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ABSTRACT Diabetic Retinopathy (DR) causes a significant health threat to the patient’s vision with diabetic
disease, which may result in blindness in severe situations. Various automatic DR diagnosis models have
been proposed along with the development of deep learning, while there always relies on a large scale
annotated data to train the network. However, annotating medical fundus images is cost-expensive and
requires well-trained professional doctors to identity the DR grades. To overcome this drawback, this paper
focuses on utilizing the easily-obtained unlabeled data with the help of limited annotated data to identify DR
grades accurately. Hence we proposes a semi-supervised retinal image classification method by a Hybrid
Graph Convolutional Network (HGCN). This HGCN network designs a modularity-based graph learning
module and integrates Convolutional Neural Network (CNN) features into the graph representation by graph
convolutional network. The synthesized hybrid features are optimized by a semi-supervised classification
task which is assisted by a similarity-based pseudo label estimator. Through the proposed HGCNmethod, the
retinal image classification model can be trained efficiently by partially labeled samples and the complicated
annotating work is not required for the most retinal images. The experimental results on MESSIDOR dataset
demonstrate the favorable performance of HGCN on semi-supervised retinal image classification, and the
fully labeled data training also achieves an obvious superiority to the state-of-the-art supervised learning
methods.

INDEX TERMS Retinal image classification, semi-supervised, graph convolutional network, modularity-
based graph learning.

I. INTRODUCTION
Diabetic Retinopathy (DR) can give rise to evitable blindness
for diabetic patients in the whole world. The diabetes has
attacked around 210 million humans [29], and at least 10%
of them have deteriorated into DR [25], [35]. In future, the
number of diabetic patients will be increased to 360 mil-
lion by 2030 [36], that indicates DR will become a severe
health issue in the next decade. In clinical symptom, the main
reason of diabetes is the increasing of blood glucose level,
which appearing long-term can injury the vessels in retina.

The associate editor coordinating the review of this manuscript and
approving it for publication was Kang Li.

The histopathological retinal delicate damage could cause
the visual loss or permanent blindness when it is untreated
in early stage, which makes most adults in developed areas
exposed in the threaten of blindness. That makes the DR
become one of the most complicated diseases in diabetic
patients [48]. As for preserving the patient’s vision, the most
effective way is the early diagnosis and prompt treatment.
Therefore, an efficient evaluating protocol of distinguishing
retinopathy level in visual impairment is a significant require-
ment to avoid the permanent retinal deterioration.

As a major diagnosing evidence for DR, colorful fun-
dus images are often utilized by ophthalmologists in clini-
cal symptom analysis [8], [38]. Several hand-crafted image
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features are employed inmost early researches on the identifi-
cation of DR grades, that makes the automatic DR grade clas-
sification can be achievable. For instance,Mookiah et al. [24]
and Mansour [23] conducted DR grade classification by
the employed methods, including mathematical morphol-
ogy characteristics, damaging area tracking, thresholding
and transformation model, clustering and matching mod-
els, and synthetic methods. Faust et al. [6] summarized the
DR-related methods about learning DR grade’s features from
fundus, containing the blood vessel area, exudes, hemor-
rhages, microaneurysms and texture. Joshi and Karule [14]
concluded the studies about detecting exudate from early pro-
posed. Thakur and Juneja [34] introduced related researches
on optic disc segmentation and the classification of galu-
coma. Nevertheless, designing robust hand-crafted features
requires well-trained professional knowledge to choose the
applicable characteristics for fundus images by exploita-
tion on different scheme and complicated parameter con-
figurations, that brings burdensome challenges in the model
generalizing.

Over the years, the size of image datasets and computing
power of GPUs are increasingly developed. That accel-
erates the innovative evolution of deep learning technol-
ogy, which has demonstrated the prominent achievement
in widely-applied technologies, including computer vision,
nature language processing and data mining [40], [42]. From
the successful applications, deep learning shows obvious
superiorities over conventional hand-crafted-feature-based
models [3], [43]–[45]. Several Deep learning approaches
[12], [19], [39] aim to improve the identification accuracy on
the fundus images to diagnose DR, and design variousmodels
to support the application in computer-aided diagnosis. For
instance, Li et al. [19] developed a deep network (OCT_Net)
to identity the early-grade in diabetic retinopathy, which is in
charge both of extracting robust OCT features and learning
discriminative information in retinal layers.

In clinical practice, medical images are plentiful but there
is a lack of sufficient annotated data because of the patient’s
privacy and security considerations, and professional medi-
cal image annotator’s scarcity and expensive cost [4]. This
limitation severely restricts the DL-based models mentioned
above in practice, while semi-supervised framework is an
effective way to diagnose DR when we have limited anno-
tated data, as shown in Figure 1. Explicitly, semi-supervised
learning framework that utilizes little annotated samples with
abundant unannotated data offers an efficient mean to address
the limitation of insufficient labeled data. Recent works [13],
[17] have explored semi-supervised learning approaches with
state-of-the-art performance by introducing Graph Convolu-
tional Network (GCN) into semi-supervised image classifi-
cation task. Many clinical image cases follow the practical
application of GCN-based semi-supervised learning where
GCN is seldom employed in analyzing retinal fundus images
from diabetic patients, and the ability of GCN in semi-
supervised retinal image classification would be desirable in
practical scenarios.

To address semi-supervised retinal image classification
problem in DR diagnosis, this paper builds a Hybrid Graph
Convolutional Network (HGCN) as learning from very few
labeled images with disease grading annotations, alongside a
large set of unlabeled images. Themain assumption of HGCN
is that the retinal images in same category have stronger
inherent discriminative correlation than ones in different cat-
egory, which can be simulated in node-to-node Graph Struc-
ture (GS). HGCN aims to learn hybrid GS-based representa-
tions that integrates a graph learning convolutional network
into deep learning feature extractor, trained by a modularity-
based graph learning module and a hybrid classification
module between labeled and unlabeled data. Specifically,
HGCN firstly employs several CNN layers to extract retinal
image features, and then attaches a graph learning layer with
the modularity graph learning loss to establish the topol-
ogy correlations between retinal image samples according
to their similarities. Finally, the graph convolution layers are
implemented in the extracted CNN features and modularity-
based graph correlations, and generate final retinal image
features, which are utilized into the hybrid semi-supervised
classification task.

The crucial contributions of HGCN approach for semi-
supervised retinal image classification are concluded below:

• We propose a semi-supervised Hybrid Graph Convolu-
tional Network (HGCN) that combines CNN and GCN
into a unified architecture to synthesize independent
CNN and graph structure features for representing reti-
nal images.

• In HGCN, we design a modularity-based Graph learning
module to conduct the graph structure learning with
refining the graph construction which can improve the
graph learning efficiency in unlabeled data.

• HGCN can exploit more discriminative information of
unlabeled data by our proposed hybrid classification
module, which provides the training direction for the
hybrid graph convolutional network.

To the best of our knowledge, there is a few research works
on semi-supervised retinal image classification and this paper
is a preliminary research on this topic with employing Graph
Convolutional Network in medical images analysis. Experi-
mental results demonstrate that HGCN can effectively solve
the semi-supervised retinal image classification in disease
gradings.

II. RELATED WORK
We review the related researches of retinal image classifica-
tion in this section, which are partitioned by three aspects,
including retina image classification, unsupervised medical
image classification, and a brief introduction of graph convo-
lutional network.

A. DIABETIC RETINOPATHY DIAGNOSIS
The permanent increasing of glucose level in diabetic
patients’ blood generates a threat of damage for retinal vessel
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FIGURE 1. Illustration of semi-supervised retinal image classification
task.

tissue, when diabetes increases the glucose level in retinal
vessels. This phenomenon can break the vessel and result in
the blood’s divulgation in the retinal fundus, so as to damage
the vision of patients. Thus, the diabetic patients must be
screened regularly for the eye problems, especially for retinal
check by the ophthalmologist. In the early-stage of diabetic
retinopathy, the retinal fundus images play an important role
in the DR diagnosis, in which morphological representation
provides the identification evidence for the DR grades.

The characteristics of retinal abnormalities reveal the DR
severities, which can be recognized by deep learning meth-
ods. The phases of diabetic retinopathy are with four stages,
including micro aneurysms, hemorrhage, neovascularization,
and venous leading. The four stages denote the ponderances
of retinopathy [37]:

• Mild non-proliferative retinopathy (micro aneurysms)
is the earliest stage, where only micro aneurysms can
occur;

• Moderate non-proliferative retinopathy (hemor-
rhage) is a stage which can be described by losing the
blood vessels’ ability of blood transportation due to their
distortion and swelling with the progress of the disease;

• Severe non-proliferative retinopathy (neovasculariza-
tion) results in deprived blood supply to the retina due
to the increased blockage of more blood vessels, hence
signaling the retina for the growing of fresh blood
vessels;

• Proliferative diabetic retinopathy (venous leading)
is the advanced stage, where the growth features are
secreted by the retina activate diffusion of the newly-
generated retinal blood vessels, growing along inside
covering of retinal in some vitreous gel, filling the eye.

Due to the significance of the diabetic retinopathy diag-
nosis, plenty researches pay attention to the automated reti-
nal image classification [9], [12], [20], [39]. For example,
Hemanth et al. [12] employed deep learning algorithm to
integrate image operating by histogram equalization into the
deep neural network and utilize the contrast limited adaptive
histogram equalization to stimulate the classification of the

network; Wu et al. [39] aimed at OCT image classifica-
tion and embedded attention mechanism into deep neural
network, which introduces image precessing to strengthen
the image representation and the attention module to focus
on the crucial area with pathological abnormal character-
istics. Luo et al. [20] solved the retinal image classification
task without labor-expensive image annotations by a self-
supervised fuzzy clustering network. Gulshan et al. [9] con-
ducted a prospective observational study at 2 eye care centers
in India by deep learning algorithm and the results demon-
strate that the feasibility of using an automated diabetic
retinopathy system to expand screening programs. Though
these DL-based methods have achieved impressive perfor-
mance, they are all under supervised framework requiring
sufficient large scale accurately annotated images when train-
ing model.

Besides automatic DR grading mentioned above, several
DR detection/segmentation works [31]–[33] are proposed
recently. Tavakoli et al. [31] compared effects of two pre-
processing methods, illumination equalization and top-hat
transformation on retinal images to detect microaneurysms
using combination of matching based approach and deep
learning methods either in the normal fundus images or in
the presence of DR; Tavakoli and Nazar [32] applied three
retinal vessel segmentation methods including Laplacian-of-
Gaussian, Canny edge detector, and Matched filter to com-
pare results of microaneurysms detection using combination
of unsupervised and supervised learning either in the nor-
mal images or in the presence of DR; Tavakoli et al. [33]
did microaneurysms detection step using combination of
Laplacian-of-Gaussian and convolutional neural networks,
and the experiments evaluate the accuracy of this work.

B. SEMI-SUPERVISED MEDICAL IMAGE CLASSIFICATION
Semi-supervised learning can exploit discriminative informa-
tion in unannotated data to accelerate the supervised learn-
ing with limited labeled samples, and it can achieve robust
models with insufficient annotations [15], which is more
expensive in medical image annotation, and has excellent
results compared to unsupervised methods [41]. To alleviate
the annotation cost, several semi-supervised medical image
classification models have been proposed [18], [22], [46],
[49]. For example, Zhou et al. [49] designed a jointly training
model with semi-supervised framework to implement the DR
grading and damage segmentation, guided by an attention
module. Xie et al. [46] designed an adversarial learning
mechanism under semi-supervised framework to conduct CT
classification, which contains an adversarial auto-encoder R
to implement the unsupervised self-expression, an identifica-
tion network C trained by labeled data, and several trainable
transforming layers that are in charge of transferring the
image representations learned by R into the identification
network C . Madani et al. [22] utilized generative adversarial
networks to leverage the imbalance of limited labeled sam-
ples and massive unannotated data under semi-supervised
framework. Kumar et al. [18] introduced robust statistical
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model to extend the multi-variable Gaussian generator into a
scalable kernel Hilbert space under semi-supervised training,
which can fully exploit the identical information in the limited
annotated data.

According to the successful applications of above semi-
supervised learning in medical image classification, this
paper aims to address the scarcity of expert-labeled data
problem in retinal image classification for diabetes retinopa-
thy diagnosis. Existing semi-supervised image classifica-
tion models often utilize generative adversarial learning or
domain adaptation approaches, while they ignore the influ-
ence of the mutual samples (structure relationship between
each retinal image samples). This paper will overcome this
main drawback by the proposed hybrid graph convolutional
network.

C. GRAPH CONVOLUTIONAL NETWORK
We briefly review a semi-supervised GCN framework [17]
to illustrate the basic architecture of this paper. Assume
X = (x1, x2, · · · , xn) ∈ Rn×p as n p-dimensional feature
vectors learned by feature extractor, and denote G(X ,A) as
the graph feature vectors of X , where the structural correla-
tions in X are built by the pairwise similarities A ∈ Rn×n.
The basic architecture of GCN is often composed by an input
layer, a few hidden layers and a final perceptron layer [17].
For a feature vector X (0)

= X as the input of GCN, with the
correlation graph matrix A, GCN can implement the forward
propagation in hidden layers by,

X (k+1)
= σ (D−1/2AD−1/2X (k)W (k+1)) (1)

where k = 0, 1, · · · ,K − 1, and D = diag(d1, d2, · · · , dn)
denotes a diagonal matrix which di =

∑n
j=1 Aij. W

(k)
∈

Rdk×dk+1 , d0 = p represents the weight matrix in convo-
lutional layer which is required to be optimized. σ (·) is the
activation mapping, like ReLU(·) = max(0, ·), and X (k+1)

∈

Rn×dk+1 is the final graph representation extracted from k-th
layer. As in semi-supervised learning framework on classifi-
cation task, GCN computes the final perceptron output by,

Z = softmax(D−1/2AD−1/2X (K−1)W (K )) (2)

where W (K )
∈ RdK×c and c represents the amount of cate-

gories. The output of GCN Z ∈ Rn×c stands for the predicted
probabilities belonging to each class for the input features
X . For a specific row Zi, it presents the class estimation
for i-th feature vector xi. All the trainable weights in GCN
{W (0),W (1), · · · ,W (K )

} are optimized by the cross-entropy
loss fixed on the GCN’s output,

LSemi-GCN = −
∑
i∈L

c∑
j=1

Yij lnZij (3)

where L represents the labeled data collection.
This framework [17] is a representative semi-supervised

GCN method and many other applications based on this
architecture always obtain graphs from domain knowledge
or estimated by human which are generally independent of

semi-supervised GCN, and ignore their structural relation-
ships between each nodes. This paper designs a modularity-
based graph learning module to address this limitation, which
detail is presented in the section III.

III. PROPOSED METHOD
A. OVERVIEW
The presented method aims to classify fundus images under
semi-supervised framework, to conduct diabetes retinopa-
thy diagnosis more flexible in reality. To achieve this goal,
we propose a Hybrid Graph Convolutional Network (HGCN)
with three primary modules, including feature extraction
module, modularity-based graph learningmodule, and hybrid
graph convolutional module, as shown in Figure 2. First
of all, the main procedure to construct graph structure is
to extract feature representations from raw retinal images,
where we employ Convolutional Neural Network (CNN)
as the feature extraction module for retinal images. Then
the learned CNN features are fed into our modularity-based
graph learning module to establish the node-to-node graph
structure which guarantees the adaptation on GCN process.
Note that, the modularity is a quality assessing measure for
graph clustering in topology analysis, which is introduced to
constrain the graph learning process. Next, a hybrid GCN
module is designed to learn the synthetic features combining
independent CNN and mutual GCN features as the final
representation of fundus images. Finally, a similarity-based
pseudo label estimator assists the unlabeled features in feed-
ing into the classification loss alongside the existing labeled
images. Through this hybrid graph convolutional network, the
structural influence inside retinal image samples is learned
by the modularity-based graph learning and GCN process,
and more discriminative information in unlabeled data is
also exploited by the clustering-based pseudo label producer
to support ‘pseudo-supervised’ learning with labeled retinal
images.

B. FEATURE EXTRACTION MODULE
The essential step of retinal image classification is to extract
robust feature representation from raw retinal data, which
includes a few labeled and large number of unlabeled images
in semi-supervised manner. We build L stacked convolutional
layers to learn CNN features with the inputs of retinal images.
Given a retinal image h(0)c = x as the input of the first con-
volutional layer with weight parameters w(1)

c and bias of b(1)c ,
the output of this layer is denoted as h(1)c = σ (w

(1)
c h(0)c + b

(1)
c )

where σ is an activation function. For the l-th convolutional
layer in general form, its output is h(l)c = σ (w

(l)
c h

(l−1)
c + b(l)c ).

Finally, we adopt the output of the top (L-th) layer as the CNN
representation hc for input retinal image x,

hc = h(L)c = σ (w
(L)
c h(L−1)c + b(L)c ) (4)

Through this feature extractor, we can obtain the CNN fea-
ture collection Hc = {h1c, · · · , h

i
c, · · · , h

N
c } from the retinal

image set X = {x1, · · · , x i, · · · , xN }, where xi denotes the
i-th retinal image in X , and N is the number of images.
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FIGURE 2. The scheme of Hybrid Graph Convolutional Network (HGCN). There contains three modules of feature extraction, modularity-based graph
learning, and hybrid graph convolutional network. The DR fundus images are firstly fed into a CNN feature extractor to learn feature representations, and
then learn the graph topology correlations among them by MGL. To learn graph representations, we employ GCN layers to exploit the interactive influence
and obtain GCN features. Finally, CNN and GCN features are integrated into a hybrid semi-supervised classification network to grade DR fundus images.

To guarantee the representative ability of the learned CNN
feature setHc for retinal images, we attach the triplet loss [27]
on the labeled retinal features with accurate annotations,

Lt =
N∑
i=1

[‖hic − h
p
c‖

2
2 − ‖h

i
c − h

n
c‖

2
2 + α] (5)

where hpc denotes the retinal feature of a positive sample to
xi with same label, hnc is of negative sample with a different
annotation, and α is a margin parameter to balance the loss.
Though the triplet loss, the feature extractor can learn robust
feature representations from labeled retinal images.

As for unlabeled retinal data, we employ an image decoder
attached on the feature extractor to construct an auto-encoder
architecture, which is always effective on unlabeled image
feature learning. Specifically, we deploy several deconvolu-
tional (deconv) layers on the learned retinal feature hc and
the last deconv layer outputs a reconstructed retinal image x̂.
The loss function for these deconv layers is the reconstruction
loss,

Lr =
∑
x∈X

‖xi − x̂i‖22 = ‖X − X̂‖
2
F (6)

where the deployment of the reconstruction loss guarantees
that the feature representation hc maintains discriminative
information from the input retinal image x, so as to recon-
struct itself by the decoder.

Note that, the triplet loss constrains the labeled reti-
nal images and the reconstruction loss is attached on both
labeled and unlabeled images to facilitate the feature learn-
ing not only of the distance characteristic but also of self-
representative information.

C. MODULARITY-BASED GRAPH LEARNING MODULE
The crucial step after extracting feature representations is
to construct the graph relation G(Hc,A) for retinal images
X . A major problem of existing Graph learning is they are
generally independent by a specific knowledge or human esti-
mated, which inevitably introduces noises and hard relations.

To conquer these blemishes, we propose a novel Modularity-
based Graph Learning (MGL) approach, that effectively
supports the graph convolution on learning the graph rep-
resentation G(Hc,A) in a unified framework. Concretely,
as shown in Figure 2, the MGL can establish the structural
relations among retinal features in Hc by a graph learning
layer, inspired by [13]. The following description explains the
detail MGL method.

For the learned CNN features Hc = {h1c, · · · , h
i
c, · · · , h

N
c }

from retinal images, MGL is in charge of learning a nonnega-
tive mapping Sij = g(hic, h

j
c) that indicates the similarity cor-

relations in feature vectors hic and h
j
c. The mapping g(hic, h

j
c)

is achieved by a fully connected layer F , which is vectored
though weight parameters wg = {wg1,w

g
2, · · · ,w

g
p}
T
∈ Rp×1.

Mathematically, the graph structure S is calculated by,

Sij = g(hic, h
j
c) =

exp
(
ReLU

(
wgT

∣∣∣hic − hjc∣∣∣))∑N
j=1 exp

(
ReLU

(
wgT

∣∣∣hic − hjc∣∣∣)) (7)

where ReLU(·) = max(0, ·) is the activation function, and it
constrain the nonnegativity of Sij. This softmax transforma-
tion assures that the obtained graph S meets the characteris-
tics,

n∑
j=1

Sij = 1, Sij ≥ 0 (8)

We update the weights wg of GCN layer by minimizing a
novel Modularity Graph Learning (MGL) loss function,

LMGL = −
1
2E

∑
Sij>0

(
Sij −

kikj
2E

)
1[ci=cj] + γ ‖S‖

2
F (9)

where E represents the total number of the edges in graph
S; ki and kj denote the degree of node i, j of retinal images,
respectively; ci and cj are the estimated clustering groups of
i-th and j-th; And 1[ci=cj] is an indicator function, which is
of 1(0) if ci = cj(ci 6= cj). The remain problem is how
to estimate the reasonable annotations of unlabeled retinal
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images. Focusing on this problem, we introduce a Similarity-
based Pseudo Label Estimator (SPLE), which provides the
pseudo labels of unlabeled retinal images. Concretely, given
an unlabeled retinal image xi, SPLE calculates the similarities
between xi and labeled images by introducing Euclidean
distance to obtain [s1, · · · , sNl ], where Nl is the number of
labeled retinal images. After that, the SPLE can estimate the
pseudo label ci for xi by,

ci = cargmax([s1,··· ,sNl ])
(10)

In MGL loss, the term of 1
2E

∑
i,j∈V

(
Sij −

kikj
2E

)
1[ci=cj]

denotes the modularity Q ∈ [0, 1] of the learned Graph
S, which is a crucial evaluation measurement of the clus-
tering partition ability in unlabeled data. In satisfied graph
learning, it is expected that the retinal features in same class
are densely connected while ones in different categories are
sparse connected in our labeled and unlabeled retinal images.
The modularity is often employed in graph clustering algo-
rithm to measure the property of this partition strategy, that
has been proved to be effective [2]. To this measurement,
the modularity is the best choice in graph clustering view.
For the learned graph S, Q = 0 indicates that connections
in S are randomly connected without any partition, and the
structural relation of clusterings shows better division by the
densely connected edges along with the increase of Q, where
the mixing degree between clusterings becomes smaller.

In addition, to ensure the large distance ‖hic−h
j
c‖2 of pair-

wise retinal samples xi and xj remain a weaker relationship
Sij, we update the MGL loss by,

LMGL = −
1
2E

∑
Sij>0

(
Sij −

kikj
2E

)
1[ci=cj]

+

n∑
i,j=1

∥∥∥hic − x jc∥∥∥22 Sij + γ ‖S‖2F (11)

The correlation graph S learned by MGL maintains the
expected probability characteristic (Eq. 8) that indicates
the connected probability between retinal images xi and xj
according to their similarity. In another word, our modularity-
based graph learning (MGL) architecture can constitute the
neighborhood relationships in retinal images not only by
their similarities in Hc but also considering the modularity
characteristics of each node.

D. HYBRID GRAPH CONVOLUTIONAL NETWORK
After modularity-based graph learning, we follow a Hybrid
Graph Convolutional Network to learn the graph represen-
tations for semi-supervised retinal image classification prob-
lem. Figure 2 shows the overview of HGCN architecture. The
goal of HGCN is to learn an optimal hybrid representation
by integrating CNN and GCN based features, to boost the
synthetical performance on semi-supervised retinal image
classification.

As shown in Figure 2, HGCN contains one MGL layer,
several graph convolutional layers and one final percetron

Algorithm 1 Hybrid Graph Convolutional Network
Initialization: The trainable parameters in feature extraction
module, trainable parameters of graph learning layers, and
trainable parameters in graph convolutional network; α = 5,
γ = 0.1, λ1 = 2, λ2 = 1, and λ3 = 0.8.
Input: Annotated retinal images Xl and unlabeled images Xu
(X = Xl ∪ Xu).
1. CNN feature extraction:
While xi in X do

Train the CNN parameters by Eq.6.
If xi ∈ Xl :
Train the CNN parameters by Eq.5.

Obtain the CNN features Hc = {h1c, · · · , h
i
c, · · · , h

N
c } from

images X .
2. Modularity-based graph learning:
While xi, xj in X do
Train the parameters in graph learning layers by Eq.11.

3. Graph convolutional network:
Train the GCN parameters by Eq.16.

Return HGCN.

layer. TheMGL layer provides an optimal adaptive graph rep-
resentation S for graph convolutional layer. That is, in graph
convolutional layers, it conducts the layer-wise propagation
rule based on the adaptive neighbor graph S returned by the
modularity-based graph learning layer,

h(k+1)g = σ (D−1/2s SD−1/2s h(k)g w(k+1)
g ) (12)

where k = 0, 1, · · · ,K − 1, h(k+1)g indicates the graph
representation of (k + 1)-th hidden layer, and the input of the
first GCN layer is h0g = hc; Ds = diag(d1, · · · , di, · · · , dN )
is a diagonal matrix with diagonal component di =

∑N
j=1 Sij;

w(k)
g ∈ Rdk×dk+1 denotes the optimizable weight matrix for

each graph convolutional layer; σ (·) represents an activation
mapping, including ReLU(·) = max(0, ·), and h(k+1)g ∈

RN×dk+1 indicates the graph representations after activation
in the k-th layer. Though the obtained graph relation S con-
forms to

∑
j Sij = 1, Sij ≥ 0, Eq. 12 can be redefined by,

h(k+1)g = σ (Sh(k)g w(k+1)
g ) (13)

Through the graph convolutional layers, we can obtain the
GCN representation of each retinal image x by hg = h(K )

g =

σ (Sh(K−1)g w(K )
g ), and then we integrate this GCN feature hg

with CNN feature hc into a final hybrid feature representation
by,

h = concate[hc, hg] (14)

where concate is a concatenating operation on hc and
hg. Through the hybrid graph convolutional network,
we can obtain the final retinal image representations
H = {h1, · · · , hi, · · · , hN }
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E. SEMI-SUPERVISED CLASSIFICATION
In semi-supervised retinal image classification task, the over-
all retinal images are denoted by X = [Xl,Xu], in where
Xl = {x1l , · · · , x

Nl
l } denotes the labeled retinal data with their

labels Yl = {y1l , · · · , y
Nl
l }, and Xu = {x

1
u , · · · , x

Nu
u } is the

unlabeled retinal data without any label. In this paper, we can
obtain the pseudo annotations Ŷu = {ŷ1u, · · · , ŷ

Nu
u } by the

Similarity-based Pseudo Label Estimation (SPLE) module
for Xu.

Based on the retinal image annotations of Yl and Ŷu,
we attach a percetron layer on the hybrid features H as,

Z = softmax(H ) (15)

where Z ∈ Rn×C and C is the number of retinal image
categories. The final output Z represents the label prediction
of HGCN network, in which each row Zi denotes the label
prediction for the i-th retinal image. For training the clas-
sification model, we employ the cross-entropy loss both on
labeled and unlabeled retinal images by,

LHGCN = −
∑
xi∈Xl

Yi lnZi −
∑
xj∈Xu

Ŷj lnZj (16)

The trainable parametersW = {w1
c, · · · ,w

L
c ,w

1
g, · · · ,w

K
g }

in our proposed HGCN are jointly optimized by,

L = LHGCN + λ1LMGL + λ2Lt + λ3Lr (17)

where λi‖{i = 1, 2, 3} denote balance parameters for each
loss functions. Besides, the whole optimization of HGCN
is conducted by the back-propagation algorithm to learn the
optimal weight parameters. The network optimization is sum-
marized in Algorithm 1.

IV. EXPERIMENTS
A. DATASET AND PRE-PROCESSING
To evaluate the effectiveness and benefit of the proposed
HGCN on semi-supervised retinal image classification task,
we evaluate it on MESSIDOR dataset, which is a public
dataset provided by the Messidor research program funded
by the French ministry of research and defense [5]. It consists
of 1200 retinal images and provides a retinopathy grade for
each images from 0 to 3, that was acquired by three oph-
thalmology departments using colored video 3CCD camera
mounted on a Topcon TRC NW6 non-mydriatic retinopathy
with a 45◦ field of view, in different sizes: 1440 × 960,
2240×1488, or 2304×1536 pixels and were 8 bits per color
plane.

We divide the dataset into training (50%) and testing
(50%) data without any overlapped images, and the testing
data contains equal number of retinal images from differ-
ent grades. Then, the training images are randomly given
annotations (Xl) by a pointed percentage of labeled data
(lp) and the other images are partitioned into unlabeled set
(Xu). Suppose lp is 20%, then 20% of the training data
are employed as Xl and combine the left data xu to build

the model. Different values are set to lp in the experi-
ments ranging from 20% to 100%. All images are resized
into 224 × 224 and normalized by the maximum intensity
value in each image before feeding into the HGCN network.
In addition, the available code will be released at GitHub
(’https://github.com/Jieming1022/HybridGCN’).

B. IMPLEMENTATION OF HGCN
To achieve the hybrid graph convolutional network,
we employ PyTorch framework with 2 NVIDIA Geforce
2080Ti GPUs to implement the model. The CNN feature
extraction module is established by a pre-trained ResNet-50
from ImageNet [11], which contains 1 input layer (size of
224×224), 1 convolutional layer, 4 residual blocks and 1 fully
connected layer (dimension of 512). In addition, we also
employ the image decoder in Cycle GAN [50] to realize the
reconstruction loss. Similar to [17], we set the number of
graph convolution layers in our HGCN to 2. And the number
of units in graph learning layer is set to 70 and it is set
to 30 in graph convolutional layer. All the network param-
eters are initialized using Glorot initialization [7]. We train
the HGCN for maximum of 500 epoches using an ADAM
optimizer [16] with learning rate 0.001, which will be ×0.1
in each 10 epochs and decayed to 0 in the last 10 epochs.
The margin parameter in Eq5 is α = 5, parameter in Eq11
is set by γ = 0.1, and the balance parameters in Eq.17 are
set to λ1 = 2, λ2 = 1, and λ3 = 0.8. Keeping consistency
with [13], HGCN adopts two graph convolution layers and
the number of units in graph learning layer is set to 60, while
the number of units in graph convolution layer is 40.

C. MEASUREMENTS AND BASELINES
1) MEASUREMENTS
To reveal the overall effectiveness of HGCN, the proposed
method is assessedwith respect to accuracy, sensitivity, speci-
ficity, and F1-score. The calculation of them is summarized
below:

• Accuracy = TP+TN
TP+FP+TN+FN

• Sensitivity = TP
TP+FN

• Specificity = TN
TN+FP

• F1− score = 2×P×R
P+R , P = TP

TP+FP , R =
TP

TP+FN

where TP is true positives, FP is false positives, FN is false
negatives, P is precision and R is recall.

2) BASELINES
To shows the comparative performance of our HGCN model,
we choose several state-of-the-arts of supervised and semi-
supervised learning methods to conduct comparison, includ-
ing self-training [47], co-training [1], PsoFuzzy [30], VQSSL
[26], CLAHE [12], HPSCNN [10], and MAlex [28]. The
detail description of them are following. The self-training
[47] method is an unsupervised learning algorithm for sense
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TABLE 1. The performance of HGCN among different lp for MESSIDOR dataset.

TABLE 2. Comparison among the state-of-the-art baselines on MESSIDOR dataset.

disambiguation proposed in 1995; Co-training [1] approach
provided a PCA-style analysis for the setting of semi-
supervised learning from both labeled and unlabeled data;
PsoFuzzy [30] involved preprocessing, combination of parti-
cle swarm optimization algorithm and fuzzy C-means clus-
tering for the severity grading of diabetic macular edema;
VQSSL [26] achieved macula localization, exudate detec-
tion, and grading of diabetic macular edema by using a
vector quantization technique and formulated using a set of
feature vectors; CLAHE [12] introduced the employment
of image processing with histogram equalization, and the
constrast limited adaptive histogram equalization techniques,
then utilized the classifier of convolutional neural network
to conduct diagnosis; HPSCNN [10] proposed a hierarchical
pruning method based on VGG16-Net which is to modi-
fied containing fewer trainable parameters for DR classifi-
cation; MAlex [28] used convolutional neural network with
the application of suitable Pooling, Softmax, and Rectified
Linear Activation Unit (ReLU) layers to obtain a high level
of accuracy for the DR fundus image classification. Those
baselines are under both of semi-supervised and supervised
learning frameworks, andwe employ the highest performance
of each method for fair comparison. To further provide the
evidence of the advantages for HGCN, we also deploy GCN
[17], which is the basic graph convolution framework for our
HGCN, as a technical baseline, and our method achieves the
best results when we give total labeled data to GCN.

D. RESULTS
We implement the testing in ten times to compute the average
results and report the performance of HGCN in Table 1.

We set lp = [20%, 40%, 60%, 80%, 100%] to evaluate the
effectiveness of HGCN with different numbers of labeled
data. From Table 1, it can be seen that our HGCN achieves
accuracy of 0.893, sensitivity of 0.802, specificity of 0.909
and F1-score of 0.793 when we adopt 20% of training data
as labeled data, and the best performance is achieved by
lp = 100%. The obtained performance is increasing along
with the scale of labeled data, which demonstrates that our
proposed HGCN can solve retinal image classification when
given limited labeled images, and it can promote the mani-
festation of full labeled data, which can be seen in supervised
manner.

Beyond that, we compare the best results of HGCN and
the state-of-the-art baselines, as mentioned in Section IV-C.
The compared results are reported in Table 2, which
the comparable best performance are in bold. For semi-
supervised learningmethods, we choose the best performance
with appropriate scale of labeled data. For example, VQSSL
achieves its best performance of accuracy of 0.975, sensitivity
of 0.946, specificity of 0.980 and F1-score of 0.940 when
it selects 80% labeled data. From the comparison between
GCN, our propose network has a 3.1% improvement of
accuracy, which is caused by our graph learning module.
It is obvious in Table 2 that our HGCN achieves the best
performance among them, that illustrates the model proposed
in this paper has clear superiority to the baselines.

The results in Table 2 are used to demonstrate the supe-
riority of our method with 100% labeled annotations, com-
pared to the state-of-the-art. However, the major advantage
of this paper is the effectiveness on semi-supervised reti-
nal image classification, which has not addressed in the
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FIGURE 3. ROC curve of DR classification with lp = 100%.

compared methods. The accuracy reaches 89.3% with only
20% annotations, and it exceeds 90% when we utilize 40%
annotations. Besides, the performance with 100% annotation
is the best among various compared methods. The finding
has great significance in practical retinal image classification,
because it can save at least 80% professional annotating
labors, and achieve effective results.

E. FURTHER DISCUSSION
1) ROC CURVE
To better present the classification ability of the proposed
HGCN model, we utilize the Receiver Operating Character-
istic (ROC) curve and the Area Under the Curve (AUC) as
evaluationmetrics. Taking lp = 100% as an example to reveal
the setting of limited labeled data, we draw the ROC curve
in Figure 3, where the AUC is laid out. Figure 3 displays a
favorable classification performance, and obtains the AUC
value of 0.96, where further demonstrates the effectiveness of
HGCN on semi-supervised retinal image classification task.

2) TRAINING CONVERGENCE
Towards the model training, we adopt the accuracy and loss
curves along with the training process to imply the training
trend on accuracy and model cost. The accuracy and loss
curves of HGCN by lp = 20% is shown in Figure 4, which
reflects that the performance achieves satisfactory result by
160-th epoch, and becomes stable. These curves demonstrate
the convergence of the model, which explicitly evaluates
its stability on semi-supervised retinal image classification.
Besides, the total training time of HGCN on MESSIDOR
dataset is about three hours when it reaches convergence.
That costs 1.125 minutes per epoch. In a word, the training
convergence and time reveal the computing efficiency of our
hybrid graph convolutional network.

3) T-SNE
During the main training, we monitor separability in feature
space generated by the encoder. We generate 2-dimensional
embeddingswith T-SNE [21] and visualize them in the testing
phase for manual control of training performance. Figure 5
shows T-SNE embeddings labeled different colors by ground

TABLE 3. Results of HGCN across different learning rates (lr denotes the
learning rate).

TABLE 4. Accuracies of HGCN across different number of units in Graph
Learning (GL) and Graph Convolution (GC) layers with lp = 100%.

truth data. From the picture, it can be seen that images with
no signs of DR are separable with a large margin from other
images that have any sign of DR. Additionally, stages of DR
come sequentially in embedding space, which corresponds to
semantics in real diagnosis.

F. PARAMETER ANALYSIS
1) LEARNING RATE lp AND UNIT NUMBER
The proposed HGCN in this paper contains many parameters,
and this section validates the performance of HGCN when
different parameters are employed. We mainly evaluate the
learning rate, and the number of unites in graph learning
layer and graph convolution layer. Firstly, we utilize differ-
ent learning rates of the range from 10e-1 to 10e-5 with
lp = 100%, and the results is in Table 3, where can be
seen that the best results occur with learning rate of 10e-3.
Secondly, we evaluate the different number of units in graph
learning layer and graph convolution layer with lp = 100%.
The results are shown in Table 4, where denotes the best
accuracy is generated in the number of units are 60, and 40 in
graph learning and graph convolution layers, individually.
From these evaluated experiments, the parameter analysis of
learning rate, number of units is sufficiently discussed, and
our HGCN achieves the best performance when learning rate
is 0.001, the number of units is 60 in graph learning layer,
and 40 in graph convolution layer.

2) BALANCE PARAMETERS λ1, λ2, AND λ3
Besides, the parameters λ1, λ2, and λ3 in Eq. 17 bal-
ance weights of different loss functions LMGL , Lt , and Lr ,
separately. As mentioned in Implementation (Section IV-B),
the best results are achieved when λ1 = 2, λ2 = 1, and
λ3 = 0.8. To justify how to select each balance param-
eters, we evaluate the accuracy performance when modify
each parameter in different values, reported in Table 5. The
changes of accuracy in different parameter values elaborate
the importances of each term, and the optimal parameters
cause the performable effectiveness of our proposed HGCN
network on semi-supervised retinal image classification.
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FIGURE 4. Testing loss and accuracy curves along with training process on MESSIDOR dataset.

FIGURE 5. Feature embeddings with T-SNE from testing data.

TABLE 5. Accuracy performance from different parameters λ1, λ2, and λ3
(lp = 100%).

To evaluate the effectiveness of these parameters, we set
λ1, λ2, and λ3 by 0 alternatively, and obtain 0.538, 0.813,
0.866 accuracies (Table 5). The results elaborate MGL loss
LMGL contributes 0.441 accuracy, triplet loss Lt and recon-
struction loss Lr also make considerable improvements of
0.166 and 0.113 on accuracy performance. The evaluation of
these three balance parameters demonstrates that each mod-
ule in HGCN have important contribution to semi-supervised
retinal image classification.

FIGURE 6. Parameter analysis for α (Eq.5) and γ (Eq.11).

3) MARGIN PARAMETER α AND γ

Importantly, the margin parameter α = 5 controls the effec-
tiveness of triplet loss, and γ = 0.1 is in charge of the
weight of term ‖S‖2F . Here, we select different values for
these two parameters and implement validations to show their
effectivenesses, which can be observed in Figure 6. In detail,
the margin parameter α in Eq.5 achieves around 12% accu-
racy improvement which reaches the best performance at
α = 5, and the term ‖S‖2F in Eq.11 obtains the best result at
γ = 0.1 with almost 2.6%. This parameter evaluation proves
that both of margin parameter of triplet loss and MGL loss
make considerable progresses for the semi-supervised retinal
image classification task.

V. CONCLUSION
In this paper, we propose a Hybrid Graph Convolutional
Network (HGCN) to classify diabetic retinopathy grad-
ing with limited labeled data and large amount of unla-
beled data (Semi-supervised Learning). The proposed HGCN
combines CNN and GCN into a unified framework to
learn a hybrid graph representative features, which is con-
ducted by modularity-based graph learning module and
semi-supervised hybrid classification module. This network
learns the synthetic structural information in semi-supervised
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learning, and the experimental results show the effectiveness
of HGCN on semi-supervised retinal image classification
task, which solves the problem of lacking sufficient labeled
data in clinical diabetic retinopathy diagnosis.
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