure induced
by voltage drops, many HVDC inverters are equipped with
CFPREVs. The diagram of a CFPREV is shown in Fig. 1.
As can be seen from the figure, once the commutation voltage
Uac drops below the voltage thresholdUcf , the switch flag Scf
will be set to zero and then a correction 1α will be added to
the computation of firing angle αI immediately. As a result,
the inverter valves will be triggered in advance to increase the
commutation margin. Besides, in recovery period, Scf is set
to one to include a delay Tcf that helps HVDC to recover.
In the sequel, the impact of a CFPREV in a bipolar

HVDC link is illustrated. The positive pole of this example
is equipped with a CFPREV, while the negative pole is
not. Fig. 2 shows the responses of firing angle αI and
extinction angle γ of two poles. It can be seen that the firing
angle of the positive pole is significantly advanced so that
the commutation margin increases to successfully avoid a
commutation failure, while the negative one experiences a
commutation failure.

It is well-understood that, the larger the commutation
margin is, the lower the power factor of the inverter is, so the

FIGURE 2. Simulation results of αI and γ in a bipolar HVDC link
(Ucf = 0.85, Gcf = 0.1, Tcf = 0.02s).

inverter absorbs more reactive power from the AC system if
CFPREV is activated. Since a CFPREV significantly changes
the reactive power characteristics of the inverter, it needs to be
carefully designed. To proceed the analysis, here several per-
formance indices are identified, they are: extinction angle γ ,
AC voltage amplitude at the inverter terminal, inverter AC
voltage dropping rate, and inverter reactive power demand.

III. PERFORMANCE INDICES AS A FUNCTION OF CFPREV
PARAMETERS
In this section we show that the performance indices can
be viewed numerically as a rational function of CFPREV
parameters. Notice that the dynamics of an AC-DC system
is described by the following set of differential-algebraic
equations: {

ẋ = f (x, y, p)
0 = g(x, y, p),

(1)
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where x denotes state variables, y denotes algebraic variables,
p indicates parameter variables such as CFPREVs parame-
ters, f is a vector function representing component dynamics,
and g = 0 represents the usual network equations.

Applying implicit trapezoid integration method to (1), one
can obtain the following recursive formula [14]:{

xk+1 = xk + 0.51t[f (xk+1, yk+1, p)+ f (xk , yk , p)]
0 = g(xk+1, yk+1, p),

(2)

where 1t denotes the integration step-length, xk and yk are
the results at step k , xk+1 and yk+1 are the results at next step.

The recursive formula constitutes a set of high-dimensional
nonlinear algebraic equations about unknown variables,
which can be represented in a compact form as

h (z, p) = 0, (3)

where z denotes all the state and algebraic variables, h
represents the new algebraic functions.

Assuming that a nominal solution z0 is given, now we are
concerned about the effect of uncertainty p on the solution z.
Using Newton iteration method to solve (3), one obtains the
following equations:

J (z0, p) = ∂h/∂zT
∣∣∣
z=z0

, (4)

J (z0, p) z′ = J (z0, p) z0 − h (z0, p) = b (z0, p) , (5)

where J is the Jacobian matrix, z’ is the result after the
first-iteration and b denotes the right-hand-side vector.

According to Cramer’s Rule, the i-th element of z’ has an
analytical expression as shown below

z′i =
∣∣J (−i) (z0, p)∣∣/|J (z0, p)|, (6)

where | · | denotes the determinant, and J(−i) is the result of
replacing the i-th column of J with b.

The above equation shows that z’ i is a rational function
of p, moreover, the result after subsequent iterations is
still a rational function with higher order. As a result,
the performance indices selected in the previous section can
also be approximated as a rational function of parameter
vector p.

In the sequel, a two-node test system [20] (see Fig. 3) is
used to illustrate the above findings.

FIGURE 3. The two-node test system example.

The nominal solution of the system is as follows: P(0)2 +

jQ(0)
2 = 0.5 + j0.3 and V (0)

x + jV (0)
y = 1.051 − j0.014.

Considering P2 and Q2 as uncertain parameters, we have:

P2 + jQ2 = (Vx + jVy)(1.06− Vx + jVy)/(−j0.03). (7)

According to (4) - (6), the result of V2 after the
2nd-iteration (V ′′x + jV ′′y ) are obtained as follows:
V ′′x =

0.001(P22 − Q
2
2)+ 0.002P2 + 0.097Q2 − 1.191

0.0017P2 + 0.0611Q2 − 1.1236

V ′′y =
−0.00005P22 − 0.002P2Q2 + 0.032P2

0.0017P2 + 0.0611Q2 − 1.1236
,

(8)

which is clearly a rational fraction.

IV. DETERMINATION OF RATIONAL APPROXIMATION
A. ORDER DETERMINATION
Let J(z0, p) in (5) be affine with respect to p. Reference [21]
points out that an affine matrix L(p) with m parameters has
the following decomposition:

L (p) = L0 + p1L1 + ...+ pmLm, (9)

where Li is the matrix corresponding to pi.
Let rk = rank (Lk ) be the maximum order of pk in

determinant |L(p)|. Then the determinant of L(p) can be
rewritten as:

|L (p)| =
rm∑
im=0

. . .

r2∑
i2=0

r1∑
i1=0

αi1i2...imp
i1
1 p

i2
2 . . . p

im
m , (10)

where αi1i2...im is the coefficient of pi11 p
i2
2 . . . p

im
m .

Therefore, the rational approximation expression for a
performance index can be expressed as follows:

z′i =

r̄m∑
im=0

. . .
r̄2∑
i2=0

r̄1∑
i1=0

c̄i1i2...imp
i1
1 p

i2
2 . . . p

im
m

rm∑
jm=0

. . .
r2∑
j2=0

r1∑
j1=0

cj1j2...jmp
i1
1 p

i2
2 . . . p

im
m

, (11)

where c̄ and c are the monomial coefficients in the numerator
and denominator, respectively.

It can be seen from (11) that the maximum order of |L(p)|
does not exceed the sum of rk , so the maximum order of
zi’ are also determined. Apparently, the order determined
above is exceedingly high even in linear structure and is only
of theoretical interest, a more practical solution is required.
Fortunately, based on our experience, a simple trial-and-error
method turns out to works well. It is also of interest to
investigate more advanced order determination instruments
(say, [22] and [23]) in the future work.

B. COEFFICIENT DETERMINATION
Recently, numerical approximation methods have been re-
emphasized and advanced in several aspects of power
system analysis, and have become powerful complements to
traditional simulation methods. The key idea of numerical
approximation is to assume that the parametric solution z(p)
takes a given structure, like polynomial or rational fraction.
Once the coefficients in z(p) have been determined by numer-
ical methods, an approximate expression for the solution
z(p) is obtained. In general, polynomial approximation works
rather well for many engineering problems. Sometimes,
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rational approximation performs better when the function to
be approximated is less ‘‘flat’’ [18].

In the sequel, the principle of a numerical approximation
method for determining the coefficients in rational function is
briefly introduced. Suppose that the index R has a relatively
simple rational structure, whose numerator and denominator
are 2nd-order multi-linear polynomials (higher-order frac-
tions analogy):

R(p)

=
c̄0+c̄1p1+· · ·+c̄mpm+c̄1,2p1p2+· · ·+c̄m−1,mpm−1pm
c0+c1p1 · · ·+cmpm+c1,2p1p2+· · ·+cm−1,mpm−1pm

,

(12)

where c̄i, c̄i,j, ci and ci,j are unknown coefficients.
Substituting sample data into (12) below gives a set of

simultaneous linear equations

Xc = y, (13)

where matrix X and column vector y are composed of the
sample data and c denotes the vector of unknown coefficients.

Assuming c0 = 1, the coefficient vector c is uniquely
determined by the least-square principle.

c = X+y = (XTX)−1XTy, (14)

where X+ denotes the Moore-Penrose pseudo-inverse of X.
It is worth mentioning that the functional relationship

between performance indices and parameters determined by
the above method only requires a small amount of sample
data, and usually has good generalization performance in the
overall parametric space. In addition, the impact of some
parameters on performance indices can be directly reflected
by the corresponding coefficient value in the coefficient
vector c (equation (26), for example).

V. VALUE SET APPROACH FOR MULTI-INDEX ANALYSIS
OF HVDC SYSTEM
The numerical approximation procedure described in previ-
ous section allows one to obtain expressions that represent the
analytical relationship between AC-DC system parameters
and performance indices. This section develops a new
graphical illustration of the expressions, to further unravel the
role each parameter plays.

A. VALUE SET RESULT OF ONE COMPLEX INDEX
Suppose that the voltage at converter terminal (V(p) = Vx +
jVy ) has a rational expression obtained from simulation data
or measurement data, as shown below:{

Vx = Nx (p)/Dx (p)
Vy = Ny (p)/Dy (p),

(15)

where N (p) and D(p) are polynomials of appropriate order.
To avoid an inverter commutation failure, V (p) should

respect the following constraint:

V 2
x + V

2
y ≥ V

2
min, (16)

where Vmin indicates the critical value of voltage amplitude.

Since V (p) is a complex function, the critical condition
can be converted into a circle with radius Vmin on a complex
plane. When p varies in a hyper-box, the variation of V (p)
forms a value set (or called image set) on the complex plane,
as shown in Fig. 4.

FIGURE 4. The value set result and the stability boundary of V (p).

The notion of value set is derived from robust stability
theory [24]. The idea is to plot the value set of a
complex function on a two-dimensional plane. Following the
celebrated boundary crossing theorem [24], if the value set
of the bus voltage V (p) lies outside the circle constantly,
no commutation failure caused by voltage drops will occur.

While a rational function has certain advantages some-
times, computing its value set is not as straightforward as that
of a polynomial. In this work, we construct a new function
ρ1(p) called value-set function as follows

ρ1(p) = [Nx(p)− αDx(p)]+ j
[
Ny(p)− βDy(p)

]
, (17)

where α and β are real numbers satisfying α2 + β2 = V 2
min.

When the parameters vary in a hyper-box, one obtains a
series of value sets of ρ1(p). It is easily understood that the
stability criterion |V (p)| = Vmin is violated if and only if
ρ1(p) = 0. This is exactly what zero-exclusion theorem [25]
claims: the system is stable if and only if the value sets do
not intersect the origin. Furthermore, the distance between the
value set and the coordinate origin can be viewed as ameasure
of safety margin (see Fig. 5). In addition, the impacts of each
parameter can be read out through the movement of the value
sets, see subsequent section for a detailed example.

FIGURE 5. The value set results of ρ(p) and zero-exclusion principle.
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It is also convenient to use the angular parameter θ ∈
[0,2π ] to define the value-set function, as shown below:

ρ2(p)= (Nx−DxVmin cos θ )+ j(Ny − DyVmin sin θ ), (18)

If θ takes discrete values, a series of value set graphs
of ρ2(p) can plotted on the complex plane (see Fig. 6).
In Fig. 6, the length of the color map corresponds to the length
of the parameter interval, and different colors correspond
to the results under different parameter values. It is easily
concluded that, if the value sets do not intersect the origin
(Fig. 6(a)), then the inverter is under normal operation. On the
contrary, if the value sets envelop the origin (Fig. 6(b)), then
a commutation failure is likely to occur.

FIGURE 6. The value set results of value-set function ρ2.

B. VALUE SETS OF TWO REAL INDICES
Two indices can also be integrated to produce value set result.
For instance, the voltage amplitude and the voltage dropping
rate are selected to construct a new value-set function.
Suppose the rational expressions of the bus voltage amplitude
at two moments (t1, t2) are

Vt1=Nt1 (p)/Dt1 (p),Vt2=Nt2 (p)/Dt2 (p);Vt1>Vt2 . (19)

Then the voltage dropping rate is computed by

1V
1t
=
Vt2 − Vt1
t2 − t1

=
Nt2Dt1 − Nt1Dt2
Dt2Dt1 (t2 − t1)

(p). (20)

Considering the operating constraint on the voltage ampli-
tude (Vt > |V |min) and its dropping rate (1V /1t < Rmax),

one obtains the following value-set function:

ρ3 (p) =
[
Nt2 − Dt2 |V |min

]
+j
[
Dt2Dt1 (t2 − t1)Rmax−Nt1Dt2+Nt2Dt1

]
, (21)

The value-set function ρ3(p) is easily applied for operating
constraint analysis through its value set result, as shown
in Fig. 7.

FIGURE 7. Operating constraints and value sets.

C. EXPLOITATION OF VALUE SET GEOMETRY
It is apparent that the number of polynomial terms in a
value-set function will increase rapidly as the number of
parameters increases. An important observation the value set
approach makes use of is that value-set function often enjoys
an affine structure or multi-linear structure (i.e., terms like
p1p2p3). If this is the case, one can have the following elegant
result [24]:

1) For an affine value-set function, its value set is a convex
polygon with vertices and outer edges all mapped from
the vertices and outer edges of the parameter space.

2) For a multi-linear value-set function, its value set is no
longer a convex polygon. However, the convex hull of
this value set is a convex polygon connected by vertex
mapping of the parameter space.

Apparently, if a value-set function is affine, only the vertex
mapping needs to be computed. If it is multi-linear, its
value set can be quickly estimated through the convex hull
formed by the vertex mapping. Only when the convex hull
covers the origin, the parameter space needs to be subdivided
carefully to calculate the critical value. This is the so-called
vertex analysis and it significantly improves computational
efficiency. Moreover, if the value-set function is neither
affine, nor is it multi-linear, there is still a remedy provided
that the number of higher-order polynomial terms is small.

Consider a value-set function like this:

ρ4(p) = (2p1 + p21)p2 + j(p21 + p2)p3. (22)

The following techniques help to quickly compute the
corresponding value sets:
1) Replace the higher-order terms with multi-linear terms

using variable substitution. For example, p1 is replaced
with the average of two new variables q1 and q2 that
have similar variation range. Meanwhile, 2nd-order
terms p21 is replacedwith the product of them. Then (22)
is transformed into a multi-linear function as

ρ′4(p) = (q1 + q2 + q1q2)p2 + j(q1q2 + p2)p3. (23)

2) Perform brute force grid computation for p1 only.
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D. MULTI-INDEX-MULTI-PARAMETER ANALYSIS
The value set result is helpful for describing the relationship
between system indices and controller parameters. To further
enhance the practicability of the value set approach, some
plotting techniques suitable for multi-parameter impact
analysis are necessary.

1) A series of small value set graphs, which provide more
information about system state varying, are drawn by
selecting pi as the key parameter.

2) The movement of the value set graphs, indicated by
arrows, reveals the impact of individual parameter on
system performance.

The above-mentioned techniques are illustrated by the
following example:

ρ5(p) = 1.33(p1 − p2 − p4 − 1)+ j(p2 − p3 − p4 − 1).

(24)

where p1 ∈ [3, 4], p2 ∈ [2, 2.5], p3 ∈ [0.5, 0.8], p4 ∈
[0, 0.1].

FIGURE 8. Multi-parameter value set analysis for ρ5(p).

The entire value set graph is drawn in Fig. 8(a) and
the discrete value set graphs under p1 sampling is drawn
in Fig. 8(c). In Fig. 8(c), the length of the color map
corresponds to the length of the p1, and different colors
correspond to the results under p1 taking different values.
Besides, the vertexes of the value set are marked with ‘+’
or ‘−’, which represents the upper and lower bounds of
each parameter. In Fig. 8(b) and Fig. 8(d), the pointed
arrows provide much detailed information about the impact
of each parameter on system performance, since their tails
and heads are determined through the mapping results of
the corresponding parameter extreme values. For instance,
the tail and head of the green arrow correspond the mapping

results of two parameter configurations (p−1 , p
−

2 , p
−

3 , p
−

4 )
and (p−1 , p

−

2 , p
−

3 , p
+

4 ). This arrow points from Northeast to
Southwest, indicating that the increasing of p4 leads to the
deterioration of system performance.

A procedure chart summarizing the methods described
in the preceding sections is shown in Fig. 9. The key
performance indices help us understand the operation status
of the system. Then rational approximation establishes the
relationship between multiple parameters and the indices.
Finally, a value set approach is developed to display the
coupling effects of multi-parameters and multi-indices.

FIGURE 9. The procedure chart of the proposed method.

In addition, here are some rule-of thumb guidelines for
choosing the order of the rational approximations:
1) If the accuracy requirement is met, the simpler the

structure of the approximation expression, the smaller
the calculation burden.

2) The simplest case is that the numerator and denomina-
tor are both affine polynomials.

3) When the rational approximation adopts the multi-
linear structure, the accuracy increases but the compu-
tational complexity increases.

4) Gradually increase the highest order of the terms until
the accuracy requirement is met or the error is enlarged,
and then the order of the rational approximations is
determined.

VI. CASE STUDIES
A small-scale AC-DC system is first utilized to illustrate the
efficacy of the rational approximation method and the value
set approach. The results of an actual Chinese power system
are included later in the section.

A. A SMALL-SCALE TEST SYSTEM EXAMPLE
The system includes 93 generation units and 7 HVDC links
(see Fig. 10). A three-phase short-circuit fault is applied in
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FIGURE 10. The structure of the small-scale test system example.

AREA 6, resulting in the voltage drops of converter buses.
When the commutation voltages are lower than the threshold
Ucf (0.85 p.u), the CFPREVs equipped in four HVDC links
(DC5, DC3, DC2, DC6) will be activated to regulate.

Here the coupling effects of four gain parameters (Gcf )
in different CFPREVs are analyzed. The parameters vary
in the following range: G5 ∈ [0.06, 0.07] and G3, G2,
G6 ∈ [0.05, 0.15]. Since DC5 is electrically close to the fault
location, theminimum extinction angle of DC5 (γ5min) during
the fault and the maximum reactive power of DC5 (Q5max)
absorbed from the AC system after fault removal are selected
as key performance indices.

In order to obtain the data of γ5min, the fault line is
grounded through small impedance and the commutation
failure criterion is disabled. The simulation result shows that
γ5min varies from 4.18◦ to 9.39◦, close to the critical value
(7◦). Using the numerical approximation procedure described
in previous sections, the relationship between γ5min and G5,
G3, G2, G6 are obtained. In this case, it turns out that the
rational approximation results are more accurate than those
of polynomial approximations (see Table 1).

TABLE 1. The approximation results of γ5min.

The 2nd-order rational approximation result is as (25).
For the sampling of Q5max, the faulted transmission

line is directly grounded and the normal commutation
failure criterion is enabled. The simulation result shows that

DC5 experiences consecutive commutation failure during the
fault and the responses are different only during the recovery.
Considering that the maximum reactive power demand of
inverter is most affected by its own controller, G5 is selected
as the key parameter with a higher degree. In order to
obtain more accurate results, it can be assumed that the
denominator is only composed of high-order terms of one
key parameter to improve the accuracy, while the numerator
is still a multi-linear polynomial to maintain computational
efficiency. Table 2 below shows the approximation errors.

TABLE 2. The approximation results of Q5max in the given structures.

The following expression is the best approximation result,
whose numerator is a 3-order multi-linear polynomial and
denominator is a 2-order polynomial of G5.

It is seen from (25) and (26), as shown at the bottom
of the next page that the coefficients related to G2 and G6
are almost the same, which means these two parameters
have the same impact on the system performance. Besides,
the sign of the coefficients related to G5 are opposite to
the coefficients related to other parameters, indicating that
G5 has the opposite impact to other parameters. However,
it is difficult to understand the coupling effects of multiple
parameters from the above complicated expressions.

Let’s see how the value set instrument can help solve
this problem. Considering that extinction angle threshold is
γCR = 7◦ and critical reactive power is QCR = 170 MVar, a
value-set function is constructed as follows:

ρDC5(p) = [Nγ − Dγ γCR]+ j[DQQCR − NQ]. (27)

In Fig. 11(a), the entire value set result of ρDC5 (p)
envelopes all quadrants, which shows that improper param-
eter configuration results in commutation failure and reactive
power off-limit simultaneously, while proper one can avoid
the situations. Besides, it is remarkable that the arrows
in Fig. 11(b) point the impact of each parameter on system
performance. This is not only a qualitative result, but also a
quantitative one. The arrow representing G5 is longer than
others, which indicates G5 is the most important factor. The
arrow associated withG5 points from top left to bottom right,
indicating that the increase in G5 leads to the consequence
that the commutation margin increases, but the voltage of the
AC network is deteriorated. Moreover, the value set results
also clearly show that G2, G3 and G6 almost uniformly have
the opposite impact, because the converter stations of these
three links with the same capacity are electrically close to
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each other. It is consistent with the conclusion deduced from
(25) and (26).

In order to optimize the parameter configuration, a series of
discrete value set graphs are drawn by selectingG5 as the key
parameter. When G5 is specified, the small value set graphs
corresponding parameter subspaces can be quickly obtained
by vertex computation, as shown in Fig. 11(c). Through
the movement of these small value set graphs, the impact
of the key parameter G5 is clearly known. The individual
contribution of regular parameters in every small value set
is drawn in Fig. 11(d), which also provides useful insights in
detail.

FIGURE 11. Value set results of the small-scale test system.

According to the value set results, the best parameter
configuration is G5 = 0.07, G3 = 0.15, G2 = 0.15, G6 =

0.15 and the worst is G5 = 0.06, G3 = 0.15, G2 = 0.05,
G6 = 0.05. The time-domain simulation results under the
above two parameter configurations are compared in Fig. 12.

FIGURE 12. Time-domain simulation results of the small-scale system.

The result shows that both γ5min and Q5max under the best
parameter configuration are improved, which confirms the
validity of the approach.

B. AN ACTUAL LARGE-SCALE SYSTEM EXAMPLE
The results of applying the proposed approach to an actual
Chinese power system with 4441 generation units and
19 HVDC links are reported in this section. In this large-scale
grid, Shanghai is a metropolitan area that has 15.7 GW
peak load and is powered by five HVDC links. These

γ5 =
Nγ
Dγ
=

(2+ 20G5 − 53G3 − 48G2 − 48G6 + 869G5G3+

829G5G2 + 807G5G6 − 22G3G2 − 22G3G6 − 23G2G6)

(1− 9.2G5 − 4.5G3 − 4G2 − 4G6 + 79.7G5G3+

73.8G5G2 + 73.6G5G6 − 0.3G3G2 − 0.2G3G6 − 0.6G2G6)

. (25)

Q5max =
NQ
DQ
=

152+ 207G5 + 33G3 + 31G2 + 31G6

1− 1.18G5 + 8.43G2
5

+
48G5G3 + 67G5G2 + 60G5G6 − 416G3G2 − 428G3G6 − 406G2G6

1− 1.18G5 + 8.43G2
5

+
4335G3G2G6 − 2334G5G3G2 − 2371G5G3G6 − 2821G5G2G6

1− 1.18G5 + 8.43G2
5

(26)
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links are 6.0GW FuFeng HVDC, 2.8GW LinFeng HVDC,
1.1GW GeNan HVDC, 2.9GW YiHua HVDC and 2.9GW
LongZheng HVDC, of which the first three and the last
two are distributed in two subareas. Considering that Fufeng
HVDC link is the largest power source to Shanghai area,
the gain coefficient GFF in its CFPREV module should be
concerned carefully. As a result, GFF ∈ [0.015, 0.020] is
selected as the key parameter and other four gain coefficients
(GLF, GGN, GYH, GLZ ∈ [0.05, 0.15]) are regard as regular
parameters.

Then the minimum extinction angle (γFF_min) of Fufeng
HVDC link during a three-phase short-circuit fault and the
maximum reactive power consumption (QFF_max) of Fufeng
HVDC inverter station during the recovery are selected as two
performance indices. The results of numerical approximation
calculated from simulation data are shown in Table 3 and
Table 4.

TABLE 3. The approximation results of γFF_min.

TABLE 4. The approximation results of QFF_max in the given structures.

By comparing the accuracy of different structures, two
excellent expressions for γFF_min and QFF_max are deter-
mined. The expressions and their critical constraints (γCR =
7◦ and QCR = 3700 MVar) are used to construct a value-set
function. Then value set results of the above value-set
function are drawn in Fig. 13.

The movement of the small value set graphs in Fig. 13(a)
implies that the larger GFF, the larger the commutation
margin of Fufeng HVDC. At the same time, the increase
of GFF causes QFF_max to increase first and then decrease.
Moreover, the pointed arrows in Fig. 13(b) unravel the impact
of each parameter. It can be seen that the rise of GYH and
GLZ will reduce the commutation margin of the inverter,
but has insignificant impact on the maximum absorbed
reactive power. In addition, the increase of GLF and GGN has
negative impact on two performance indices. Furthermore,

FIGURE 13. The value set results of the large-scale actual system.

the difference of the controller parameter impact are also
reflected from the length of the arrows in Fig. 13(b).

The results in Fig. 13 are consistent with engineering
experience, that is, the converter needs to absorb more
reactive power during the recovery once a commutation
failure occurs. According to the value set results, the best
parameter configuration is determined as GFF = 0.017,
GLF = 0.05, GYH = 0.05, GLZ = 0.05, GGN = 0.05 and
the worst one is determined as GFF = 0.015, GLF = 0.15,
GYH = 0.15, GLZ = 0.15, GGN = 0.15.
In Fig. 14, the time-domain simulation results under the

above two configurations are compared. The result shows that
γFF_min and QFF_max under the best parameter configuration
are both improved, which confirms the validity of the
introduced approach again.

At the end of this section, we note that the results of
the proposed multi-index value set approach can be easily
interpreted and provide many insights. Compared with the
traditional numerical simulation method, the suggested value
set approach yields graphical solutions that unravel the
impacts of parameters in CFPREVs on system performance.
The approach also considerably improves our early solu-
tion [15], which relies heavily on iterative computations.
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FIGURE 14. Time-domain simulation results of the large-scale system.

VII. CONCLUSION
In this paper, a multi-index value set approach is demon-
strated to be a powerful tool for studying HVDC dynamics.
Assisted with efficient rational approximations, the proposed
value set approach provides a graphical means to unravel
the coupling effects of control parameters on HVDC
performance indices. The value set graph also allows one
to optimize the controller parameter configuration, and
conclude that operating constraints are robustly satisfied.
As is clear from the paper, the proposedmethod is sufficiently
general, it can also be useful in solving other power system
dynamics problems.Moreover, different operating conditions
and different fault locations can also be considered as
parameters to be analyzed, and their impacts are left as a topic
of future research.
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