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ABSTRACT Since deep neural networks may classify out-of-distribution image data into in-distribution
classes with high confidence scores, this problem may cause serious or even fatal hazards in certain
applications, such as autonomous vehicles and medical diagnosis. Therefore, out-of-distribution detection
(also called anomaly detection or outlier detection) of image classification has become a critical issue for
the successful development of neural networks. In other words, a successful neural network needs to be
able to distinguish anomalous data that is significantly different from the data used in training. In this
paper, we propose an efficient data augmentation network to detect out-of-distribution image data by
introducing a set of common geometric operations into training and testing images. The output predicted
probabilities of the augmented data are combined by an aggregation function to provide a confidence score
to distinguish between in-distribution and out-of-distribution image data. Different from other approaches
that use out-of-distribution image data for training networks, we only use in-distribution image data in
the proposed data augmentation network. This advantage makes our approach more practical than other
approaches, and can be easily applied to various neural networks to improve security in practical applications.
The experimental results show that the proposed data augmentation network outperforms the state-of-
the-art approaches in various datasets. In addition, pre-training techniques can be integrated into the data
augmentation network to make substantial improvements to large and complex data sets. The code is
available at www.github.com/majic0626/Data-Augmentation-Network.git.

INDEX TERMS Out-of-distribution detection, image classification, anomaly detection, outlier detection,

data augmentation, deep neural networks.

I. INTRODUCTION

Deep neural networks have achieved very impressive results
in various computer vision tasks [1]-[3]. When training a
neural network, the training data is an independent identical
distribution, also called in-distribution data. On the other
hand, data that does not belong to in-distribution data is called
out-of-distribution data. For example in Fig. 1, traffic signs,
zebra crossing, and cars are in-distribution data while birds
are out-of-distribution data. When a neural network is too
confident about the prediction results and gives too higher
confidence scores to out-of-distribution data, these erroneous
results will bring security risks to safety-critical applications
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such as autonomous vehicles [4], medical diagnosis [5] and
sensor-fault detection for industrial safety [6], [7]. Therefore,
out-of-distribution detection has become a very important
research goal in artificial intelligence security issues [8].
The goal of out-of-distribution detection is to detect
whether an input data comes from in-distribution or
from out-of-distribution. To resolve the problem, many
approaches are proposed and can be mainly categorized into
three types including softmax-based approaches [9]-[11],
uncertainty-based approaches [12], and generative model
based approaches [13], [14]. Softmax-based approaches use
the maximum value of softmax probability as a threshold
to distinguish out-of-distribution data. On the other hand,
uncertainty-based approaches add an additional confidence
branch to provide an uncertainty score for an input. Finally,
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FIGURE 1. In-distribution data (gray circle) and out-of-distribution data
(red circle) in feature space.

generative model based approaches treat an input as an out-
of-distribution data when its corresponding output is poorly
reconstructed.

Among the proposed approaches, softmax-based
approaches are widely used because they can be easily com-
bined with any neural network without modifying its original
architecture or adding other models. Furthermore, they can
detect out-of-distribution data without affecting the perfor-
mance of primitive tasks such as classification. Therefore,
many softmax-based approaches have been effectively used
in pre-training models. Because softmax-based approaches
use the maximum value of the softmax probability as a con-
fidence score and compare it with a threshold, softmax-based
approaches can be regarded as a binary-classification task.
When the confidence score is higher than the threshold,
the model predicts that the input data comes from in-
distribution. Otherwise, the model predicts that the input data
comes from out-of-distribution.

Although the softmax-based methods are simple and the
computational cost is low, they must rely on neural networks
to effectively separate the confidence scores of in-distribution
data and out-of-distribution data. That is to say that a model
must have the ability to give in-distribution data high confi-
dence scores, while giving out-of-distribution data low con-
fidence scores. However, distinguishing in-distribution and
out-of-distribution data is very difficult if the confidence
score is determined by only one output probability, espe-
cially for the model which is easy to be confused due to
out-of-distribution data. In order to improve the accuracy
of out-of-distribution detection, our idea is to introduce a
set of common geometric operations into training images
to generate a couple of training data. The idea comes from
the assumption that data enhancement can enable the neural
network to classify a set of augmented data from the same
image into the same class, that is, to output similar distri-
bution of predicted probabilities for the set of augmented
images. On the contrary, when the inputs comes from out-
of-distribution, the probability of obtaining a similar distri-
bution of predicted probabilities of the augmented images is
relatively small. In other words, even if one of the enhanced
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images has a higher predicted probability, the other probabil-
ities will diminish its influence. Finally, these predicted prob-
ability distributions are combined by an aggregation function
to obtain a confidence score, which is used to determine
whether the input data comes from in-distribution or out-of-
distribution.

In this paper, we develop an effective data augmenta-
tion network to detect out-of-distribution data and improve
its robustness without reducing the accuracy of classifi-
cation. In order to make a fair comparison, we apply
the proposed method to WideResNet [15] and evaluate
its effectiveness on many common datasets. The proposed
data augmentation network outperforms the state-of-the-art
approaches and can be further improved on larger datasets,
such as TinylmageNet [16] through pre-training technique.
The first innovation of this paper comes from the observation
that when the input image comes from out-of-distribution,
the predicted probabilities of the augmented images may
be inconsistent and we make full use of this feature to
detect out-of-distribution image data. The second innova-
tion is that only in-distribution data are used to train our
framework which makes our approach more practical than
other approaches [10], [11], and can be easily applied to
various neural networks to improve security in practical
applications.

Il. RELATED WORKS

A. OVERCONFIDENCE IN NEURAL NETWORKS

Neural networks have achieved significant progress on many
computer vision tasks. However, we not only care about the
accuracy of the model’s prediction, but also how we trust
the model’s prediction results. For example, if the maximum
value of the softmax probability distribution output by the
model is 0.9, approximately 900 of the 1000 classifications
performed by the neural network are correct. In other words,
we can estimate how confident does the model predict for an
given image by the maximum output value.

Nevertheless, neural networks are found to be overconfi-
dent occasionally for the out-of-distribution data, and classify
them into a class with anomalous high scores. The MSP [9]
claimed that the overconfident predictions are produced by
the softmax function in neural networks because the softmax
probability are computed with the fast-growing exponen-
tial function and a small addition to the softmax input will
cause a large change in the output distribution. In addition,
the authors in [17] also pointed out that a neural network using
ReLU [18] as an activation function may output arbitrarily
high confidence score to predict data that is not seen dur-
ing the training phase. This problem can only be solved by
changing the architecture and activation functions. In other
words, a higher confidence score from the neural network
does not necessarily mean that the result of the classifier is
more likely to be correct, as shown in [19]. These results
can be also visualized by reliability diagrams [20] which
plot the gap between mean prediction accuracy and con-
fidence scores. Surprisingly, there exists huge gaps in the
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modern neural networks which means that they are poorly
calibrated [21], [22]. To mitigate the miscalibration of neural
networks, the authors in [21] uses temperature scaling to
divides the logits by T before calculating softmax values.
This regularization suppresses extremely high scores in out-
put probability while not affecting the original prediction
accuracy. Moreover, multi-modal approaches are likely to
reduce the over-confidence problems of deep neural networks
as shown in [22].

B. OUT-OF-DISTRIBUTION DETECTION

In practical applications, deep neural networks often
encounter out-of-distribution data. Due to overconfident pre-
dictions, the out-of-distribution data will seriously dam-
age the correctness of the neural networks. To resolve
the problem, many approaches [9]-[14] are proposed
to detect out-of-distribution data and can be divided
into three categories including softmax-based approaches,
uncertainty-based approaches, and generative model-based
approaches. Uncertainty-based approaches modify the archi-
tecture of neural networks to produce uncertainty score for
detecting out-of-distribution data. For instance, the authors
in [12] constructed an auxiliary branch onto a pre-trained
classifier and derive a new out-of-distribution score from
this branch. Generative model-based approaches assume
that out-of-distribution data cannot be effectively recon-
structed by generative model such as autoencoder or vari-
ational autoencoder. For example, the authors in [13]
incorporated the Mahalanobis distance in latent space to
detect out-of-distribution data by measuring reconstruc-
tion error. In [14], the authors obtained Mahalanobis
distance-based score from the class conditional Gaus-
sian distribution using hidden features in neural networks.
Softmax-based approaches are widely used because of their
simplicity and low computation cost. The MSP [9] proposed
a baseline method using the maximum value of the softmax
distribution of the classifier to detect out-of-distribution sam-
ples. Several softmax-based approaches are proposed based
on this work to improve the detection performance. The
ODIN [11] separated the softmax score distribution between
in-distribution and out-of-distribution images using temper-
ature scaling and adding small perturbations although fine
tuning parameters for different testing data are required.
Despite its low computational cost, the detection performance
highly depends on the pre-trained classifier. To assist neural
networks learn to differentiate between in-distribution data
and out-of-distribution data, the authors in [10] proposed
a method of simultaneously using Generative Adversarial
Neural Networks (GAN) [23] to generate out-of-distribution
data forming a boundary for in-distribution data and jointly
train a classifier which should have low confidence on gener-
ated samples outside the boundary. However, training such
model is computationally expensive. Moreover, tuning the
hyperparameters with validation sets of out-of-distribution
samples [10], [11] is often impossible since the prior of
out-of-distribution samples is unavailable. Unlike only using
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in-distribution data in our work, the OE [24] recently pro-
posed leveraging diverse, large real outlier images to train
anomaly detectors against auxiliary datasets of outliers to
improve out-of-distribution detection. Moreover, it has been
shown that when neural networks are pre-trained on a large
dataset such as ImageNet [25], the robustness of the model
can be further improved [26] which can be integrated in our
work.

Ill. DATA AUGMENTATION NETWORK

In this section, we propose an efficient data augmentation net-
work which can distinguish between out-of-distribution and
in-distribution image data. There are three main components
in our method including data pre-processing, data augmenta-
tion training, and aggregation function during testing phase.
Fig. 2 shows the proposed data augmentation network where
we introduce a set of geometric transformations, e.g. rotation,
into an image to generate a set of augmented data during
training and testing phases. The proposed approach requires
only one CNN. When training or testing the model, the input
image will be rotated into N images and sent to the CNN in
turn. In the training phase, the N loss values are accumulated
to the final loss which is used to update the weights of the
CNN through backpropagation as shown in Fig. 2(a). In the
testing phase, the input image will also be rotated into N
images and sent into the trained CNN model, and then the
total N predicted probabilities are aggregated to obtain the
final confidence score, as shown in Fig. 2(b).

When training the model, the objective function is to clas-
sify the enhanced data from the same image into the same
class. Algorithm 1 shows the training process of the proposed
data augmentation network. Different from traditional train-
ing processes, the proposed network calculates the total loss
after delivering the four augmented images, and then updates
weights through back propagation.

After the training process, the data augmentation net-
work will output a set of predicted probabilities for the
enhanced data, and these predicted probabilities have sim-
ilar distributions. We would like to mention that we only
use in-distribution data to train the proposed network. This
makes our method much more practical than the methods that
require out-of-distribution data [10], [11], [24].

On the contrary, we assume that when input images are
from out-of-distribution, the model will produce a set of
predicted probabilities with inconsistent distributions. Based
on this assumption, Algorithm 2 illustrates the procedure
that how the model detects out-of-distribution data during
the evaluation phase. Given a trained model Py and an input
image x, a set of augmented images x; are generated from the
input image by rotation transformation R(.). The model takes
in enhanced data in multiple rotation angles and produces
a set of predicted probabilities O;. An aggregation function
is then introduced to obtain the confidence score s from the
distributions. Finally, if the confidence score is smaller than
a given threshold A, we estimate that the input image comes
from out-of-distribution. In the following sections, we will
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FIGURE 2. (a) In the training phase, a set of enhanced data is generated from rotating input data by four angles. The model
tries to classify them into the same class according to the objective function. (b) In the testing phase, a confidence score is
derived from a set of predicted probabilities using aggregation functions.

Algorithm 1 Training Process of the Data Augmentation Network

Input:
Py: A model will be trained on in-distribution dataset
x: Input images from in-distribution
R(.): Rotates images for % degrees.
E: Epoch for training
n: Learning rate

Initialize Py

Initialize e = 0

for e < E do
xi=Ri(x),i=1{0,...,N — 1}
Li = —logPy(y = target|x;)

> train the model E epochs
> generate a set of augmented data
> obtain loss for each predicted probability

L= va: 61 L; > calculate final loss from each augmented images
Py < Py +nik > update weights through backpropagation
e+

end for

return Py

discuss the details of data augmentation, model training, and
how to obtain confidence scores from aggregation functions.

A. DATA AUGMENTATION
When training neural networks for image classification,
geometric transformations such as translation and rota-
tion are often used for data augmentation [27]. However,
convolutional neural networks are inherently translation-
invariant, which may contradict our assumption that if out-
of-distribution data is enhanced by translation, the neural
network will produce inconsistent predicted probabilities.
Hence, we generate a set of enhanced images for an

input image x with a set of rotation transformations R;, i €
0 % i

{0, .., N — 1}, that is, each R; rotates the image for
degrees to get x; = R;(x),i € 0,...,N — 1. For example,
when N = 4, an input image will be converted into four
enhanced images by rotating the original image for 0, 90,
180, and 270 degrees. Note that xy is the original image
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without augmentation. Moreover, training images are ran-
domly flipped and cropped in training phase to increasing
data diversity.

B. MODEL TRAINING

The proposed data augmentation network can be inte-
grated into various neural networks without modifying their
architectures. Given a model Py and enhanced data from
in-distribution images, i.e. x € Dj,, in order to classify
them into the same class, the objective function is designed
as (1)-(2).

N—1

Liotar = ZLi ey
i=0

L;i = —logPy(y = target|x;) 2)

where Ly, denotes the sum of cross entropy for all aug-
mented images. In other words, the model learns to classify
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Algorithm 2 Testing Process of the Data Augmentation Network

Input:
Py: A model trained on in-distribution dataset
x: Input images from in-distribution or out-of-distribution
R(.): Rotation transformation
A(.): Aggregation function
A: Threshold for detecting out-of-distribution data
out: Results of out-of-distribution detection

x,-:Ri(x),iz {0,...,N— 1}
O; = Py(x;)
s =A(Oy, ..
if s > A then

out <1
else

out < 0
end if

., ONn_1)

> generate a set of augmented data by rotating images for =

360xi

degrees
> calculate predicted probability for each augmented images
> derive a confidence score with the aggregation function

return out

the enhanced images from the same in-distribution image into
the same class as shown in Figure 2(a).

C. CONFIDENCE SCORES FROM AGGREGATION
FUNCTIONS

In the testing phase, an input image x will be transformed
into a group of enhanced data R;(x),i = {0,...,N — 1}
as done in the training phase. The trained model then gener-
ates a set of distributions of predict probability Pg(x;),i €
0,...,N —1,Pg(x;) € R, where c is number of classes.
An aggregation function A(.) will be introduced to derive
a confidence score by combining the above distributions as
shown in Figure 2(b). The following shows all candidate
aggregation functions we have used in this work.

1) MEAN OF MAXIMUM VALUE (MeanMax)
Although out-of-distribution data have been statistically
shown lower maximum value of softmax probability accord-
ing to the baseline [9]. It also has been found that some
individual out-of-distribution data lead to relatively higher
confidence score. Hence, to detect out-of-distribution data
accurately, we aggregate the prediction distributions from the
multiple augmented images and assumes that anomalously
high confidence score from the first image will be suppressed
by others. The assumption will be verified in the next section.
Equation (3) shows the confidence score obtained by calculat-
ing the mean of maximum value of all predicted probabilities,
which is called MeanMax.
| Nl
s = D max(Po(x) 3)

i=0

2) MAXIMUM OF ALL VALUES (MaxMax)
It has been shown that in-distribution data tends to produce
higher confidence score than out-of-distribution data [9].
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In addition to using the mean of maximum value of all
predicted probabilities, we also test the effectiveness of cal-
culating the maximum value as a confidence score in all
predicted probability distributions. Equation (4) shows the
confidence score obtained by calculating the maximum value
of all predicted probability distributions, which is MaxMax.

s = max{max(Py(xp)), . .., max(Pg(xy_1))} @)

3) MEAN OF POSITIONAL MAXIMUM VALUE (MeanPos)

In the training phase, a neural network learns to classify
all enhanced data from an in-distribution image into the
same class. We assume that the model will encounter out-
of-distribution data during the testing phase and predict them
as inconsistent classes. Based on the above assumptions,
(5)-(6) shows the confidence score obtained by averaging pre-
dicted probability from the same index where has maximum
value in predicted probability of the original image without
augmentation.

1 N—-1 )
=D Py )
i=0

arg max Pé (x0) (6)
j

where P’é(x,-) means the j; value in predicted probability
for x;.

4) JENSEN-SHANNON DIVERGENCE (JSD)

In [10], the authors proposed the confidence loss by
adding the confidence term based on Kullback-Leibler diver-
gence (KL) on the basis of the cross-entropy loss, in which it
is assumed that the predicted probability of the model should
be more uniform when the data is from out-of-distribution.
Therefore, we can detect out-of-distribution data by
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measuring the similarity between the prediction distribution
and the uniform distribution. JSD [28] has been chosen in
this work because its output is between O and 1, which
clearly indicates the confidence of the prediction with proper
normalization. Equation (7)-(8) show how to calculate JSD
for two probability distributions, P and Q.

1 1

ISDPIIQ) = SKL(PIM) + SKLQIIM) ()
c—1 P

KL(P|IM) = ZIngé ®)
i=0 !

where M = # and c is the number of classes.
Equation (9) derives the confidence score from JSD by setting
P as output probability and Q as uniform distribution.

N-1

1
s= ;0 JSD(Py(x)||U) )

where U = %(1, ..., 1), U € R and c is the number of
classes.

5) MAXIMUM VALUE IN PREDICTION PROBABILITY (MSP)
The baseline proposed the MSP as the confidence score
which is also one of the aggregation functions, as shown
in (10). Instead of using a set of enhanced images, they only
derived the confidence score from the original image without
augmentation.

s = max(Py(xo)) (10)

IV. EXPERIMENTAL RESULTS

In this section, we conduct a set of experiments to evalu-
ate the effectiveness of our data augmentation network for
out-of-distribution detection. In [23], pre-training claims to
improve the robustness and uncertainty of neural networks,
although it is reported that it has no significant impact
on the classification accuracy of the model [29]. In [23],
the baseline method is re-implemented using 40-2 WideRes-
Net for classifying CIFAR and TinylmageNet [30] datasets.
To compare with their the results, we choose the above three
datasets and their corresponding testing data as in-distribution
samples to evaluate the effectiveness while various nat-
ural datasets including SVHN [31], LSUN [32], Tex-
ture [33], Place365 [34], and synthetic dataset such like Blob,
Gaussian, Rademacher are chosen as out-of-distribution
samples.

Our data augmentation network can be regarded as a
threshold-based detector. If the confidence score of a given
input image x is lower than the threshold A, it will be
predicted as an out-of-distribution sample. We evaluate the
effectiveness of our framework with the following four
metrics:

« False positive rate (FPR) at 95% true positive rate (TPR).
Let TP, TN, FP, and FN denote true positive, true
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negative, false positive, and false negative, respectively.
We evaluate FPR (prr—PTN) when TPR (TRTF%) i 95%.

e Area Under the Receiver Operating Characteristic
curve (AUROC) [35]. Receiver Operating Characteris-
tic (ROC) curve uses varying thresholds to plot the rela-
tionship between TPR and FPR. The larger the AUROC
value, the better the performance. A model is an ideal
detector when its AUROC reaches 1.

e Area Under Precision-Recall curve (AUPR) [36].
Precision-Recall (PR) curve plots the relationship
between Precision (%) and Recall (%) by vary-
ing a threshold. The larger the AUPR value, the better the
performance.

o Detection error (DetErr). We evaluate the effective-
ness of the detector by find the minimum classifica-
tion error for all thresholds. The DetErr can be defined
as P(xin)P(errinXin) + P(Xour )P(er¥ our |Xour). The lower
the DetErr value, the better the performance. Note
that err;, indicates that the confidence score of the
in-distribution data is lower than the threshold while
erryy indicates that the confidence score of the out-
of-distribution data is higher than the threshold. We also
suppose that the prior of in-distribution data P(x;,) and
out-of-distribution data P(x,,,) are both 0.5.

In addition, we only compare certain metrics with other
works based on the metrics shown in their results, such
as AUROC and AUPR. In this work, we train our model
from scratch using SGD with Nesterov momentum and a
cosine learning rate. The initial learning rate is set to 0.1,
and it decays to le-6 for 100 epochs without restarting.
Also, dropout is set to 0.3 to prevent overfitting. In addition,
when we apply the proposed data augmentation network to
a pre-trained network, the dropout will not be used and the
learning rate is set to 0.01.

A. VALIDATION OF OUR ASSUMPTION

In this paper, the proposed data augmentation network is
based on the assumption that when an input sample comes
from out-of-distribution, the confidence score should be
low. To validate our assumption, we choose in-distribution
data from CIFAR-10 while out-of-distribution from Tex-
ture, SVHN, Places365, LSUN, CIFAR-100, Gaussian,
Rademacher and Blob. In Fig. 3, x-axis and y-axis represent
the confidence scores and the number of data in percentage,
respectively. Blue lines indicate the distribution of confidence
scores for in-distribution data while orange lines represent
the distribution of confidence scores for out-of-distribution
data. This aims to visualize the confidence of the model
for its predictions. Out-of-distribution data are given lower
confidence scores because the model has less confidence
of them. In other words, the distribution shape of the con-
fidence scores is uniform. On the contrary, in-distribution
data are given higher confidence scores. Compared with
the distribution of confidence scores for the baseline algo-
rithm (MSP) shown in Fig. 3(a), data augmentation can
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FIGURE 3. (a) The original distribution of confidence score without data augmentation. (b) The distribution of
confidence score with data augmentation. This figure shows that the distribution of confidence scores of
out-of-distribution data (orange line) in (b) are more uniform than that in (a). This result shows that data
augmentation can provide out-of-distribution data with lower confidence score.

TABLE 1. 00D detection performance with respect to number of rotations(N) on CIFAR-10. The symbol 1 indicates that the larger the value, the better the
performance, and the symbol | indicates that the lower the value, the better the performance.

Metrics AUROC(%) AUPR(%) 1
Doy N=1 (MSP) N=2 N=3 N=4 N=5 N=6 | N=I(MSP) N=2 N=3 N=4 N=5 =6
Texture 87.0 849 89.0 845 895 884 55.9 520 598 514 619 587
SVHN 85.2 88.9 90.2 894 90.2 893 479 552 56.1 573 60.5 56.6
Places365 87.0 86.8 882 875 89.2 885 55.4 563 581 582 623 609
LSUN 91.3 937 90.6 944 91.8 91.0 64.9 732 6477 772 693 66.1
CIFAR-100 85.4 86.0 879 869 88.5 88.1 52.0 52.8 554 542 58,5 58.1
Gaussian 76.8 49.0 98.1 98.3 833 984 29.4 148 834 86.2 335 858
Rademacher 78.6 99.3 969 99.0 84.5 88.6 28.7 953 732 90.8 353 419
Blob 98.2 994 993 99.5 999 98.1 89.5 97.6 965 97.6 995 918
avg 86.2 86.0 925 925 89.6 913 52.9 62.1 684 71.6 60.1 65.0

Metrics FPR(%) 1 DetErr(%) 1
Doyt N=1 (MSP) N=2 N=3 N=4 N=5 =6 | N=I(MSP) N=2 N=3 N=4 N=5 N=6
Texture 63.0 68.0 587 66.6 54.6 59.5 18.3 207 17.6 215 182 188
SVHN 72.5 657 625 603 561 62.6 20.0 164 155 17.1 167 173
Places365 64.6 63.7 593 589 533 56.8 18.6 192 185 19.1 181 185
LSUN 53.5 426 516 350 447 500 14.4 127 169 124 163 16.5
CIFAR-100 67.7 66.7 632 640 575 593 20.1 194 184 192 18.7 19.0
Gaussian 94.9 100 52 55 999 32 25.9 402 40 42 119 35
Rademacher 100 1.1 147 02 100 97.6 17.1 29 44 22 97 94
Blob 8.7 40 40 1.5 0.0 1538 44 43 42 3.1 0.5 6.7
avg 65.6 51,5 399 365 583 50.6 17.4 170 124 123 138 137

provide out-of-distribution data more uniform confidence
scores as shown by the orange line in Fig. 3(b). Therefore,
neural networks benefit from our data augmentation network,
which can distinguish between data from in-distribution and
out-of-distribution.

B. ABLATION EXPERIMENTS

Appropriate data augmentation and aggregation functions
plays an important role in our approach. Therefore, two abla-
tion experiments are conducted with CIFAR-10 to determine
the aggregation function and the number of rotation angles.
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1) ROTATION ANGLES

In order to understand the influence of the rotation angles
on the performance of the out-of-distribution detection,
we choose different number of rotations (N) from 1 to 6 for
experiments. As shown in Table 1, MSP (N = 1) has the worst
performance because it uses only one prediction probability.
On the other hand, as N increases, the confidence score
can be obtained from more predicted probabilities. In other
words, the original high confidence score may be suppressed
by other predicted probabilities. This result can be regarded
as a voting mechanism. Furthermore, the performance
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TABLE 2. 00D detection performance with respect to different aggregation functions on CIFAR-10. The symbol t indicates that the larger the value,
the better the performance, and the symbol | indicates that the lower the value, the better the performance.

Metrics AUROC(%) Tt AUPR(%) 1

Doyt MSP MeanPos MaxMax MeanMax JSD | MSP MeanPos MaxMax MeanMax JSD
Texture 82.6 83.9 84.0 84.5 85.5 | 47.0 45.4 52.3 51.4 55.5
SVHN 87.4 88.7 88.7 89.4 90.5 | 50.9 51.1 57.0 57.3 61.2
Places365 85.1 86.7 85.8 87.5 88.5 | 52.0 51.2 55.9 58.2 64.1
LSUN 92.5 92.8 94.2 94.4 959 | 68.4 64.1 753 77.2 84.2
CIFAR-100 84.6 86.4 85.3 86.9 87.7 | 49.2 48.9 52.0 54.2 58.2
Gaussian 96.6 94.1 99.2 98.3 954 | 71.8 57.9 94.3 86.2 61.7
Rademacher 97.7 97.3 98.9 99.0 99.6 | 82.6 74.0 91.2 90.8 93.5
Blob 98.4 96.1 99.8 99.5 99.9 | 90.8 69.7 98.8 97.6 99.5

y avg | 90.6 90.8 92.0 92.5 92.9 [ 64.1 57.8 72.1 71.6 722 |

Metrics FPR(%) | DetErr(%) |

Doyt MSP MeanPos MaxMax MeanMax JSD | MSP MeanPos MaxMax MeanMax JSD
Texture 72.4 73.7 65.0 66.6 59.2 | 22.8 21.5 21.8 21.5 21.2
SVHN 69.8 68.0 61.2 60.3 51.3 | 18.3 17.0 17.2 17.1 16.6
Places365 67.5 67.3 61.3 58.9 50.2 | 20.7 19.1 20.1 19.1 18.7
LSUN 49.2 51.1 37.0 35.0 22.8 | 13.6 12.5 12.0 12.4 11.1
CIFAR-100 70.3 70.8 66.3 64.0 579 | 21.2 19.2 20.8 19.2 19.1
Gaussian 20.8 63.7 04 5.5 355 | 5.0 6.1 2.3 4.2 4.3
Rademacher 6.3 34 0.2 0.2 0.0 34 32 2.2 2.2 0.7
Blob 7.2 31.5 0.0 1.5 0.0 4.1 5.5 1.2 3.1 1.1

\ avg | 455 537 36.4 36.5 34.6 [ 136 13.0 122 12.3 11.6 |

of our proposed model on out-of-distribution data is grad-
ually improved, when N increases until 4. This result sup-
ports our initial hypothesis that when N is equal to 4,
the 4 augmented samples from the original image are suf-
ficiently different from each other, so if the input image
comes from out-of-distribution, 4 inconsistent prediction
probabilities can be generated. However, our method has
poor results for images with symmetry, such as the texture
set. We think the reason is that the 4 augmented samples of
the original image are not sufficiently different from each
other.

In addition, we also found that when N is greater than 4,
the performance begins to decrease. We infer that when N
is greater than 4, the difference between these augmented
samples is not large enough, and the performance is reduced.
Because the amount of computation in the training and test-
ing phases of our proposed method increases proportionally
with the increase of N, we choose N to be 4 to obtain
a compromise between performance and computational
cost.

2) AGGREGATION FUNCTIONS

Table 2 shows the performance of out-of-distribution detec-
tion with respect to different aggregation functions, where the
bold numbers indicate the method with better performance.
For most data sets, JSD is better than other aggregation
functions. As a result, JSD is selected as the aggregation
function in the following experiments. Also, JSD has worse
performance on the Texture data set than other data sets.
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We infer that the symmetry in the Texture will cause the
performance of the proposed method to degrade.

C. DIFFERENT DATASETS

After performing the above ablation experiments on
CIFAR-10, we test our approach on more complicated
datasets and compare with the baseline and the state-of-
the-art approach. Table 3 shows that the proposed approach
performs worse when the data set has more classes. For
example, the AUROC and AUPR scores of our method on
CIFAR-10 are much better than those on CIFAR-100 and
TinyImageNet.

Because our method is based on softmax prediction proba-
bility, when the number of classes in the dataset increases,
the predicted probability tends to be uniform. In other
words, the confidence scores of in-distribution data and out-
of-distribution data are easily overlapped and difficult to
distinguish.

D. COMPARE WITH STATE-OF-THE-ART APPROACHES

The ablation experiments help us determine the number of
rotation angles (N) and the aggregation function A(.) to be
4 and JSD respectively. The MSP [7] has created a sim-
ple and effective softmax-based approach for detecting out-
of-distribution data and established a strong baseline which
serves a foundation for many works. Also, it has been shown
that the baseline could be further improved when a model
is pre-trained on a large dataset such as ImageNet [21].
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TABLE 3. Comparison with the baseline and the pre-trained model. The symbol 1 indicates that the larger the value, the better the performance.

Dataset Metric AUROC(%) 1 AUPR(%) 1

D, Dot baseline [6] pre-trained [20] our+pre-trained | baseline [6] pre-trained [21]  our+pre-trained

Texture 73.5 79.7 79.6 33.1 44.1 49.2

SVHN 74.5 79.6 76.5 32.0 48.5 36.8

= Places365 74.1 74.6 77.4 34.0 34.2 374

; LSUN 70.5 70.9 81.9 28.7 27.7 56.5

§ CIFAR-10 75.5 75.3 77.9 345 35.8 37.1

O Gaussian 48.8 96.5 94.3 14.6 82.7 59.6

Rademacher 52.3 98.8 97.8 15.7 92.5 78.6

Blob 85.9 89.6 86.0 44.9 56.4 38.4

avg 69.4 83.1 84.0 29.7 52.7 49.2

Texture 68.7 72.4 73.2 29.5 31.8 34.6

- SVHN 86.6 89.1 83.2 53.2 58.8 45.7

% Places365 76.8 74.6 77.5 36.8 31.8 34.0

oh LSUN 73.2 71.6 84.5 30.4 27.4 44.5

E Gaussian 49.4 67.4 76.4 15.2 21.1 26.8

E‘ Rademacher 70.7 75.0 85.7 23.0 25.5 37.0

&= Blob 76.2 69.5 74.3 28.2 23.1 25.2

avg 71.7 74.2 79.2 30.9 31.4 354

TABLE 4. Comparison with the GAN-based method on CIFAR-10 (in-distribution). The symbol 1 indicates that the larger the value, the better the

performance.
Metrics AUROC(%) 1 AUPR(%) 1
Doyt GAN [10] our proposed | GAN [10] our proposed
SVHN 66.8 72.0 71.3 69.5
LSUN 75.1 86.1 77.1 85.0
TinyImageNet 72.0 78.4 74.7 77.0
avg | 713 78.8 | 744 77.2 \

As a result, we integrate the pre-trained model into our
method and compare with the baseline and state-of-the-art
approaches.

Table 3 shows that our method is superior to the base-
line. When using CIFAR-100 as the in-distribution data,
the AUROC and AUPR scores increase by 21.0% and 65.6%,
respectively. Compared with state-of-the-art approaches, our
method can further improve the performance on highly com-
plicated data set such like TinyImageNet, the AUROC score
increases by 6.3% while the AUPR score increases by 12.7%
using our method.

In addition, we also compare with a GAN-based
approach [10] which is proposed to generate samples on the
low-density boundary around the in-distribution data space.
The original classifier is trained together with the proposed
GAN model to learn to differentiate between in-distribution
data and out-of-distribution data. We re-implement our
framework on VGGNet [37] to compare with the GAN-based
approach [10], as shown in Table 4. The experimental results
show that our method is superior to the GAN-based approach
in AUROC and AUPR. Moreover, the GAN-based approach
tuned parameters to fit specific out-of-distribution dataset
which should be difficult in real-world applications because
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the prior of out-of-distribution data is unknown. Finally,
training a classifier jointly with GAN is computationally
expensive.

V. CONCLUSION

We have proposed an efficient data augmentation network
which assists neural networks to detect out-of-distribution
image data. We have conducted several preliminary exper-
iments to validate our assumption where parameters and
aggregation functions are determined by ablation study.
The experimental results show that the proposed data
augmentation network achieves significant progress in
out-of-distribution detection on various visual datasets.
In addition, when the model has been pre-trained on Ima-
geNet, the effectiveness of the proposed framework can be
further improved. However, our method does not have good
results for images with symmetry, such as the Texture set.
We think the reason is that the 4 augmented samples of
the original image are not sufficiently different from each
other. Therefore, future work will focus on solving the prob-
lem and apply our approach in other computer vision tasks
such as object detection and semantic segmentation. In addi-
tion, the proposed framework will provide effective anomaly
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detection on real-word applications where safety is consid-
ered the priority.
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