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ABSTRACT Hand pose estimation from a single depth image has recently received significant attention
owing to its importance in many applications requiring human–computer interaction. The rapid progress of
convolutional neural networks (CNNs) and technological advances in low-cost depth cameras have greatly
improved the performance of the hand pose estimation method. Nevertheless, regressing joint coordinates is
still a challenging task due to joint flexibility and self-occlusion. Previous hand pose estimationmethods have
limitations in relying on a deep and complex network structure without fully utilizing hand joint connections.
A hand is an articulated object and consists of six parts that represent the palm and five fingers. The kinematic
constraints can be obtained by modeling the dependency between adjacent joints. This paper proposes a
novel CNN-based approach incorporating hand joint connections to features through both a global relation
inference for the entire hand and local relation inference for each finger. Modeling the relations between the
hand joints can alleviate critical problems for occlusion and self-similarity. We also present a hierarchical
structure with six branches that independently estimate the position of the palm and five fingers by adding
hand connections of each joint using graph reasoning based on graph convolutional networks. Experimental
results on public hand pose datasets show that the proposed method outperforms previous state-of-the-art
methods. Specifically, our method achieves the best accuracy compared to state-of-the-art methods on public
datasets. In addition, the proposed method can be utilized for real-time applications with an execution speed
of 103 fps in a single GPU environment.

INDEX TERMS 3D hand pose estimation, depth image, graph convolutional network.

I. INTRODUCTION
Hand pose estimation is the task of predicting the position and
orientation of the palm and fingers when given volumetric
data captured by a depth camera. It is an important research
topic in virtual (or augmented) reality systems and gesture-
based human-computer interaction systems [1], [2]. Although
there have been many studies on improving the performance
of hand pose estimation, it still remains a challenging task
owing to the constraints from the physiology of the hands,
such as the high degree of flexibility, occlusions, local self-
similarity, and small hand area of the image and noise from
the depth camera. In recent years, the emergence of commod-
ity depth cameras with high-performance visual sensors such
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as Intel RealSense [3] and Microsoft Kinect [4] has made
pose estimation much easier by solving the depth ambiguity
issue, and most recent methods are largely based on depth
images [5], [6].

Computer vision-based hand pose estimation methods can
be categorized into three types [7]. The first is a gener-
ative (model-based) method [8]–[11] to predict the posi-
tion of the hand joints using a 3D hand model constructed
based on prior knowledge of the hand structure. The hand
model exploits hand shape constraints but is vulnerable to
accumulated estimation errors and difficult to apply in real-
time owing to an excessive computational burden during the
optimization process. The second is a discriminative (data-
driven) method [12]–[17], which finds the position of the
joints by learning directly from the dataset image, and is the
most commonly used method for a hand pose estimation.
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FIGURE 1. Main concept of the proposed method. After extracting the initial features from the input image through several convolutions,
it is updated to include spatial connection information in the global feature of the hand and the local feature of fingers through relation
reasoning using GCN-based GRM. The feature maps of the coordinate space are projected to the joint nodes of the graph space, and then
reasoned node features are projected back to the coordinate space.

Typical methods include a random forest and convolutional
neural networks (CNNs). The last hybrid method [18]–[20]
combines the advantages of the generative method and the
discriminative method, but requires a high computational
cost increased by the generative method. This paper focuses
on discriminative methods that improve the accuracy and
efficiency of real-time applications.

Most state-of-the-art methods have recently been based on
the CNNmodel owing to the high performance of deep learn-
ing technology. In addition, the performance has been greatly
improved with the emergence of large public hand pose esti-
mation datasets [21]–[23]. CNN model architectures can be
divided into 2D and 3D approaches according to the type of
input. The first 2D input method uses 2D CNNs and can be
classified into global regression [12], [13], [24], [25], and
local detection regression [14], [15], [17], [22], [26]–[28].
A local detection-based method that can use local spatial
context information is applied more frequently than global
regression methods. The second 3D input method uses a
point cloud or voxel as an input to improve the performance.
In general, 3D CNN-based methods [14], [16], [29]–[31]
voxelize a depth image into a volume representation. These
3DCNNmethods have a large number of parameters, thereby
reducing the computational cost. For this reason, efficient 2D
CNN-based methods are still being researched.

This paper proposes a novel network that applies a graph
convolutional network (GCN) based graph reasoning mod-
ule (GRM) to obtain features that contain more useful context
information when applying a 2D CNN method. As shown in
Fig. 1, the proposed method applies GRM to both the global
feature network and the local feature network to process the
relation reasoning for capturing spatial connection informa-
tion between joint nodes in the graph space. Then, these
reasoned node features are reflected to improve the features
within the coordinate space. Regarding this procedure, GRM
changes the extracted features to the features corresponding
to each joint node, and then learns the connection information

between joints through GCN-based graph reasoning. Com-
pared with a CNN, a GCN is highly suitable for relation
reasoning between the hand joints corresponding to the nodes
because it can directly infer the relation between joint nodes.
The features, including context information between hand
joints, are mapped back to the features in the coordinate space
to obtain the final enhanced features. We apply the GRM to
the output feature of the encoder–decoder structure for global
feature extraction, and construct a hierarchical architecture
divided into palms and fingers (thumb, index, middle, ring,
and little fingers) to enhance the local features, and apply the
GRM to each finger branch. These enhanced global and local
features improve the accuracy of the performance with the
ground truth when estimating the joint coordinates in the final
regression module.

Our contributions are summarized as follows:
1) We propose a new approach for graph reasoning by

projecting features that are globally aggregated over the coor-
dinated space into a graph space where relation reasoning can
be efficiently computed. Graph reasoning is used to learn the
inter-joint relation between joint nodes and includes the infor-
mation in features to improve the accuracy when estimating
the final coordinates. After reasoning, the reasoned features
are distributed back to the coordinate space for the next tasks.

2) We propose an architecture that applies a GRM to
enhance the extracted features for a hand pose estimation.
To improve not only the global features corresponding to
the entire hand information but also the local features cor-
responding to each finger, we designed a hierarchical model
of six branches divided into the palm and five fingers.

3) We conducted extensive experiments on hand pose esti-
mation datasets. Experimental results on three public hand
pose estimation datasets show that the proposed method
achieves a better performance than previous state-of-the-art
methods in terms of accuracy and efficiency.

The remainder of this paper is organized as follows.
Section II reviews studies related to 3D hand pose estimation.
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Section III introduces the details of the proposed method.
Section IV presents experimental results, including a self-
comparison and a performance comparison with state-of-the-
art methods, and the final section presents some concluding
remarks regarding this research.

II. RELATED WORK
A. HIERARCHICAL MULTI-BRANCH ARCHITECTURE
The hand pose estimation problem can be subdivided into
multiple tasks to handle the mapping from the input depth
image to the hand joint coordinate output. The hierarchical
network structure with multiple branches divides the hand
joints into small subsets and extracts local pose features for
each subset. Then, all local pose features are combined to
better estimate the final global pose.

Madadi et al. [15] proposed a hierarchically structured
CNN using six branches consisting of five-branch modeling
of each finger and one-branch modeling of the palm orienta-
tion. After each local pose feature is extracted, these local
features are concatenated to predict the coordinates of all
joints. Besides, physical constraints are incorporated to the
loss function to avoid unrealistic pose configurations.

Chen et al. [17] extracted regions from the feature maps
of a CNN and generated more optimal and representative
features for a hand pose estimation. These feature regions
are then integrated hierarchically according to the topology
of the hand joints through tree-like connections to regress the
refined hand pose. This method can learn better features for
hand pose estimation by incorporating guided information of
previously estimated hand pose.

Zhou et al. [27] presented a three-branch network accord-
ing to the functional importance of the finger usage. These
three branches represent the thumb, index, and three other
fingers, respectively. The core idea is to take advantage of
the prior knowledge of the motion. Since the thumb and
index finger play a more important role in the grasping,
manipulation, while other fingers play an auxiliary role in
most cases.

Du et al. [28] proposed two-branch networks of the palm
and fingers. This method inspired from the multi-task mech-
anism. A flexible finger pose and relatively stable palm pose
are expressed individually, and the accuracy is increased by
sharing information with each other.

However, these methods have the weakness of directly
estimating all finger poses without considering the finger
kinematics. Because the fingers are connected by joints,
a spatial dependency occurs between adjacent joints. There-
fore, features including joint connection information can
improve the accuracy of the joint coordinate estimation.
We apply a GCN-based graph reasoning module to extract
features that incorporate this connection information.

B. GRAPH-BASED REASONING
Graph-based methods [36]–[38] have been widely used in
computer vision tasks and proven to be extremely effective

for relation reasoning. In [36] and [37], the authors applied
a CNN to the spectral domain based on a graph Laplacian.
Kipf and Welling [38] first proposed the use of a GCN
for semi-supervised classification. Since then, a GCN has
been widely used in various tasks. Wang and Gupta [39]
used a GCN to capture relations between objects in video
recognition tasks, and Chen et al. [40] proposed the use of
graph-based global reasoning networks. They also designed
a global reasoning unit for reasoning between separate and
distant regions. Liang et al. [43] used a GCN to enhance the
local features on semantic segmentation and image classifica-
tion tasks. In addition, the skeleton-based action recognition
tasks [44], [45] utilized a GCN to significantly improve the
accuracy and efficiency.

A CNN-based method using only a pixel grid image
ignores the relation between disjointed joints. Therefore,
we apply GCN-based relation reasoning modules inspired
by previous graph-based tasks [40]–[43], which model the
relation between regions. These modules allow features that
include better structural connection information when con-
ducting a 3D hand pose estimation.

III. PROPOSED METHOD
A. OVERALL NETWORK ARCHITECTURE
In preprocess stage, we assume that the hand is the nearest
object to the depth camera. We can detect the hand using the
depth information. We cropped the hand region and resized
it to 96× 96. Then this resized depth map is entered into our
architecture.

Fig. 2 shows the overall architecture of our proposed 3D
hand pose estimation method applying graph-based global
and local relation reasoning modules. The proposed architec-
ture can be divided into three major parts according to their
function. The first part is the initial feature extraction module
and refinement, where we get all initial joint features from an
input depth image and improves global features by applying
global GRM. The second part is the local feature refinement,
where we divide the extracted features into six branches
corresponding to the palm and five fingers, and improves
the local features of the finger branches. The reasons why
we chose hierarchical structure are that it can be simplified
by dividing into sub-tasks and the five-finger features can
be enhanced again by applying local GRM. The third part
is regression, where we combine six feature maps from the
palm and fingers, and eventually predicts the 3D coordinates
of the entire hand joint.

B. GLOBAL FEATURE EXTRACTION AND REFINEMENT
1) INITIAL FEATURE EXTRACTION
This network takes the depth image as an input with a spatial
size of 96 × 96 and outputs the feature maps with a spatial
size of 12 × 12. To extract features from an input image,
we modify and use the highly efficient ResNet-50 [46] as a
backbone network. In addition, to obtain more feature infor-
mation, we constructed an upsampling decoder that combines
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FIGURE 2. Overall architecture of the proposed method with graph-based global and local relation reasoning modules.

FIGURE 3. Architecture of one graph reasoning module (GRM) by taking the convolution feature map of H x W x C as an input. It consists of
four convolutions and one linear layer, two convolutions for a dimension reduction and expansion, and one convolution for generating the
projections between the coordinate and graph spaces. The linear layer encodes the features as graph nodes, and node features are then
evolved through matrix multiplication with adjacency a matrix A.

previous features using simple bilinear interpolation and
CNNs. Inspired by CrossInfoNet [28], we apply heat map
guidance, which is as a constraint that guides the feature
extraction to obtain better features. These initial features are
fed into the global GRM.

2) GRAPH REASONING MODULE
The joints of a hand are morphologically related to each other.
As the distance of the joint from the palm gradually increases,
the range of movement of the joint also widens. This causes
a problem such as self-occlusions, which is difficult to esti-
mate. However, we can constraint the expected space of the
hand joint position by using the kinematic link information of
the finger. To perform this role, we apply the graph reasoning
module to incorporate the connection information between
joints to the extracted features. The GRM is designed with
reference to the global reasoning unit [40], and relation rea-
soning networks [42], [43], the detailed architecture of which
is shown in Fig 3. The module can be divided into three steps.

The first step is to learn the projection function f (·) that
transforms the convolutional feature X ∈ RH×W×C into a
new graph node featureV = f (X ) ∈ RN×C , whereH ,W , and
C denote the height, width, and depth size of feature volume
X , respectively, and N is the number of joint nodes in the

graph space. We aim to apply relation reasoning in the graph
space, which means that the joint nodes store information on
the entire image. The projection weight P = θ (x) learned by
the 1 × 1 convolution is a Pn normalized using the softmax
functionwhich uses voting to reliably assign features. In addi-
tion, we use a 1× 1 convolution to generate φ(x) and reduce
the input dimensions and the module parameters as follows:

V = Pn φ(x). (1)

In this way, different original features can adaptively vote on
the representations of the joint nodes.

The second step is to capture the global relation reasoning
between nodes in a graph space. Each node of V potentially
stores information of the hand joints and is simplified to
capture the relations between the joint nodes in the graph
space. We use a fully connected layer to learn the edge
weights of each node for relation reasoning. We also utilize
the adjacency matrix with reference to the recently proposed
GCN [36]. As shown in Fig. 3, we use an adjacency matrix
that aims to spread information throughout all of the nodes.
The adjacency matrix A ∈ RN×N represents the structural
connection of the hand joints.We do not apply the normalized
form proposed in [36] but use the parameterized adjacency
matrix, which is optimized during the learning process with
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other parameters of the GRM. Our method learns about the
connection strength as well as the inter-joint connectivity
during the training process, and thus better node features can
be obtained. The features updated through relation reasoning
using matrix multiplication are as follows:

Y = σ (AV Wg), (2)

where σ (·) is a ReLU function as a nonlinear activa-
tion function, and Wg ∈ RC ′×C ′ is a learnable weight
matrix.

The last step is to project the learned node features back
to the original coordinate space. The output feature Y con-
tains information about the relation among the hand joints.
To update the features available for the following network,
we apply a reverse projection to project the graph features
back. We reuse the projection weight Pn created in the first
step to reduce the computational cost. As shown on the right
side of Fig. 3, after the features from the GCN are transferred
to the original space, a 1 × 1 convolution is applied for the
dimension expansion. The output is concatenated with the
input feature X through the residual path for stabilization, and
a 1×1 convolution is then added for conversion into the input
dimension.

C. LOCAL FEATURE REFINEMENT AND REGRESSION
The variations of the palm are relatively stable, but the five
fingers are mostly independent and highly flexible. Because
each finger has a large degree of freedom and a wide activ-
ity space, it generates problems such as self-occlusions and
self-similarities, which are difficult to estimate. Conventional
hierarchical branch methods treat the joints included in each
finger equally, which is insufficient to obtain representative
features of the hand structure. Our method learns the con-
nection information of the entire hand joints and the con-
nection relation information of each finger joint, and then
incorporates that information into the features. As shown
in Fig. 2, we further improve the estimation accuracy by
adding the local GRM to each finger branch to refine the local
features.

Because the palm determines the main position of the hand
and the variation is small compared to the flexible fingers, the
palm position is first predicted through the heatmap. We then
construct a hierarchical network of six separate branch net-
works for the estimation of the palm, thumb, index, middle,
ring, and little finger, each of which is optimized. We apply
the branch ensemble method to estimate the overall coor-
dinates by concatenating features from the fully connected
layers of each branch. This method can improve estimation
accuracy by incorporating the correlation between fingers
rather than estimating coordinates directly in each branch.

The detailed architecture of the proposed method is
described in Table 1, and the number of reduced dimensions
(C ′) in the GRM uses 128 channels which is smaller than the
input feature dimension (C = 256) to reduce the computa-
tional cost.

TABLE 1. Detailed architecture of the proposed method without GRM.

D. LOSS FUNCTIONS
The total loss of this architecture for training is the sum of
the four losses, i.e., two heat map losses and two regression
losses.

The first is the heat map loss of the initial feature used as a
constraint for a better global feature extraction:

LHht =
A∑
i=1

w∑
u

h∑
v

∥∥Hi(u, v)− H∗i (u, v)∥∥2, (3)

where A is the total number of joints of the hand, Hi ∈ Rw×h

and H∗i denote the estimated heat map and ground truth
heatmap of the i-th joint.

The second is the heatmap loss of the local feature refine-
ment network used to extract the intermediate features of the
palm and each finger.

L jht =
nj∑
i=1

w∑
u

h∑
v

∥∥Hi(u, v)− H∗i (u, v)∥∥2,
j ∈ {Palm, Thumb, Index, Middle, Ring, Little},

(4)

where nj is the number of joints in the j-th branch, and Hiand
H∗i represent the estimated heat map and the ground truth
heatmap of the i-th joint at the j-th branch.

Third, the subtask losses are used for each branch in the
regression network. The fourth loss supervises the final out-
put of the entire hand joint. In addition, we adopt the feature
ensemble method used in [15], [27].

L jr =
nj∑
i=1

∥∥Ci − C∗i ∥∥22, (5)

LHr =
A∑
i=1

∥∥Ci − C∗i ∥∥22, (6)

where Ci and C∗i indicate the estimated 3D joint coordinates
and ground truth of the i-th joint at the j-th branch, respec-
tively, and Ci and C∗i denote the estimated 3D joint coordi-
nates of the i-th joint among all joints and the corresponding
ground truth. The total loss function is defined as follows:

L = αLHht + β(L
P
ht + L

T
ht + L

I
ht + L

M
ht + L

R
ht + L

L
ht )

+ γ (LPr + L
T
r + L

I
r + L

M
r + L

R
r + L

L
r )+ δL

H
r , (7)
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FIGURE 4. The palm joints (bule points) and the finger joints subset on
three datasets. The five fingers corresponding to the local features are
color-coded.

where α, β, γ , and δ are balance factors that weight the four
losses, respectively. We optimally set α = 1, β = 1, γ =
0.01, and δ = 0.01 during our experiment.

E. IMPLEMENTATION DETAILS
The proposed method is implemented using the Tensor-
Flow framework, and training and testing are conducted
using an NVIDIA 2080 Ti GPU. Similar to previous stud-
ies [13], [17], [25], we crop the hand region from the original
image and then resize the cropped image to a fixed pixel
resolution of 96 × 96. We then normalize the depth value
of the resized image to [−1, 1]. We use online data aug-
mentation to improve model performance with the method
proposed in [13], including random rotation, random scaling,
and random translation.

We trained the model in an end-to-end manner for 100
epochs with a batch size of 32 using the RMSProp optimizer.
The initial learning rate was set to 0.0005 and reduced by
0.95-fold for every epoch. To prevent an overfitting, the
weight decay was set to 1e-5 and the dropout rate was set
to 0.6.

IV. EXPERIMENTAL RESULTS
In this section, we briefly introduce three public datasets
(NYU, ICVL, and MSRA) of hand pose estimation
and describe the evaluation metrics. The following self-
comparisons were conducted to verify the effectiveness of
the architectural structure and graph-based reasoning mod-
ule. Finally, we show the quantitative and qualitative results
compared with previous state-of-the-art methods.

A. DATASETS AND EVALUATION METRICS
The ICVL dataset [21] was acquired using an Intel RealSense
camera, and contains 330k frames of training data and 1.6k
frames of testing data. As shown in Fig. 4(a), there is one
palm joint and three joints per finger, thereby annotating a
total of 16 joints. The NYU dataset [22] was captured using
Microsoft Kinect at three viewpoints. This dataset contains
72k training frames and 8.2k testing frames with annotations
for 36 joints, as shown in Fig. 4(b). We used 14 joints
among 36 joints in the frontal view to evaluate in the same
way as the previous methods. The MSRA dataset [23] was
generated using Microsoft Research Asia and was obtained
using Intel’s gesture camera. This dataset contains 76.5k
images divided into nine subjects. As shown in Fig. 4(c),

FIGURE 5. Baseline architectures for ablation study.

TABLE 2. Comparison of ablation study on three hand pose datasets.

a total of 21 joints consisting of one palm joint and four joints
of each finger was annotated. For comparison with other
methods, we evaluated using the same leave-one-subject-out
cross-validation strategy.

We used two common metrics to compare with other state-
of-the-art methods. One is the average 3D distance error,
which is the Euclidean distance between the predicted joint
coordinates and ground truth joint coordinates. The other
metric is the proportion of test frames whose joint errors are
within a threshold [47].

B. ABLATION STUDY
We conducted various ablation experiments on three public
datasets as shown in Table 2. To evaluate the performance
of the proposed architecture, we compared the experimental
results with two baseline architectures, as shown in Fig.5.
One of the baseline architectures has a single branch struc-
ture, and the other has a hierarchical six-branch structure
without a global or local GRM. During this experiment,
we selected and evaluated the first subject S0 out of nine
subjects of the MSRA dataset as a validation subject.

1) HIERACHICAL MULTI-BRANCH ARCHITECTURE
A hand pose estimation is an extremely complex task, and
regressing all joints directly together is ineffective. Dividing
a complex task into several sub-tasks makes each more gen-
eralized. Therefore, we improved the estimation accuracy by
regressing six branches with one palm and five fingers in a
structure similar to the methods described in [15] and [26].
On the NYU dataset, the distance mean error was signifi-
cantly reduced from 9.42 to 8.95 mm, and the comparison
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FIGURE 6. Self-comparison results on NYU dataset. Upper: 3D distance
errors (mm) per hand joints. Lower: Percentage of success frames over
different error thresholds.

results are shown in Fig. 6 and Table 2. Experiments on
the ICVL and MSRA datasets also show improved accuracy
when applying the six branch structures.

2) GRAPH REASONING MODULE
We also evaluated the effect of the GRM on finger joint
estimation. As shown in Table 2, adding a global GRM to
the single branch baseline architecture reduced the mean
error of the hand joints from 9.42 mm to 9.12 mm for
the NYU dataset. In addition, when adding a global GRM
and local GRMs to the six branches baseline architecture,
the mean errors decreased from 8.95 mm to 8.78 mm and
8.81 mm, respectively. This is because the global GRM
improved overall hand characteristics and the local GRM
improved each finger characteristic. When both GRMs is
applied, the performance was significantly improved to
8.57mm. The other two datasets show the same tendency
in that the mean error distance decreased when GRMs are
added.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
The performance of the proposed method was compared
with previous state-of-the-art methods using a 2D or 3D
depth image input. The 3D input models are a 3DCNN [16],
SHPR-Net [29], HandPointNet [30], Point-to-Point [31],
and V2V-PoseNet [14], and the 2D input models are
a DeepModel [19], Deep-Prior [12], Deep-Prior++ [13],
Feedback [32], REN-4×6×6 [25], REN-9×6×6 [33], Pose-
REN [17], CrossInfoNet [28], HCRNN [34], and A2J [35].

FIGURE 7. Comparison with state-of-the-art methods for 3D distance
errors per hand joints. Top: ICVL [21] dataset. Middle: NYU [22] dataset,
Bottom: MSRA [23] dataset.

The results of the average 3D distance error per hand joint
and the successful frame rate on the three datasets are shown
in Fig. 7, Fig. 8, and Table 3. Our proposed method shows
a 0.03- and 0.19-mm better performance than the V2V [14]
method on the ICVL and MSRA datasets, respectively, and
achieved the best performance on all methods. On the NYU
dataset, our method is the second most accurate. However,
as shown in the middle of Fig. 8, the percentage of suc-
cessful frames of our method shows a good performance
above a threshold of 10 mm. Although the accuracy of our
method and the V2V approach [14] is similar, the V2V of
the 3D input uses 3D CNNs with a high computational cost.
Therefore, the inference speed of V2V is extremely slow
at 3.5 frames per second (fps), which makes it difficult to
utilize in real-time systems. We additionally experimented
with the average 3D distance error distributed over vari-
ous yaw and pitch angles on the MSRA dataset as shown
in Fig. 9. Our method achieved superior results in almost
all of the yaw and pitch angles, which indicates the robustness
of our method to viewpoint changes. The qualitative results
of the proposed method on the three datasets are shown in
Fig. 10, where the yellow line represents the ground truth of
the joint coordinates and the red line shows our prediction
results.

We evaluated the estimated speed of our proposed
method on an Intel Core i7 CPU, 32GB RAM, and an
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FIGURE 8. Comparison with state-of-the-art methods for percentage of successful frames over different error thresholds. Left: ICVL [21]
dataset, Middle: NYU [22] dataset, Right: MSRA [23] dataset.

FIGURE 9. Comparison of mean 3D distance error distributed over different
yaw (left) and pitch (right) viewpoint angles on the MSRA [23] dataset.

FIGURE 10. Qualitative results using our method on three public hand pose datasets. We compare our method with the ground truth joint
locations. The predicted results are in red and the ground truth are in yellow. Left: ICVL [21] dataset, Middle: NYU [22] dataset, Right:
MSRA [23] dataset.

NVIDIA 2080ti single GPU environment. Our method
runs at an inference speed of 103 fps. Because the max-
imum frame rate of recent consumer depth cameras is
60 fps (or 90 fps), our method can be used as a real-
time application. If real-time operation is required in a

resource-limited environment, such as an embedded system,
the single branch and global GRM method can be consid-
ered. This method has a slight decrease in accuracy (NYU
9.12 mm) but can be operated quickly at 165 fps with
a GPU.
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TABLE 3. Comparison of the proposed method with state-of-the-art
methods on three hand pose estimation datasets. Mean error indicates
the average 3d distance error over all joints. fps indicates frames per
second.

V. CONCLUSION
In this paper, we proposed a novel approach for 3D hand
pose estimation from a single depth image using relation
reasoning between hand joints by projecting the coordinate
space information to nodes in a graph space. This graph
reasoning module (GRM) is a lightweight and easy-to- opti-
mize block that performs projection and reverse projection,
and provides features including learned spatial connection
information between hand joints using graph convolutional
networks. We also designed an architecture that applies local
GRMs to finger branches to add relation information for
each finger joint. In the experimental results, we conducted
various ablation experiments to demonstrate the effectiveness
of the hierarchical architecture of the proposed method and
application of the GRM. Our proposed method achieved the
highest and most promising estimation accuracy compared
with previous state-of-the-art methods. Our method was out-
standing in terms of accuracy and efficiency because it not
only had the highest accuracy on three public datasets, but
also enabled real-time operation at a relatively high speed
of 103 fps. In the future, we will study more efficient net-
work that can operate smoothly even in resource-limited
environments.
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