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ABSTRACT A database is presented that allows the investigation of machine learning (ML) tools and
techniques in the signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC)
domains. The database contains different types of printed circuit board (PCB)-based interconnects and
corresponding frequency domain data from a physics-based (PB) tool and represent multiple electromagnetic
(EM) aspects to SI and PI optimization. The interconnects have been used in the past by the authors to
investigate ML techniques in SI and PI. However, many more tools and techniques can be developed and
applied to these structures. The setup of the database, its data sets, and examples on how to apply ML
techniques to the data will be discussed in detail. Overall 78 961 variations of interconnects are presented.
By making this database available we invite other researchers to apply and customize their ML techniques
using our results. This provides the possibility to accelerate ML research in EMC engineering without the
need to generate expensive data.

INDEX TERMS Artificial neural network, database, electromagnetic compatibility, machine learning, power
integrity, signal integrity.

I. INTRODUCTION
Numerical modeling and prediction of electromagnetic com-
patibility (EMC) related problems in engineering nowadays
rely on a large variety of physics-based (PB) approaches and
corresponding software tools [1], [2]. The approaches range
from very efficient, like equivalent circuits, to more accurate
approaches such as full-wave solvers based on e.g. the finite
element method, the finite difference time domain method,
and the method of moments [7]–[11], as shown in Fig. 1. SI
and PI are two important aspects regarding the electromag-
netic compatible design of printed circuit board (PCB)-based
interconnects such as signal links between components, and
the power delivery network (PDN). Specifically, SI engineer-
ing has to make sure that signals will be transmitted and
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FIGURE 1. Overview of efficiency vs. accuracy of physics-based (PB) and
machine learning (ML) approaches.

detected adequately despite of losses and reflections, and PI
engineering has to make sure that a constant voltage supply
will be maintained despite ground bounce and simultane-
ous switching noise. The increasing complexity of problems
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FIGURE 2. Publications found for search term ‘‘machine learning’’ in the
Transactions on Microwave Theory and Techniques (TMTT),
the Transactions on Electromagnetic Compatibility (TEMC),
the Transactions on Components, Packaging and Manufacturing
Technology (TCPMT) and the Transactions on Knowledge and Data
Engineering (TKDE).

related to SI and PI of PCB-based interconnects demand
constantly tools and techniques with capabilities at higher
efficiency and higher accuracy [12]–[15].

Recently it can be observed that machine learning (ML)
tools and techniques are increasingly used in the EMC
domain either to improve PB approaches or to replace
them [16]. The generally increasing interest in ML tools
and techniques is also visible in the number of pertinent
publications in the Transactions on Microwave Theory
and Techniques (TMTT), the Transactions on Electro-
magnetic Compatibility (TEMC), and the Transactions on
Components, Packaging and Manufacturing Technology
(TCPMT) [17]–[24], as shown in Fig. 2. For comparison,
the trend in Transactions on Knowledge and Data Engineer-
ing (TKDE) is shown, which focuses on computer science,
artificial intelligence, and computer engineering topics. For
the TKDE multiple times more publications are found but all
Transactions share the same trend.

It is well known that in information technology ML tools
and techniques have solved problems that previously were
difficult to solve with standard algorithms [25]. Similarly,
the hope is that ML tools and techniques will improve model-
ing for electrical engineering applications [16]. The existing
state of the art in information technology and data science
comprises a large spectrum of ML tools and techniques such
as deep neural networks, long short-term memory with arti-
ficial neural networks (ANNs), recurrent neural networks,
support vector machines, decision trees, nearest neighbor
algorithms, Bayesian classifiers, etc.. However, these can-
not be easily applied to EMC engineering problems and an
adaption to the specific requirements of SI and PI is usu-
ally needed [26]–[29]. Mostly this is due to the complex
electromagnetic behavior that SI, PI, and EMC problems
show, and the difficulty to categorize and describe their three-
dimensional nature consisting of a wide variety of different
components and structures.

Besides tools and techniques, data is fundamentally impor-
tant for ML investigations. In information technology data is
commonly shared, e.g. large image sets are provided by the
ImageNet or the Open Image Dataset [30], [31]. A database

in medical engineering is PhysioNet which provides medical
data and software in an open access or restricted access
format [32]. An overview of datasets for the visual object
class challenge is given in [33]. In contrast, in the electrical
engineering community publicly sharing of simulation data
is not as common, which is understandable due to the cost of
creating the data with PB approaches and intellectual prop-
erty issues. Also, restrictions by licensing of simulation tools
have to be taken into account possibly limiting their usage.
Nevertheless, throughout different engineering domains the
importance of sharing data is more and more recognized, e.g.
the European Union is planning to implement the European
Open Science Cloud which shall provide the distribution and
collection of research data [34].

To help accelerate the research in the domain of ML in
combination with EMC engineering problems we present
here the first publicly available database for training of cus-
tom made ML tools and techniques. The database contains
different types of simulation results of structures which repre-
sent SI and PI problems. Details of the database are presented
in Sec. II. The structures are presented in Sec. III. To give an
impression what kind of ML techniques can be used on the
data, use cases are given in Sec. IV. These examples mainly
consist of ANNs which predict scattering parameters or are
used for classification. In Sec. V conclusions and possible
future directions are given.

II. SI/PI DATABASE
Key questions for the SI/PI-Database design were how to
provide simple access to the data and how to ensure that
data provided are valuable and can be validated by users.
Other publicly available databases for the investigations of
ML techniques were used as reference for our work, e.g. the
Open Image dataset [31]. The Open Image dataset is one of
the largest organized image datasets with more than 9 million
images and more than 7 million images labeled [35]. It is
possible to download images with the corresponding image
labels from the Open Image Dataset either as a complete
dataset or individual subsets. Inspired by this we decided
to set up the SI/PI-Database in a way where data sets for
specific interconnects can be downloaded individually and
with a documentation that is comprehensive enough to allow
reproduction of the data by the user using his or her own tool
of preference.

A. ACCESS AND DATA FORMAT
The SI/PI-Database is accessible at the homepage of the
Institut für Theoretische Elektrotechnik at the Hamburg Uni-
versity of Technology (TUHH) at

www.tet.tuhh.de/en/si− pi− database

To access the required data first one of the PCB interconnects
shown in Tab. 1 is chosen on the website. Then by submitting
an e-mail address the download link for the zip-archive is
provided.
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TABLE 1. Overview of PCB-based interconnects and parameter variations thereof available in the SI/PI-Database.

The zip-archive has all necessary information for the
chosen PCB structure, as shown in Fig. 3. Included are
a <description.pdf> file, a <parameter.csv> file, and a
<variation> folder. The <variation> folder contains all
simulation results for the variations of the PCB structure.
The simulation results are stored as single-ended (SE) scat-
tering parameters in ASCII Touchstone R© file format accord-
ing to [36]. Many tools and applications are able to import
the Touchstone R© format. All Touchstone R© files are named
<simu_[index].sNp>. With the [index] it is possible to
retrieve the parameter variations that have been used for the
specific simulation from the <parameter.csv> file.

B. USAGE AND VALIDATION
Correct usage of the data is based on the <parameter.csv>
file. This file has multiple rows and columns. The first row
has the names of the columns e.g. via_radius, via_pitch.
Startingwith the second row, each row has the information for
one specific variation of the PCB structure, e.g. via_radius=
5mil, via_pitch = 80mil. The last column is the [index] to
connect the parameter variations with the scattering parame-
ter in the <variation> folder, as shown in Fig. 3.
To validate the simulation results all required geom-

etry and material parameters are provided in the file
<description.pdf>. With the information it is possible to

recreate the interconnect with a modeling tool of own
choice to model and re-simulate with a suitable full-wave
solver. The results of the re-simulated interconnect can be
compared against the simulation results provided in the
SI/PI-Database. This makes it possible to check whether the
[index] of the <parameter.csv> file is correctly assigned
to the Touchstone R©-file, and whether the simulations for
creating the data for the SI/PI-Database in the fist place shows
results of sufficient accuracy.

III. DESCRIPTION OF PCB-BASED INTERCONNECTS
Five different interconnects are currently part of the
SI/PI-Database. These structures provide different function-
alities and allow the investigation of different problems in
SI and PI. All interconnects are based on PCBs and include
vias, via-arrays and striplines. An overview is given in
Tab. 1. All PCB-based structures have ports placed directly
on the top, or bottom side of the stackup. Specifically,
a port is defined by the area covered by the via bar-
rel and the antipad (via hole) surrounding it in either the
top most or bottom metallic plane of the PCB, as shown
in Fig. 4 (b). This coaxial-like structure allows the fundamen-
tal mode to be used for excitation. The transmission, reflec-
tion and crosstalk between the ports are modeled with a PB
approach [37]–[40].
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FIGURE 3. Overview of the files that are found for each PCB-based
structure. <description.pdf> provides general information of the
geometry and material setup, including the applied simulation tool.
<parameter.csv> has one row for each variation of the structure. Column
simu_index is the index to find the according Touchstone R© file in the
<variation/> folder e.g. Touchstone R©-file <simu_0.s12p> was simulated
with a via_radius of 5mil, via_pitch of 80mil, and plane_thickness of 1mil.

FIGURE 4. PWR/GND plane PCB with via array from Sec. III-A. For clarity
the size of the via array is increased and the number of vias is reduced.
The center of the via array is the port under investigation. All dimensions
are in inch. (a) Top view, (b) cross section.

A. PWR/GND PLANE PCB WITH 11 × 11 VIA-ARRAY
This structure consists of a PDN on a PCB with one cavity,
a power plane on the bottom and a ground plane on top,
as shown in Fig. 4. Amore detailed description is given in [3],
[4]. Port 2 is in the center of a via-array and is the port that
is decoupled by placing decoupling capacitors (decaps) on
the surrounding via-array. At this port the impedance of the
PDN is observed and the dependence on the configuration of

FIGURE 5. Comparison of a physics-based approach vs. a full-wave solver
(finite element method) for the structure in Fig. 4 without any decaps.
Port 1 is terminated with a 50m� resistance.

FIGURE 6. Impedance profiles for 600 simulations of the power delivery
network in Fig. 4 with different decap distributions and one cavity.

decaps is analyzed. The variations for this structure include
changing the distance of the planes, the material properties,
and the decaps. For the decaps the location, capacitance,
and number was varied. The capacitors were chosen from
a library containing overall 15 values including equivalent
series resistance and equivalent series inductance. A com-
parison of the setup without any decaps was performed with
a full-wave solver with good agreement of both modeling
tools [41], as shown in Fig. 5. The variety of the impact of
decap distributions on the PDN impedance in the frequency
range from 1MHz to 1GHz is illustrated in Fig. 6 for 150
different decap distributions of the 58 399 total variations.

B. LINKS ON PCB WITH TWO 10 × 10 VIA-ARRAYS
Via-arrays on PCBs are commonly used to provide an electri-
cal connection between components placed on top or bottom
of the PCB and structures on inner layers, such as striplines
and power or ground planes. In the following we refer to
the term ‘‘link’’ when there is full connectivity between
two distant ports on a PCB consisting of at least two vias
and one stripline thus enabling signal transmission. In [5]
two links were concatenated to produce results for a setup
that consists of two PCB-based interconnects. The setup is
shown in Fig. 7 (a), with the backplane and daughtercard
connected. The connector in Fig. 7 (a) is not included in the
simulation setup, but shown here for illustrative purposes. For
the modeling the daughtercard and backplane were treated
separately, as shown in Figs. 8 (a) and (b). Both stackups
contain two via-arrays with the connection of planes, vias,
and striplines, as shown in Fig. 7 (b). The links between
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FIGURE 7. Setup of the connected daughtercard and backplane as
described in Sec. III-B. (a) 3D view including the connector, (b) view of the
PCB showing the ports for the differential signaling, (c) legend for the
color coding. Images adapted from [5].

FIGURE 8. Setup of the daughtercard and backplane as described in
Sec. III-B. (a) and (b) cross section view of the backplane and
daughtercard respectively. The daughtercard has 8 cavities, the backplane
has 11 cavities. Images adapted from [5].

FIGURE 9. Examples for transmission of the DIFF link for the
concatenation of the structures described in Sec. III-B for 1310 geometry
variations.

the via-arrays are designed for differential (DIFF) signaling.
Since the simulation is based on SE ports the DIFF scattering
parameters were obtained in a postprocessing step. Backplane
and daughtercard each have 12 SE ports. Overall 7031 design
variations were simulated from 0.5GHz to 100GHz. The
impact on the transmission of DIFF ports of the concatenated
backplane and daughtercard is shown in Fig. 9 for 1031
variations.

FIGURE 10. Structure of the setup discussed in Sec. III-C. The cross
section and top view are shown in (a) and (b) respectively. Pj is the port j
at the end of the via. For example P1 is at the top, P2 is at the same via at
the bottom, P3 is on another via at top.

FIGURE 11. Top view of the two 5 × 5 via-arrays in the fifth cavity as
outlined in Sec. III-D. The ports Pj are on top of the stackup. No ports are
at the bottom.

C. 5 × 5 VIA-ARRAY ON 10 CAVITY PCB
The 5× 5 via array is located on a 10 cavity PCB, as shown
in Fig 10. The connectivity of GND and signal vias is shown
in Fig 10 (a), with a via ratio of 2 : 1 for signal and GND,
respectively. The ports P1, P3 and P4 are placed on the
top side of the PCB, P2 at the bottom side of the vias,
as shown in Fig. 10 (b). A more thoroughly description is
given in [6]. All planes of the stackup are connected by GND
vias. The radius of the via barrel is smaller than the radius
of the via pads on top and bottom of the stackup, as shown
in Fig. 10 (a). Further variations of the geometry are stated
in Tab. 1. The discontinuity of the vias and variations of
the geometry have an impact on the scattering parameters.
Overall 5000 variations were simulated.

D. LINK ON 10 CAVITY PCB WITH TWO 5 × 5 VIA-ARRAYS
The interconnects consist of a link between two 5 × 5 via-
arrays. Both arrays are located on the samemultilayer stackup
of 10 dielectric cavities. In the fifth cavity signal vias of
the first array are connected by striplines to the correspond-
ing signal vias of the second array, as shown in Fig. 11.
GND vias connect all planes. The ports of interest for this
case are P1, P2, P3, P4, P5 and P6. Geometry variations
such as via pitch, distance between the arrays, and stripline
distance influence the transmission and crosstalk between
striplines and vias. Overall 1500 simulations were made. For
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the simulation signal pads of the striplines and the coupling
between striplines were not considered.

IV. ML INVESTIGATIONS USING THE SI/PI-Database
Here, for some of the structures past investigations with
respect to ML as well as new results are presented. These
investigations are based on ANNs where typically a genetic
algorithm (GA) was used to identify the best topology and set
of hyperparameters. Scattering parameters and classification
against a threshold are predicted. Further, frequency domain
values, e.g. weighted power sum of transmission (WPT) and
weighted signal to crosstalk ratio (WSXTR), are calculated
from predicted scattering parameters in a postprocessing step.

A. PREDICTION OF POWER SUPPLY IMPEDANCE
VIOLATIONS OF A PCB
In Fig. 6 the impact of decap placement on the PDN
impedance is shown. The large variety of possible positions
in combinationwith capacitance values and number of decaps
creates a challenge to chose an optimum distribution. Hence,
an ANN was trained to predict, depending on the decap
positions and values whether a specific PDN impedance (tar-
get impedance, TI) is violated. This can be understood as a
classification problem with two labels (the target impedance
(TI) being violated or not).

For the ML investigations the materials and geometries of
the structure were not varied at first. Each of the 121 vias
in the via array provides a possible decap position except for
the center via (port 2) which is the port under investigation.
To predict whether the PDN impedance fulfills the TI with the
applied decap distribution, the values of the capacitance val-
ues and position of the placed decaps are important, as indi-
cated in Fig. 6.

Investigations of the ANN topology and training parame-
ters were reported in [3]. An ANN with two hidden layers
with 15 and 5 neurons respectively showed good perfor-
mance. The first approach to consider both, capacitance value
and position, was implemented by using an individual input
feature to the ANN for each via. This resulted in 121 input
features, one per neuron, independent whether a decap was
placed or not. For this approach the capacitance value was
used for the input feature and a prediction accuracy of about
80% was achieved. As stated in [3] the accuracy of the
prediction could be increasedwhen the data was preprocessed
differently. An accuracy of more than 90% was obtained by
grouping of vias which either are close to each other or have
similar distances to port 2. This highlights the importance
of a domain dependent preprocessing qualified for a specific
problem.

B. PREDICTION OF CUMULATIVE VALUES IN THE
FREQUENCY DOMAIN FOR LINKS BETWEEN
TWO VIA-ARRAYS
In [5] the setup described in Sec. III-B was investigated using
ANNs. Besides scattering parameters, cumulative values

TABLE 2. Calculated and Predicted WPT of Concatenated Link on PCB with
two Via-Arrays, Calculated from PB S-Parameter (Sim), calculated from ML
predicted S-Parameter (Calc), ML prediction from Link Geometry (Pred).

describing the performance in frequency domain, e.g. the
weighted power sum of transmission (WPT), were pre-
dicted [42]. For theML investigations theWPTwas predicted
with two different approaches. The first approach used pre-
dicted scattering parameters from an ANN to calculate the
WPT (Calc). The ANN had 4 hidden layers and 2000 neurons
per layer. The second approach predicted the WPT directly
from the link geometry without the scattering parameters
(Pred). The comparison showed a good correlation of the
two methods with the analytical approach (Sim), as shown
in Tab. 2. Deviations of less than 1 dB were observed. Sim-
ilar observations could be made for the weighted signal to
crosstalk ratio (WSXTR) in [5]. This showed that it is possi-
ble to predict frequency dependent values as theWPT directly
from geometry related parameters.

C. PREDICTION OF S-PARAMETERS FOR
A 5 × 5 VIA-ARRAY
To identify the performance of ANNs to predict the magni-
tude and phase of electrically short PCB-based interconnects
a regression was performed on the data set described in
Sec. III-C. The prediction of an ANN is compared against
a PB modeling approach in Fig. 12. As input features the
parameters in combination with the frequency are used. Good
agreement of simulation and prediction could be achieved
with an ANN with 4 hidden layers and 24, 32, 24 and 24 neu-
rons in the hidden layers, and 12 neurons in the output layer.
For the hidden layers a hyperbolic tangent and for the output
layer a linear activation function was used. For the training
process the data was split in three sets, training, validation and
testing. For the three data sets a mean-squared error (MSE) of
less than 3× 10−4 was achieved. This indicates a good gen-
eralization of the data and the absence of an overfitting prob-
lem. The prediction of scattering parameter shows important
features such as the resonance at about 18GHz, as shown
in Fig. 12 (a). Above 28GHz a deviation in the magnitude
of about 4 dB is observed. The prediction of the phase shows
most of the characteristic variations up to 32GHz, as shown
in Fig. 12 (b). The maximum observed deviation in the phase
is 18 degrees. This shows that the prediction of scattering
parameters of electrically short PCB-based structures is pos-
sible using ANNs.
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FIGURE 12. Prediction of scattering parameters based on an ANN for the
interconnect of a 5 × 5 via-arrays on 10 cavity stackup as described in
Sec. III-C. (a) Magnitude and (b) Phase with physics-based (PB) modeling
and machine learning (ML) prediction.

D. PREDICTION OF CLASSIFICATION PARAMETER
FOR A 5 × 5 VIA-ARRAY
For the data set with the 5 × 5 via-array described in
Sec. III-C a multilabel classification was performed in order
to investigate whether the magnitudes of scattering parame-
ters S31, S32 and S11 are below−21 dB,−20 dB and−11 dB,
respectively [44]. The investigations were performed up to
20GHz. 10% of the 5000 data samples complied with these
restrictions, resulting in an unbalanced data set. To predict
whether a data sample fulfills the classification parameters
an ANN with 16 and 32 neurons in the hidden layers and 3
neurons in the output layer was trained. Training ANNs with
unbalanced data sets can cause problems as reported in [45].
To overcome the challenges presented by unbalanced data
one solution is to use a cost sensitive training method, which
penalizes wrongly predicted cases of the under represented
class. Here, the score F1 was used to consider the underrep-
resented class more [43].

In Fig. 13 the accuracy of the prediction of S31 with two
ANNs is compared. In Fig. 13 (a) the ANN is trained with
the mean-squared error as loss function. In Fig. 13 (b) the F1
score was used during the training of the ANN. An improve-
ment of the prediction accuracy considering the F1 score
is observed. This improvement is most dominant for the
underrepresented class. This shows that theMSE is not a good
indicator for the performance of unbalanced classification
problems. However, techniques as using the F1 score help to
improve the performance of the classifier.

FIGURE 13. Confusion matrix for the prediction accuracy that S31 is
below −21 dB for the interconnect of 5 × 5 via-arrays on 10 cavity stackup
as described in Sec. III-C: (a) Training process depending on the
mean-squared error, (b) training process depending on the F1 score to
consider the unbalanced data [43].

FIGURE 14. Scattering parameter prediction for the link on a 10 cavity
stackup with two via-arrays as discussed in Sec. III.(a) magnitude S31 by
physics-based (PB) model and prediction by ANNs (b) magnitude of S41
by physics-based (PB) model and prediction by artificial neural networks
(ANNs). ANN1 has 24, 40, 40 and 24 neurons in the hidden layers
respectively, ANN2 has 512 neurons in each of the hidden layers.

E. PREDICTION OF S-PARAMETERS FOR ELECTRICALLY
LONG LINKS BETWEEN VIA-ARRAYS
To investigate the accuracy of ANNs to predict the magni-
tude of scattering parameters of electrically long PCB-based
interconnects the data set described in Sec. III-D was used.
The transmission S41 between two arrays and the near-end
crosstalk (NEXT) S31 was investigated. Looking at the phase
of transmission and NEXT shows strong variations for the
transmission, and much less variations for the NEXT. The
hyperparameters as well as the topology of an ANN were
manually tuned in an iterative process along multiple gen-
erations of ANNs to achieve a good prediction of the NEXT.
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The comparison of the magnitude of S31 modeled with a PB
approach and predicted with an ANN (ANN1) with 24, 40, 40
and 24 neurons in the hidden layers is shown in Fig. 14 (a).
An ANN with the same topology was trained to predict the
magnitude of the transmission, a comparison with the PB
approach is shown in Fig. 14 (b). Beyond a frequency of
7GHz a deviation ofmore than 20 dB is observed. To increase
the frequency range with an adequate prediction accuracy
another ANN (ANN2) with 512 neurons in each of the 4
hidden layers was trained. The increased size of the ANN
results in a similar drop in accuracy but beyond 28GHz. This
shows that parameters which show strong phase variations
over frequency require a increased size of the ANN to repre-
sent the complexity of the link.

V. CONCLUSION AND OUTLOOK
The presented results based on data available from the
SI/PI-Database show that predictions of scattering parame-
ters, frequency dependent values as the WPT, and classifi-
cations are possible with moderate to high accuracy using
ANNs. Among other things it was found that scattering
parameter prediction for electrically large structures are chal-
lenging for ANNs. Predicting classification labels for the
transmission and reflection of the 5 × 5 via array showed
good performance. Also it was observed that the prepro-
cessing of the geometry and material parameter may have a
large impact on the accuracy. Finally, it was found that when
handling unbalanced data sets for classification problems it is
important to take into account the underrepresented class.

With the introduction of the SI/PI-Database we hope to
enable other researchers to build furtherML based tools for SI
and PI applications, thus taking a step towards the generation
of betterML techniques for EMC related problems in general.
This might bring new and different ideas from different points
of views, e.g. ideas that might have already proven to be
effective in other domains and can be adapted.
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