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ABSTRACT The multipath-based method can effectively improve the video streaming quality. However,
it suffers a limitation on the realistic deployment and needs global optimization to improve the network
accommodation capability. In this article, we study a novel multipath-based streaming rate optimization
solution for unicast-based video applications. The proposed solution employs a differentiated multipath
delivery model, which uses a main path built at the network layer and multiple auxiliary paths built at
the application layer. Because of the application layer-based implementation, auxiliary paths overcome
the aforementioned limitation on deployment. Based on the proposed multipath delivery model, we study
the global multipath-based streaming rate optimization problem, which strives for an effective tradeoff
among video streaming quality, network accommodation capability and video delivery stability. The studied
optimization problem is complicated, and we solve it approximately using an approximate algorithm and a
convex optimization-based technique.

INDEX TERMS Multipath, congestion control, utility, network accommodation capability.

I. INTRODUCTION
In recent years, we have witnessed a rapid development
of various video services, such as video on demand, live
streaming and video conferencing. These video services have
accounted for most of the data transmitted over the Inter-
net, and video traffic continues to increase steadily every
year. A high video streaming rate undoubtedly improves
the quality of user experience. However, the networks can-
not keep up with the growing bandwidth demand for video
streaming despite the continually increasing network capacity
[1]. Because of variability and limitation of available net-
work bandwidth, it is necessary to dynamically adjust the
video streaming rate according to current network conditions,
which has stimulated the development of adaptive streaming
techniques such as DASH (Dynamic Adaptive Streaming
over HTTP) [2].

In adaptive streaming techniques, videos are encoded
at multiple resolutions/quality levels. Then, an appropriate
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quality level is selected according to current network con-
ditions. As summarized in [3], the common approaches to
selecting the quality level include client-side, server-side
and network-assisted solutions. Client-side solutions are very
flexible and scalable. However, they underperform in a multi-
client scenario because of the competition for shared network
resources [4], [5]. Server-side solutions determine quality
levels for multiple clients accessing the same server and
can alleviate the abovementioned problem to some extent.
However, they cannot globally optimize the rate alloca-
tion for video streams from different servers. The emerging
software-defined networking (SDN) techniques can conve-
niently ascertain network conditions [6], including network
topology and link bandwidth, and monitor the traffic over
links [7], [8], thereby making network-assisted rate alloca-
tion feasible. To date, several SDN-based solutions (e.g., [9]
and [10]) for determining video streaming rates have been
proposed. In these solutions, the video streaming rates are
computed centrally according to current network conditions
and link traffic, resulting in better optimization of rate allo-
cation compared with client-side and server-side solutions.
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Multipath-based streaming can further improve the per-
formance of video delivery by using the network congestion
avoidance capability and increasing the total video streaming
rate based on completely or partially disjoint delivery paths
[11], [12]. Despite the above advantages, multipath-based
streaming suffers from a limitation in practical deployment.
For a designated sender-receiver pair, video delivery perfor-
mance improves with the increase in the number of the paths
associated with that pair. However, in the current network
architecture, the number of the associated paths is limited
by the number of network interfaces of the receiver because
the route is selected in terms of the destination address.
In addition, it is known that the Internet faces the routing
scalability problem [13], which further restricts multipath
deployment. The number of multipaths also must be lim-
ited in software-defined networks because of the limited
ternary content-addressable memory size [14]. In addition
to being subject to the above multipath number restric-
tion, multipath-based streaming reduces the network accom-
modation capability compared with single-path streaming
because the completely or partially disjoint paths for the same
sender-receiver pair inevitably increase the average delivery
path length. A low network accommodation capability might
cause more severe network congestion in wide area networks
[15]. A feasible approach to coping with the above problem
is to use a network-assisted solution to globally determine
the streaming rates along various paths according to current
network and application conditions. Unfortunately, to the best
of our knowledge, no studies have explored global multipath
rate allocation.

In this article, we propose a novel network-assisted
and multipath-based streaming rate optimization solution,
named elastic streaming rate orchestration (ESRO), for
unicast-based and cache-supported video applications such
as video on demand. ESRO globally and dynamically opti-
mizes streaming rates according to current network and
application conditions based on a differentiated multipath
delivery (DMD) model. In comparison to existing multi-
path delivery models, the DMD model uses a main delivery
path (MDP) and multiple auxiliary delivery paths (ADPs).
MDPs and ADPs are used by different strategies. The
MDP is created at the network layer, while the ADPs are
established at the application layer with the assistance of
some proxies. Using the DMD model, we study a global
multipath-based streaming rate optimization problem called
the constrained maximum-utility multipath rate orchestration
(CMUMRO). CMUMRO fully considers the tradeoffs among
video streaming quality, network accommodation capabil-
ity and video delivery stability. We solve the CMUMRO
problem approximately based on an approximate algo-
rithm and a convex optimization solution. The global rate
optimization in ESRO requires that the network be able
to conveniently assess network conditions, including net-
work topology and link capacity, and monitor link traffic.
As explained earlier, the SDN technique can satisfy the above
requirement.

Different from existing multipath delivery solutions, our
solution attempts to use the shortest path as the MDP. As a
result, our solution can better improve the network accom-
modation capability. Because of the application layer-based
implementation, ADPs in our solution can be flexibly
deployed, thereby overcoming the aforementioned multipath
count restriction. Our solution aims to solve a multi-objective
multipath streaming rate optimization problem, which fully
considers the whole video streaming quality, network accom-
modation capability and the whole video delivery stability.
Compared with the optimization problems of existing multi-
path delivery solutions, the above multi-objective optimiza-
tion can simultaneously improve the whole video delivery
performance and network service capability.

The remainder of this article is organized as follows.
We introduce the related work in Section II. The system archi-
tecture and the DMD model are introduced in Section III.
In Section IV, we describe the CMUMRO problem and
present the algorithm that solves this problem approximately.
A performance evaluation is provided in Section V. Finally,
we conclude our work in Section VI.

II. RELATED WORK
To date, video streaming rate optimization has been explored
by numerous studies. These research efforts mainly focus on
video coding, adaptive video streaming and multipath-based
streaming enhancement.

Adaptive coding is a precondition of adaptive video
streaming techniques. Two popular coding techniques are
H.264/MPEG-4 advanced video coding (AVC) and scalable
video coding (SVC). AVC encodes a video into L indepen-
dent versions of different quality levels. In SVC, a chunk
is encoded into ordered layers: one base layer (layer 0)
with the lowest playable quality, and multiple enhancement
layers (layers with i > 0) that further improve the chunk
quality based on layer i − 1. Compared with AVC, SVC is
more scalable and can better adapt to network congestion.
With adaptive coding, adaptive video streaming techniques
can select video quality levels according to current network
conditions. The video quality level is usually selected by
clients or servers. HTTP adaptive streaming (HAS) is a typi-
cal client-side adaptive streaming technique. Several adaptive
streaming multicast techniques (e.g., [16]) also determine
streaming rates at the client side. The main disadvantage
of client-side adaptive streaming is that the heuristics used
by clients cannot select the appropriate quality level if mul-
tiple users request the same video from a server [4], [5].
To address the above problem, several server-side adaptive
streaming techniques have been proposed [17]. In addition to
the client-side and server-side adaptive streaming techniques,
several other solutions based on proxies or particular network
devices [18] have been devised.

Network-assisted streaming rate optimization can set
streaming rates according to whole network and applica-
tion requirements. As mentioned above, SDN techniques
make network-assisted adaptive streaming feasible. In recent
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years, several SDN-based streaming rate optimization solu-
tions (e.g., [9], [10], and [19]) have been proposed.
Georgopoulos et al. [9] presented an OpenFlow-enabled sys-
tem where an orchestrating module explicitly informed the
DASH players of the representation they had to select to
achieve user-level fairness in an adaptive video streaming
environment. In [19] Kleinrouweler et al. proposed a DASH-
aware networking architecture based on SDN. In that archi-
tecture, the controller assisted the players in selecting optimal
rates. Cofano et al. [10] explored several network-assisted
streaming strategies that relied on active cooperation between
video streaming applications and the network, and they
solved a max-min fairness optimization problem. In contrast
to the existing SDN-based streaming rate optimization solu-
tions, our solution strives to arrange multipath-based stream-
ing rates using a particular model. In addition, our approach
aims to solve a different optimization problem.

Because multipath-based method can effectively improve
video delivery performance, it has been extensively
researched [11], [12], [20]–[22]. Chen et al. [21] performed
experimental measurements on various applications using
single-path TCP, two-path MPTCP and four-path MPTCP,
and they showed that MPTCP could be reasonably used for
video streaming. In [12], Han et al. proposed a multipath
framework for DASH streamingwith awareness of users’ net-
work interface preferences. In [20], Wu et al. investigated the
problems of using multihomed terminals to stream video on
mobile devices in a heterogeneous wireless network. In [11],
the authors studied a reliable adaptive multipath provisioning
method that allowed a steady flow of a significant portion of
the traffic along multiple paths. In [15], the authors proposed
an SDN-based dynamicmultipath routing technique. Further-
more, Doshi et al. [22] proposed a solution to compute k-max
min disjoint paths in SDN. Note that it is easier to implement
multipath-based streaming in the SDN environment because
different paths can be distinguished by the combination of
various types of identifiers (including IP address and port).
In the existing multipath-based streaming solutions, the mul-
tiple paths for a sender-receiver pair do not differ in delivering
video data and are deployed at the network layer. In con-
trast, our solution performs differentiated multipath delivery
and implements multipaths at the network and application
layers. Additionally, the existing multipath-based streaming
solutions do not study the global streaming rate orchestration,
which is one of the main concerns in this article.

III. ARCHITECTURE AND MODEL
A. SYSTEM ARCHITECTURE
Fig. 1 describes our proposed network-assisted video stream-
ing rate optimization solution, called ESRO. In ESRO,
the video data are delivered to a receiver based on a par-
ticular multipath delivery model, i.e., the DMD model. The
delivery paths in this model can be classified into two types,
i.e., MDPs and ADPs. The latter are built at the applica-
tion layer with the assistance of special servers named rate

FIGURE 1. System architecture of our proposed solution.

enhancement proxies (REPs) that are deployed at dispersed
locations in the network. The video flow along the MDP is
called the main video flow, and the video flow along an ADP
is called an auxiliary video flow. We further introduce the
DMD model in detail in the next section. Similar to many
content distribution systems (e.g., [23]), each video file is
divided into many chunks. These chunks are identified by
their sequences. ESRO uses the SVC technique to encode the
video data. We reasonably assume that the clients can cache
the received video data.

The ESRO system includes the following seven compo-
nents: network topology management, link capacity man-
agement, traffic monitoring, streaming rate optimization,
video flow management, REP management and auxiliary
flow control. ESRO obtains network topology using the net-
work topology management component, determines the link
capacity using the link capacity management component, and
assesses the link traffic conditions using the traffic monitor-
ing component. The video flow management component is
responsible for managing video sessions’ delivery paths and
bandwidth requirements corresponding to layers of different
quality; the REP management component is responsible for
recording REPs and periodically verifying that REPs remain
alive using heartbeat messages. The auxiliary flow control
component is responsible for reducing the rates of auxiliary
video flows by using the even reduction rule so that the sum
of bandwidth consumed by auxiliary video flows and other
flows at each link does not exceed a designated threshold.
Because ADPs usually consume more bandwidth resources
than do other paths, the above process helps improve the
network accommodation capability.

Our proposed solution is not designed to set initial rates
for video sessions; instead, it globally optimizes the rates
of existing video sessions on demand. Thus, it overcomes
the common scalability problem of the centralized method.
The initial video streaming rate can be determined by the
existing solutions (e.g., the DASH method [2]). The stream-
ing rate optimization component periodically assesses the
video streaming rate optimization conditions. If some video
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sessions do not attain the expected high quality levels,
this component globally orchestrates video streaming rates
according to current network and application conditions,
as described in Section IV. The streaming rate optimization
scheme computed in the above procedure is implemented by
notifying the relevant video senders to make the correspond-
ing rate adjustments.

In the following part, we discuss the implementation of
the ESRO system. The streaming rate optimization, REP
management and auxiliary flow control can be easily imple-
mented because they are performed at the application layer.
Using the knowledge of the network topology and routing
policy, video flow management can also be implemented.
In SDN, a logically centralized controller manipulates
network behaviors through a communication interface
called a southbound interface [24]. Therefore, video flow
management can be implemented more easily. In traditional
networks, it is not easy to obtain necessary network con-
ditions, including network topology and link capacity, and
monitor the traffic at links. However, the three related com-
ponents can be easily implemented in the SDN environ-
ment. Existing SDN controllers (e.g., OpenDaylight [25])
have implemented topology management. Link capacity
management can be easily implemented based on Open-
Flow, a popular communication interface of SDN. In the
OpenFlow switch specification [26], the port description
request OFPMP_PORT_DESCRIPTION enables the con-
troller to obtain a description of all the standard ports
of the OpenFlow switch. The reply body includes a field
max_speed, which denotes maximum bitrate of the port.
Thus, the link bandwidths can be obtained based on the
OFPMP_PORT_DESCRIPTION request and the reply to it.
The link traffic monitoring methods have been explored by
many studies [7], [8]. These methods can be used in ESRO.
Though the ESRO system can be easily implemented in
the SDN environment, it is not exclusively limited to that
environment. In fact, the ESRO system can be conveniently
deployed in any network if the necessary network conditions
can be obtained by some method.

B. THE DMD MODEL
As introduced previously, the DMDmodel employs two types
of video delivery paths, i.e., MDPs and ADPs. Each main
or ADP is associated with a designated sender-receiver pair,
as shown in Fig. 2. The MDP can be built by an existing
unicast routing protocol that aims tominimize the path length.
Note that the shortest unicast routing protocols (e.g., open
shortest path first [27]) have been widely studied. Video
delivery based on an ADP uses either TCP or UDP. In this
article, we only consider TCP-based delivery because of
reliability. Note that the maximum rate of a TCP connection
is limited by an existing solution (e.g., [28]) to ensure that a
rate allocation scheme operates correctly.

Functionally, the ADPs can be built at the network layer by
a revised multipath routing solution, in which ADPs should
be selected to avoid the links used in the correspondingMDP.

FIGURE 2. Multipath-based video delivery.

However, to solve the multipath number restriction, we only
consider building ADPs at the application layer in this article.
For an ADP, we use a forwarding sequence to denote the
sequence of addresses of the application-layer nodes (REPs
and the receiver) in the ADP. When the video sender delivers
data along an ADP, it sends data packets, each of which
contains the corresponding forwarding sequence, to the first
REP in the ADP. When an REP receives a data packet,
it retrieves the second address of the forwarding sequence in
the data packet and deletes the first address (i.e., the address
of that REP). Then, it forwards modified data packets to
the next node, which is identified by the second address
mentioned above, in the ADP. The above procedure continues
until the data packet arrives at the receiver. To reduce the
delay of data delivery based on an ADP and limit the extra
load caused by the forwarding sequences embedded in data
packets, the maximum number of the REPs in an ADP is
limited by parameter ThREP. This parameter is set to a low
value. An example value could be ThREP = 3. To avoid an
excessively high reordering overhead, the maximum number
of ADPs for a sender-receiver pair is limited by the parameter
Thadp, which can be configured based on a practical test.
For simplicity, the router or the switch to which a video

sender or receiver is connected is called video access node.
We use the REP-based relay path to denote a path from a
video access node to another video access node that con-
tain at least one REP and at most ThREP REPs. Because
the network, apart from the host nodes, is relatively stable,
the REP-based relay paths for video access node pairs can be
computed in advance. Thus, the ADPs for a sender-receiver
pair can be immediately obtained according to the corre-
sponding REP-based relay paths, if necessary. Because ThREP
is set to a low value, all REP-based relay paths from a video
access node to another video access node can be computed
within an acceptable time. To further select at most Thadp
REP-based relay paths with good congestion avoidance capa-
bility, we define a link overlap avoidance degree. Such a
degree for an REP-based relay path ς associated with another
REP-based relay path ς ′ is denoted by ρ(ς, ς ′) and is defined
as

ρ(ς, ς ′) = |L(ς ′)− L(ς ) ∩ L(ς ′)|, (1)
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where L(X ) indicates the set of links in path X . Assume that
ξ1 denotes the MDP that contains two video access nodes A
and B; that 4 represents the set of REP-based relay paths
from A to B; that ξi+1 (1 ≤ i ≤ Thadp) indicates the
ith selected REP-based relay path from A to B; and that
Ed(ς, i) = min{ρ(ς, ξj)|1 ≤ j ≤ i}. Then, we can select the
ith REP-based relay path according to the following steps:
find a path ς among 4i (4i = 4− {ξ2, ξ3, . . . , ξi}) such that
Ed(ς, i) = max{Ed(ς ′, i)|ς ′ ∈ 4i}; if Ed(ς, i) > 0; then, ς
becomes the ith selected REP-based relay path.

In the DMD model, MDPs and ADPs are used by dif-
ferent strategies. ADPs are used to improve the quality of
video streams only if the expected streaming rates cannot be
obtained over MDPs. Because the latter are constructed using
the shortest unicast routing, video data distribution based
on MDPs obviously improves the network accommodation
capability. To avoid potential network congestion, an ADP
and the corresponding MDP should share as few links as
possible. The above feature and the application layer-based
implementation clearly cause the ADP to be longer than the
corresponding MDP. As a result, an auxiliary video flow
should be controlled when it competes for the bandwidth
resources with a main video flow. The above description
implies that a global streaming rate optimization is necessary
for optimizing the tradeoffs among video streaming qual-
ity, network accommodation capability and video delivery
stability. We will further describe the global streaming rate
optimization in Section IV-A.
A potential weakness of multipath-based video deliv-

ery entails reordering overhead. Several previous studies
(e.g., [29]) have shown that reordering overhead remains
acceptable. Another concern is the difference in delays
between different video delivery paths. This problem can
be solved using content caching, as most video delivery
solutions (e.g., [30]) do. In this article, we only consider
unicast-based video streaming. However, the DMD model
can also be applied to optimize multicast-based video stream-
ing rates when the main delivery path is replaced by the
multicast tree.

IV. CONSTRAINED MAX-UTILITY RATE ORCHESTRATION
A. PROBLEM DESCRIPTION
We first introduce the utility function used for video
streaming rate optimization. Several previous studies
(e.g., [31]–[33]) use a weighted logarithmic function to
express the utility, hereafter called the rate utility, correspond-
ing to a designated rate of a video session (i.e., the video
delivery from the sender to the receiver). Specifically, the util-
ity of rate ri associated with session i is denoted byUi(ri) and
computed using Eq. (2). Note that ωi denotes the weight of
session i. The weighted logarithmic function ensures that the
marginal rate utility of a flow decreases as the throughput
increases, and recent advancements in end-to-end adaptation
of application flows (e.g., adaptive video streaming) allow
modeling most application traffic as elastic [32]. Note that
the rate utility can be considered as to be continuous when

TABLE 1. Notation Used in Streaming Rate Orchestration

the content delivered in advance can be cached though video
quality levels require discrete rates.

Ui(ri) = ωi × log ri. (2)

As described above, our proposed solution adopts the SVC
encoding technique. In SVC, the base layer is characterized
by the lowest playable quality. In this article, the rate cor-
responding to the base layer is called the minimum-demand
rate. We use LRi to denote the minimum-demand rate of
session i. For convenience, we list the notation used in stream-
ing rate orchestration in Table 1. Note that video sessions
and links are numbered in this article. Sometimes, we use a
number to refer to a video session or a link. The logarithmic
function has a feature whereby a small difference in the rate
value near 0 leads to a very large difference in the rate util-
ity, which is not appropriate for practical utility evaluation.
To cope with this problem, we assume that log(LRi) ≥ 1 for
any video session i. This assumption can be easily satisfied
by adjusting the unit of measurement of streaming rates so
that log(LRi) ≥ 1.
Twomost popular optimization objectives of video stream-

ing rate optimization are max-min fairness [9], [10] and
utility-maximization [33]–[35]. In this article, we present a
novel optimization problem called CMUMRO, specified in
terms of the DMD model and the rate utility defined by
Eq. (2). The CMUMRO problem includes the following two
subproblems: minimum-demand rate orchestration (MDRO)
and differentiated multipath rate orchestration (DMRO).

The MDRO subproblem entails maximizing the rate utility
corresponding to the allocated minimum-demand rates based
onMDPs and all available bandwidth resources. Let ri denote
the main delivery rate (i.e., the rate of the main video flow)
of session i and r (r = [r1, r2, . . . , rns ]

T ) denote the main
delivery rate vector. Formally, the MDRO subproblem can be
described as

maximize
r

ns∑
i=1

µ(i, ri) · Ui(ri)

s.t.
ns∑
i=1

K (i, j)ri ≤ B̂j, ∀j (1 ≤ j ≤ nl) (3)
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ri ≥ 0, ∀i (1 ≤ i ≤ ns) (4)

ri ≤ LRi, ∀i (1 ≤ i ≤ ns) (5)

where K (i, j) is defined as

K (i, j) =

{
1 if i’s MDP includes link j,
0 otherwise.

(6)

The function µ(i, ri) is defined as

µ(i, ri) =

{
1 if ri ≥ LRi,
0 otherwise.

(7)

.
According to the definition, MDRO attempts to achieve a

weighted fairness because it uses at most a minimum-demand
rate for each video session based on all available bandwidth
resources. In other words, MDRO offers the lowest playable
quality for as many video sessions as possible. If the video
sessions have the sameweight, the optimal solution ofMDRO
is max-min fair, yet such a scheme may not be the optimal
solution ofMDRO becauseMDROmaximizes the rate utility.
As a result, we suggest that MDRO can further improve
the video quality. MDRO is also different from the common
utility maximization problem because the streaming rate in
MDRO is, in terms of Eq. (7), a choice between two desig-
nated values.

DMRO sets video streaming rates globally based on
all delivery paths and the available bandwidth resources
except for those used by the rate scheme computed by
MDRO. It aims to obtain a desired tradeoff among high
rate utility, low bandwidth consumption and high video
delivery’ stability by varying the main video flow weight
α (α ≥ 1). Let xi,k denote the streaming rate of the
kth delivery path for video session i and define x =
[x1,1, x1,2, . . . , x1,δ1 , . . . , xnr ,1, xnr ,2, . . . , xnr ,δnr ]

T . Note that
xi,1 is the MDP of video session i. Formally, the DMRO
problem can be expressed as

maximize
x

ns∑
i=1

U (ri + αxi,1 +
δi∑
k=2

xi,k )

s.t.
ns∑
i=1

( δi∑
k=1

λ(i, j, k)xi,k + K (i, j)ri
)
≤ B̂j,

∀j (1 ≤ j ≤ nl), (8)
δi∑
k=1

xi,k + rj ≤ UBi,∀i(1 ≤ i ≤ ns), (9)

xi,k ≥ 0,∀i, k(1 ≤ i ≤ ns, 1 ≤ k ≤ δi), (10)

where

λ(i, j, k) =

{
1 if j is in the kth delivery path of i,
0 otherwise.

(11)

Note thatUBi is slightly greater than the rate corresponding
to the highest streaming quality of video session i and ri is the
rate of video session i in the rate allocation scheme computed
by the DMRO.

B. MINIMUM-DEMAND MAIN DELIVERY RATE
ORCHESTRATION
In this section, we introduce how to solve the MDRO prob-
lem, which maximizes the utility corresponding to the allo-
cated minimum-demand rates for MDPs based on all avail-
able bandwidth resources. We prove the following lemma.
Lemma 1: The MDRO problem is NP-hard.
Proof: Consider the following case of the MDRO prob-

lem: all delivery paths include the same link l, and l cannot
accommodate all video sessions; the links with the exception
of l can each accommodate all video sessions. We define an
extended weight ω+i by ω+i = ωi log ri for video session i.
Thus, the MDRO problem in the above case becomes the
knapsack problem, which is NP-hard. This lemma has thus
been proven.

We present an approximate algorithm for solving the
MDRO problem, as shown in Algorithm 1. A rate allocation
scheme, denoted by r, is feasible if it satisfies the constraints
(3)-(5). Algorithm 1 uses a rate increase priority and a rate
decrease priority. The rate increase priority of video session i
associated with link set C is denoted by ψ(i, C) and defined
as

ψ(i, C) =
ωi · log(LRi)∑
l∈C

K (i, j)
. (12)

The rate decrease priority of video session i associated with
rate allocation vector r is denoted by ϕ(i, r) and defined as

ϕ(i, r) =

∑
j∈4i

max{0, B̂j + ri −
ns∑
k=1

K (k, j)rk}

ωi · log(LRi)
. (13)

Algorithm 1 first sets the minimum-demand rates for video
sessions according to the rate increase priority, as shown in
Lines 1-6. According to Eq. (12), the above process helps
improve the rate utility. When the remaining bandwidth
resources are insufficient for providing minimum-demand
rates for more video sessions, Algorithm 1 attempts to replace
some minimum-demand rates with a minimum-demand rate
with a larger absolute rate utility, as shown in Lines 7-14.
In the above procedure, the minimum-demand rate replace-
ment is performed in terms of the rate decrease priority.
Considering Eq. (13), we observe that the rate decrease
priority can effectively reduce the replacement cost. The
steps in Lines 7-14 can improve the rate utility by fully
using the marginal bandwidth resources, which is a beneficial
addition to the utility maximum-increasing rate arrangement
(Lines 1-6). The time complexity of Algorithm 1 depends
on the computation of the rate increase and rate decrease
priorities. According to Eqs. (12) and (13), the time com-
plexity of Algorithm 1 can be expressed as O(ns · nl). This
time complexity is relatively low, and it facilitates quick
adjustments of video streaming rates.

Assume that χ (C) denotes the set of video sessions passing
through a link belonging set C computed in Line 1. Set χ (C)
can be divided into several disjoint subsets such that (1)
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Algorithm 1Minimum-Demand Rate Arrangement
Input: MDP for each session i (1 ≤ i ≤ ns).
Output: r.

1 C ← {j|1 ≤ j ≤ nl,
ns∑
i=1

K (i, j)LRi > B̂j}.

2 For each video session i, compute the rate increase
priority ψ(i, C); r← 0.

3 Sort video sessions in the descending order of rate
increase priority. /* Assume that the
sorted sessions are denoted by
q1, q2, . . . , qns */

4 for i=1 to ns do
5 rqi ← LRqi .
6 if r is infeasible then rqi ← 0.

7 W ← {i|1 ≤ i ≤ ns, ri = 0}.
8 Sort the sessions inW in the descending order of rate

increase priority. /* Assume that the
sorted sessions are denoted by
q′1, q

′

2, . . . , q
′

|W | */

9 for i = 1 to |W| do
10 V ← {j|rj 6= 0, 1 ≤ j ≤ ns}.
11 r′← r, rq′i ← LRq′i , g← ωq′i

· log(LRq′i ).
12 while r is infeasible and V 6= ∅ do
13 Find the video session k among V with the

maximum rate decrease priority ϕ(k, r);
V ← V − {k}.

14 p← ωk · log(LRk ).
15 if p < g then rk ← 0, g← g− p.

16 if r is infeasible then r← r′.

each video session of χ (C) is in a unique subset; (2) for any
two video sessions in different subsets, the MDPs of these
two sessions contain no identical links; and (3) the above two
conditions do not hold if any two subsets are combined. The
above subset partition is called the maximum rate irrelevance
partition. We use 9(C) to denote the combination of the
subsets in the maximum rate irrelevance partition of χ (C).
Let Q(i) denote the set of links in the MDP of session i.
We reasonably assume that the available bandwidth of each
link is sufficient for video streaming with the highest quality.
Then, we obtain the following lemma.
Lemma 2: The approximation ratio of Algorithm 1 is
1

|MAXD|+1 , where MAXD = max{|C ∩
⋃
i∈P

Q(i)|
∣∣P ⊆ 9(C)}.

Proof: For link l in C, we call video session i the
overflow session of l if i is the first session that cannot be
successfully allocated, in Lines 5 and 6, a minimum-demand
rate because of the bandwidth limitation of l. For any subset
P ⊆ 9(C), we useHP to denote the set of video sessions that
are successfully allocated minimum-demand rates in Lines
5 and 6, and use DP to denote the set of overflow sessions of
the links in C∩

⋃
i∈P

Q(i). Let optP and algP denote the optimal

(i.e., the largest) rate utility and the rate utility computed by

Algorithm 1, respectively. We have

optP ≤
∑
i∈HP

ωi · log(LRi)+
∑
j∈DP

ωj · log(LRj) (14)

From Algorithm 1, we can deduce that

algP ≥ max
{ ∑
i∈HP

ωi · log(LRi),

max{ωj · log(LRj)|j ∈ DP}
}

(15)

Using Eqs. (14) and (15), we obtain
optP
algP

≤
1

|DP|+1
≤

1
|MAXD|+1 . Because the rate allocation schemes for the subsets

of 9(C) are independent of each other, we have
opt
alg
≤

1
|MAXD|+1 . Thus, this lemma has been proven.

C. UTILITY-ENHANCED MULTIPATH RATE
ORCHESTRATION
Algorithm 1 allocates minimum-demand rates to video ses-
sions. Based on the result of the minimum-demand rate allo-
cation, video streaming rates are enhanced using the multi-
paths to solve the DMRO problem. According to the problem
description, DMRO is equivalent to minimizing the following
function:

f (x) = −
ns∑
i=1

Ui(ri + αxi,1 +
δi∑
k=2

xi,k ). (16)

Note that in this section r is a constant vector that represents
the minimum-demand rate allocation scheme computed by
Algorithm 1. We can derive the following lemma.
Lemma 3: f (x) a is convex function.
Proof: We first prove that fi(x) = −Ui(ri + αxi,1 +

δi∑
k=2

xi,k ) is a convex function. Here, ri is a constant. We can

deduce that the Hessian Matrix Hi (Hi =
`2 fi(x)) is

Hi =
1
X2 ·


α2 α · · · α

α 1 · · · 1
...

...
. . .

...

α 1 · · · 1


δi×δi

, (17)

where X = ri + αxi,1 +
δi∑
k=2

xi,k . We observe that Hi = Bi ·

(Bi)T , where Bi is defined as

Bi =
1
X
·


α 0 · · · 0
1 0 · · · 0
...
...
. . .

...

1 0 · · · 0


δi×δi

. (18)

Thus, we obtain that
`2 fi(x) is a positive semidefinite

matrix. The sum operation preserves convexity. This lemma
has thus been proven.

Because f (x) is a convex function and the definition
domain of the DMRO problem is a convex set, the optimal
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solution of this problem can be computed by convex opti-
mization, which has been widely studied. We can use an
existing method to solve this problem. Specifically, in this
article, we apply the barrier method to solve the DMRO
problem. We use Newton’s method to minimize a function
of the form

φ(x) = −t
ns∑
i=1

U (ri + αxi,1 +
δi∑
k=2

xi,k )−

nl∑
j=1

log
(
B̂j −

ns∑
i=1

( δi∑
k=1

λ(i, j, k)xi,k + K (i, j)ri
))

−

ns∑
i=1

log(UBi − ri −
δi∑
k=1

xi,k )−
ns∑
i=1

log(
δi∑
k=1

xi,k ),

(19)

where t is an accuracy parameter. Note that convex optimiza-

tion using the barrier method is 1
t

ns∑
i=1
δi-suboptimal [36].

In the optimization procedure, the Newton step 1xnt is
determined by solving the linear equations

(D0 + ATD1A+ D2 + D3)1xnt = −g, (20)

where g is the gradient of φ(x).

D0 = tdiag
(∂2f
∂x21

,
∂2f

∂x22
, . . . ,

∂2f

∂x2Ns

)
. (21)

D1 = diag
(
Y 2
1 ,Y

2
2 , . . . ,Y

2
nl

)
, (22)

where Yj = B̂j −
ns∑
i=1

( δi∑
k=1

λ(i, j, k)xi,k + K (i, 1)ri
)
.

D2 = diag
( 1

Z2
i

,
1

Z2
i

, . . . ,
1
Z2
ns

)
, (23)

where Zi = UBi − ri −
δi∑
k=1

xi,k .

D3 = diag
( 1( δ1∑

k=1
x1,k

)2 , . . . , 1( δns∑
k=1

xns,k
)2
)
. (24)

More details about the Newton’s method and the
related information on convex optimization can be obtained
from [36].

Let f ′(x) = −
ns∑
i=1

Ui(ri + xi,1 +
δi∑
k=2

xi,k ). For a rate alloca-

tion scheme x∗ computed by the barrier-based optimization
method, we refer to the value of −f ′(x∗) as real utility. The
weight α helps obtain a tradeoff among high rate utility, low
bandwidth consumption and high video delivery stability.
However, it reduces the real utility. Let algm denote the real
utility of the rate allocation scheme computed by the barrier-
based optimization method, and optm denote the optimal real
utility of the rate allocation scheme computed without using
the weight α. We derive the following lemma.

Lemma 4: Under the assumption that the total rate allo-
cated to each video session i is not less than LRi,

optm
algm

is not

larger than t(logα+1)
ns∑
i=1
δi

.

Proof: Let x∗ denote the rate allocation scheme com-
puted by the barrier-based optimization method. Assume that
such a method obtains the optimal solution of the DMRO
problem. We use oalgm to denote the real utility correspond-
ing to the above optimal solution. We have

optm ≤ −f (x
∗) ≤

ns∑
i=1

Ui(αri + αx∗i,1 + α
δi∑
k=2

x∗i,k )

≤

ns∑
i=1

ωi logα + oalgm (26)

As noted in Section IV-A, log(LRi) ≥ 1 for any video
session i. Under the assumption that the total rate allocated
to each video session i is not less than LRi, we can deduce
that

optm
oalgm

≤

Ns∑
i=1
ωi logα

oalgm
+ 1 ≤ logα + 1.

(27)

Because convex optimization using the barrier method is
1
t

ns∑
i=1
δi-suboptimal, we have optm

algm
≤

t(logα+1)
ns∑
i=1
δi

. Thus, this

lemma has been proven.
Based on Lemma 4, we note that α can increase the use of

MDPs with a relatively low influence on the real utility. Note
that t is a parameter that can be configured in terms of the
expected accuracy requirement.

V. EXPERIMENTAL RESULTS
In this section, we evaluate our proposed ESRO solution
based on simulations and real-world Internet experiments.

A. SIMULATION RESULTS
Our simulations used a 197-node topology described by
the Cogentco dataset in the Internet Topology Zoo [37].
The nodes in the 197-node topology are called routing
nodes in this article. We generated 50 host nodes and
5 REP nodes that were connected to random routing nodes.
The minimum-demand rates for video sessions were set to
200 Kbps; the maximum rate for a video session was ran-
domly selected among 8 Mbps, 2 Mbps and 1 Mbps, accord-
ing to the maximum rates corresponding to video resolutions
of 1080p, 720p and 360p. The available bandwidth of each
link, connecting two routing nodes, was set to a random value
between 20 Mbps and 500 Mbps; the available bandwidth of
each link connecting a routing node and a host node was set
to 50 Mbps; the available bandwidth of each link connecting
a routing node and an REP node was set to 100 Mbps. Note
that the maximum available bandwidth of a link is obviously
less than practical link capacity because our solution does
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FIGURE 3. Comparison of the minimum-demand failure ratio.

FIGURE 4. Comparison of the rate utility.

not schedule the traffic caused by other applications includ-
ing real-time video streaming applications and non-video
applications. The weights of video sessions were assigned
to be integer values between 1 and 5. By default, the main
delivery weight α was set to 1.5. The data points shown in
the Figs. 3, 4, 5 and 6 represent averages over the 100 runs
with a 95% confidence level.

We compare the performance of minimum-demand rate
allocation of ESRO with QFF [9] and the rate allocation
solution used in [33]. QFF optimizes the rates by themax-min
fairness rule, while the rate allocation solution used in [33],
called MPVRM for convenience, maximizes the rate util-
ity. Note that MPVRM can be used in both unicast-based
and multicast-based video streaming applications. We use
the minimum-rate failure ratio to denote the ratio of the
number of video sessions with rates that are lower than the
minimum-demand rate to the total number of video sessions.
Fig. 3 depicts our simulation results. In each run of the
simulation shown in Fig. 3a, the available link bandwidths
were independently configured, but the sender-receiver pairs
were fixed; in each run of the simulation shown in Fig. 3b,
the sender-receiver pairs were independently selected, but
the available link bandwidths were fixed. The simulation
results show that ESRO has a clearly lower minimum-rate
failure ratio than that of MPVRM. The main reason is
that our proposed solution firstly attempts to arrange the

FIGURE 5. The relation between rate utility and α.

minimum-demand rates, based on all the available band-
width resources, for all the sender-receiver pairs. Because the
max-min fairness does not involve effectively avoiding the
congestion, the minimum-demand failure ratio with QFF is
higher than that with ESRO. However, the max-min fairness
also helps reduce the minimum-rate failure ratio. As a result,
the minimum-demand failure ratio with QFF is not evidently
higher than that with ESRO, as Fig. 3 shows. Note that ESRO
mainly optimizes the rate utility.

We compare the performance of the utility optimization
of ESRO with that of QFF, MPVRM and a multipath-based
solution proposed in [22], called SDNMP for convenience.
In the simulation of [22], the rates for sender-receiver pairs
were allocated in a random order, and the rates corresponding
to the two paths of a sender-receiver pair are allocated evenly
until one path cannot be allocated a higher rate because of
the limited available bandwidth resources. In our simula-
tions, the available bandwidth resources and sender-receiver
pairs are set as in the simulations on minimum-demand rate
allocation. Fig. 4 presents our simulation results. From this
figure, we note that the average rate utility of our proposed
solution appears to be higher than those of other solutions.
The above advantage of our solution can be explained as
follows: Because the auxiliary paths in our solution are built
at the application layer, more delivery paths can be built for
each sender-receiver pair in our solution, which indicates that
our solution has higher resource utilization capability; addi-
tionally, the global streaming rate optimization is superior in
improving the whole rate utility.

We investigated the influence of the main delivery weight
α. In these experiments, the available bandwidth resources
and the sender-receiver pairs were independently reconfig-
ured in each run. Figs. 5 and 7 depict the simulation results.
In Fig. 7, the main delivery ratio represents the ratio of the
sum of the rates corresponding to MDPs to the total rate.
From Fig. 5, the average rate utility slightly decreases as α
increases. However, the main delivery ratio has an obvious
increase with increasing α, as shown in Fig. 7. In our solution,

A =


λ(1, 1, 1) λ(1, 1, 2) · · · λ(1, 1, δ1), . . . , λ(ns, 1, 1) λ(ns, 1, 2) · · · λ(ns, 1, δns )
λ(1, 2, 1) λ(1, 2, 2) · · · λ(1, 2, δ1), . . . , λ(ns, 2, 1) λ(ns, 2, 2) · · · λ(ns, 2, δns )

...
...

...
...

...
...

...

λ(1, nl, 1) λ(1, nl, 2) · · · λ(1, nl, δ1), . . . , λ(ns, nl, 1) λ(ns, nl, 2) · · · λ(ns, nl, δns )

 (25)
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FIGURE 6. The relation between main delivery ratio and α.

FIGURE 7. Average data arrival rates associated with sender-receiver
pairs and delivery paths.

the MDP-based video delivery forwards data packets at the
network layer, while the ADP-based delivery forwards data
packets at the application layer. The data forwarding at the
application layer needs more operations than the data for-
warding at the network layer, which indicates that the data
flow along aMDP is more stable than that along an ADP. As a
result, the above results show that our solution can obtain a
desired tradeoff between rate utility and delivery stability by
using the main delivery weight.

B. INTERNET EXPERIMENT
We deployed 5 cloud virtual machines at different locations,
2 from EC2 and 3 from the Alibaba Could. These virtual
machines were used as REPs. We also deployed 30 nodes
(physical machines and virtual machines) at different loca-
tions, and generated 15 sender-receiver pairs based on those
30 nodes. We arranged an ADP including one REP and
an ADP including 2 REPs. Each sender periodically sent
UDP data packets to the corresponding receiver at a rate of
5 Mbps along the MDP and the two ADPs. We observed the
data arrival rates at receivers, i.e., the data receiving rates
of the receivers. Our experiments lasted for a week. Fig. 7
presents our experimental results. Note that each average data
arrival rate in Fig. 7 indicates the average value of the arrival
rates associated with a designated sender-receiver pair and
a designated delivery path. From Fig. 7, the arrival rate of
the data delivered along a MDP is higher than the arrival
rates of the data delivered along corresponding ADPs, which
indicates that the ADP-based video delivery can effectively
avoid network congestion. In addition, we notice that the
ADP-based video delivery has high arrival rates. The above
result indicates that the ADP-based video delivery can well

use the network resources and effectively enhance the stream-
ing rates in real-world networks.

VI. CONCLUSION
In this article, we proposed a multipath-based stream-
ing rate optimization solution. In contrast to the existing
multipath-based streaming solutions, our solution uses a dif-
ferentiated multipath delivery model, which includes a main
delivery path and multiple auxiliary paths. The main delivery
path usually is the shortest path, which is helpful to improve
the network accommodation capability. The auxiliary paths
are built at the application layer, thereby overcoming the
problem of multipath deployment restriction. Based on the
proposed multipath delivery model, we studied a global
multipath-based streaming rate optimization problem that
fully considers the tradeoff among video streaming quality,
network accommodation capability and video delivery sta-
bility. The studied optimization problem includes two sub-
problems, i.e., MDRO and DMRO. The MDRO subproblem
is NP-hard, and we solved it approximately using an approx-
imate algorithm. We solved the DMRO subproblem with a
convex optimization technique.

In this article, we only considered unicast-based stream-
ing rate optimization. In our future work, we will study the
global multipath-based streaming rate optimization problem
for multicast-based video applications.
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