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ABSTRACT Google proposed a bottleneck bandwidth round-trip propagation time (BBR) for TCP to replace
the loss-based congestion control algorithms, such as Reno and CUBIC. Unlike the loss-based algorithms,
BBR models a network path from source to destination and dynamically controls the sending rate using
control parameters, such as pacing rate, congestion window, and quantum to achieve high throughput
and low latency. However, many studies have reported performance issues in BBR operation, such as
excessive packet loss in shallow buffers, the unfairness among different RTT flows, the unfairness with
loss-based algorithms, and so on. Google is developing a new version of BBR, BBRv2, to resolve these
performance issues. In this study, we evaluate and compare two versions of BBR on a Mininet emulator and
a physical testbed, focusing on whether the BBRv2 alpha can alleviate the performance issues of BBRv1 and
whether other novel issues will arise in BBRv2. The experiment results show that BBRv2 improves the
unfairness and aggressiveness in small buffer less than 1 BDP. Moreover, multiple BBRv2 flows not only
show better fairness in bandwidth sharing, but also reduce the amount of packet retransmissions. However,
we observed that the challenging issues such as RTT unfairness, coexistence with loss-based algorithms, and
synchronization between BBRv2 flows still exist. This study explores BBRv2’s current behavior in various
network scenarios and compares the performance of BBRv2 with the BBRv1 congestion control algorithm.

INDEX TERMS TCP congestion control, BBRv1, BBRv2, fairness, retransmission.

I. INTRODUCTION
The TCP congestion control was introduced in 1980s, and it
interpreted packet loss as a network congestion [1]. However,
on the current Internet, as the bandwidth and buffer sizes
have continuously evolved, the relationship between packet
loss and congestion has become more tenuous. In particular,
when the bottleneck buffer sizes are large, the loss-based
congestion control, such as Reno [2] and CUBIC [3], causes
longer queueing delay due to bufferbloat [4]. When the
bottleneck buffer sizes are small, the loss-based congestion
controlmisinterprets short-term loss as a signal of congestion,
leading to throughput degradation [5]. In 2016, Google
proposed a bottleneck bandwidth and round-trip propagation
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time version 1 (BBRv1) to replace the loss-based conges-
tion control algorithms, thus attempting to achieve high
throughput while limiting queueing delay [6]. In contrast to
traditional congestion control algorithms, BBRv1 measures
the maximum delivery rate (BtlBw) and the minimum
round-trip time (RTprop), and models the network path
using these parameters. Based on the bandwidth delay
product (BDP), which matches the product of BtlBw
and RTprop, three control parameters are calculated to
control the sending rate: pacing rate, congestion window,
and quantum. Therefore, BBRv1 is called a model-based
or rate-based congestion control algorithm. However,
many studies have found the following issues in BBRv1
behaviors:
• Aggressive startup operation: In startup phase,
the consecutive increase in the sending rate creates
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a long-standing queue; thus, it completely suppresses
existing TCP flows. [7].

• Aggressive bandwidth probing: Hock et al. [8]
reported that each BBRv1 flow overestimates the deliv-
ery rate in the coexistence of multiple BBRv1 flows,
resulting in the creation of a standing queue link of
more than 1.5 BDP. In particular, BBRv1 flows cause
excessive packet loss when the buffer sizes are smaller
than 1 BDP and they cannot avoid this congestion. This
aggressiveness in bandwidth probing suppresses other
TCP flows, resulting in unfairness in bandwidth sharing.

• round-trip time (RTT) unfairness: Hock et al. [8] also
reported that if BBRv1 flows with different propagation
delays share a common bottleneck link, a long RTT flow
takes more bandwidth compared to a short RTT flow.
This is because a long RTTflow calculates a higher BDP,
and therefore, it injects more data into the network than
a low RTT flow.

• Unfairness with loss-based congestion control: Hock
et al. [8] and Scholz et al. [7] observed that the through-
put between BBRv1 and loss-based congestion control
algorithms depends on the bottleneck buffer size.

To alleviate these operating issues in BBRv1, Google intro-
duced a second version of BBR, called BBRv2, in 2018 [9],
which is still under development at the time of writing.
Table 1 summarizes the differences between the two versions
of BBR. BBRv2 calculates the packet loss and ECN [10]
rates and uses them as the congestion signal. For example,
BBRv2 limits the inflight data using the maximum boundary,
called inflight_hi, when it detects packet loss and ECN
signals over a predefined threshold (loss_threshold
= 2%, ECN_threshold = 50%) [11]. In addition,
BBRv2 modifies the size of cwnd in ProbeRTT phase.
Drastic cwnd change in BBRv1’s ProbeRTT phase caused
fluctuation in throughput. Therefore, BBRv2 reduced the
cwnd by BDP/2 to alleviate the throughput fluctuation.
Google reported that BBRv2 improves the fairness with

the loss-based congestion control algorithm and reduces the
number of packet retransmissions when buffer sizes are
small. In particular, BBRv2 shows better performance in
bandwidth sharing and in reducing the standing queue using
ECN than that without using ECN [12]. Moreover, several
studies observed that BBRv2 mitigates the unfairness that
BBRv1 experienced, such as inter-protocol fairness and RTT
fairness [13]–[15]. However, recent studies have focused
on the BBRv2’s improvements compared to BBRv1 with-
out considering deterioration. Therefore, we investigate the
improvement of RTT fairness and the inter-protocol fairness
in coexistence with the loss-based congestion control algo-
rithm, and observed the issues of the performance degrada-
tion of BBRv2 compared to that of BBRv1.

We configure a Mininet emulator and a physical testbed
environment to perform the experiment, evaluate the through-
put, and trace the internal parameters, such as estimated bot-
tleneck bandwidth, congestion window, inflight data, packet
retransmission, and buffer backlog, to observe the behavioral

TABLE 1. Comparison of BBRv1 and BBRv2 [11].

characteristics in the two versions of BBR. Based on the
experimental results, we analyze whether the performance
issues in BBRv2 have been resolved and investigate the
new problems arising in BBRv2. The following are the key
observations from our experiments:
• BBRv2 controls the amount of inflight data using the
packet loss rate and ECN signal rate, resulting in a sig-
nificantly reduced the number of packet losses compared
to BBRv1.

• BBRv2 fails to quickly probe the available bandwidth
in a network environment where the bandwidth dramat-
ically changes, thus, leading to a low link utilization.

• If two identical BBRv2 flows enter the same bottleneck
link at different times, the convergence between the
throughput of two flows relies on the bottleneck buffer
size. With small buffers below 0.3 BDP, the throughput
of BBRv2 flows shows better intra-protocol fairness.
However, when buffer sizes are large enough, the flow
that started later cannot achieve fair bandwidth sharing.

• With small buffers of less than 1 BDP, the unfairness
between BBRv2 flows with different RTTs is alleviated
compared to that for BBRv1 and the number of packet
retransmissions greatly decreases. However, in case
where buffer sizes are large enough not to be affected
by the buffer overflow, a long RTT flow still occupies
more bandwidth than a short RTT flow.

• With buffers below 2 BDP, BBRv2 shows better
inter-protocol fairness with CUBIC than BBRv1. How-
ever, as the buffer sizes increase, CUBIC still occupies
more bandwidth, resulting in decreased inter-protocol
fairness.

The remainder of this paper is organized as fol-
lows. Section II reviews the related work, considering
BBRv1 issues and the current state-of-the art studies on
BBRv2. The BBRv2’s behavior is discussed in Section III.
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Section IV presents and analyzes the experimental results.
Finally, Section V summarizes and concludes the paper.

II. BBR CONGESTION CONTROL EVOLUTION
A. STANDARDIZATION OF BBR
At Internet Engineering Task Force-97 (IETF-97) [6], Google
presented BBR behavior, attempting to find the optimal oper-
ating point and providing experimental results to compare
BBR with CUBIC. Google noted that BBR outperforms the
traditional algorithms, such as CUBIC and Reno, in terms of
throughput and latency.

At IETF-98 [16], Google introduced three significant
changes that are considered to improve the performance of
BBR and stated various research topics and opportunities of
BBR. Furthermore, an experiment of fairness with CUBIC
and Reno demonstrated contradictory results based on the
bottleneck buffer size. In this meeting, Google sought to
modify the behavior of BBR to reduce latency and packet
loss, to coexist with loss-based congestion control in the
shallow buffers, and to mitigate the problem of RTT fairness
between BBR flows.

At IETF-99 [17], Google reported that the quick user
datagram protocol Internet connection (QUIC) on YouTube
is used by applying the BBR, and they published an Internet
draft for the estimation of the delivery rate [18] and BBR
congestion control algorithm [19].

At IETF-100 [20], Google reported that testing for BBRv2,
which changed the behavior of the algorithm, was in progress
to improve in problems reported in studies that followed
BBRv1’s release. The testing focused on improving the
performance of BBR by reducing the high retransmission rate
in the shallow buffer pointed out in BBRv1 and improving
inter-protocol fairness.

The changes to BBRv2 on IETF-102 [9] and IETF-104
[11] were ways to adjust bandwidth probe cycles to improve
the inter-protocol fairness, to leave extra space to reduce
packet loss and latency, to exit the startup phase faster, to limit
an interval of the ProbeRTT phase to 2.5 s, and to reduce a
cwnd to BDP/2 not the four packets during the ProbreRTT
phase.

At IETF-105 [12], Google released BBRv2 alpha/preview
open-source code to encourage researchers to dive in and help
evaluate and improve BBRv2. They described the improve-
ments to BBRv2 from BBRv1. BBRv2 improved coexistence
when the bottleneck was shared with Reno or CUBIC, and
it reduced the loss rate for the bottleneck buffer sizes of
less than 1.5 BDP. Moreover, it achieved high throughput
for a path with high degrees of aggregation and reduced the
throughput reduction in ProbeRTT.

At IETF-106 [22], Google ensured that BBRv2 suitable
as a general-purpose congestion control for LAN, WAN, and
data center. In particular, they tuned its performance to enable
full-scale rollout at Google and to improve the algorithm to
scale for large numbers of TCP flows

At IETF-109 [23], they introduced the BBR.Swift
approach, that uses delay as a congestion signal. BBR.Swift

is a congestion control algorithm scheme for a data center
applying a mechanism to accurately measure and separate the
network RTT and host delay of the Swift congestion control
algorithm [24]. They mentioned that BBR.Swift achieves
higher fairness among flows that use the same congestion
control algorithm and reduces the retransmission rate. More-
over, they stated that BBRv2 is under experimentation for
various proportional rate reduction (PRR) [25] responses in
loss recovery.

B. RELATED WORK
After the BBRv1 algorithm was released by Google, various
studies to evaluate it were presented. Hock et al. [8] eval-
uated the performance of BBR in terms of intra-protocol,
RTT fairness, inter-protocol fairness, and packet loss in
various network scenarios. Scholz et al. [7] implemented an
emulation-based reproducible experimental framework and
verified it. It was evident that BBRv1 cannot achieve a
maximized delivery rate and minimized latency.

Atxutegi et al. [26] evaluated BBR on emulation and
real mobile networks. Parichehreh et al. [27] systemically
evaluated and analyzed BBR in an LTE uplink with multiple
concurrent flows. They observed a lack of fairness among
simultaneous flows and excessive packet loss. Dai et al. [28]
argued that BBR does not achieve the professed fairness when
competing with loss-based flows, and it does not perform
well over real-world Ethernet and 4G mobile networks.
Nguyen et al. [29] investigated TCP variants’ performance
on the IEEE 802.11ad wireless link, finding that BBR had
excellent performance under a high-loss scenario.

Crichigno et al. [30] compared the performance of BBR
against loss-based algorithms in a 10 Gbps network in the
presence of packet loss and latency. Empirical results demon-
strated that BBR reacts better than a loss-based congestion
control algorithm (CUBIC, Reno, and HTCP) to a large
maximum segment size (MSS). Wang et al. [31] evalu-
ated the performance of QUIC with BBR via geostationary
orbit (GEO) satellite Internet access on a dedicated network
emulator. Moreover, QUIC with BBR helps shorten the
transmission delay and maintain the transmission speed when
the packet-loss rate grows. Zhang et al. [32] evaluated the
performance of BBR based on network simulator 3 (NS-3).

From the question of whether TCP will work in a
mmWave cellular system, Zhang et al. [33] showed that
the performance of TCP, including BBR, on mmWave
links highly depend on different parameter combinations.
Kumar et al. [34] experimented on an mmWave point-
to-point link operating at 60 GHz and observed significant
throughput loss with BBRv1. This performance degradation
was caused by the link RTT variation that results in incorrect
estimates of the bandwidth and minimum RTT.

Based on studies evaluating BBR in various environments,
a BBR-ACD to reduce packet loss occurring in a shallow
buffer [36] and a BBRp for improving the performance of
BBR in a wireless local area network (WLAN) have been
proposed [37].
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Several papers [38]–[42], [45] deal with problems that can
occur when comparing between CUBIC and BBR, and stud-
ies to solve them have been introduced [43], [44], [46]–[49].
Furthermore, several studies introduced the causes and solu-
tions to the RTT fairness problem in BBR where high RTT
flows occupy more bandwidth [50]–[55]. Moreover, efforts
have been made to apply BBR, which is based on the model,
not the loss, to multipath TCP [56]–[58].

Recently, Zhang et al. [13] discussed variants of BBRv1,
designed to resolve the operating problems of BBRv1. They
evaluated and compared the variants, including BBRv2. They
reported that BBRv2 shows improvement in RTT fairness
when compared with BBRv1 and that it achieves better
coexistence with CUBIC and Reno in terms of inter-protocol
fairness. However, with a 5% random loss rate, BBRv2 expe-
riences low channel utilization.

Furthermore, Gomez et al. [14] presented an experi-
mental evaluation of BBRv2 using a Mininet emulation.
They demonstrated that the coexistence between BBRv2 and
CUBIC is better than that between BBRv1 and CUBIC.
They also reported that BBRv2 mitigates the RTT unfairness
problem and achieves a better fair share of the bandwidth
compared to BBRv1 when network conditions, such as
bandwidth latency, dynamically change.

Nandagiri et al. [15] presented an experimental evaluation
of BBRv1 and BBRv2 in terms of the fairness, queueing
delay, and link utilization. They reported that the performance
of BBRv1 is limited only by its inflight cap, however,
BBRv2 can overcome the limitation of BBRv1 in networks
with small buffers using ECN.

FIGURE 1. Delivery rate and round-trip time according to the inflight
data [5].

III. ANALYSIS OF BBRv1 AND BBRv2 BEHAVIORS
A. MODEL-BASED CONGESTION CONTROL
Fig. 1 shows the delivery rate and the round-trip time
according to the inflight data. The loss-based congestion
control algorithms interpret the packet loss as a signal of
network congestion. They continuously increase the con-
gestion window to increase the sending rate, and reduce
the congestion window rate when detecting packet loss.
Therefore, they operate at point (B), where they can achieve

the maximum delivery rate, although they cannot provide
the minimum latency due to queuing delay. However, on the
current Internet, where the bandwidth and the buffer sizes
have continuously increased, the relationship between packet
loss and network congestion has become more tenuous. In
particular, the loss-based algorithms experience performance
degradation, such as bufferbloat and the resulting long
latency.

Therefore, BBR congestion control algorithm, proposed by
Google, strives to achieve high throughput but low latency by
limiting the queue growth. This algorithm tries to operate on
the point (A), called Kleinrock’s optimal operating point [59],
which was proven to provide the maximum throughput and
the minimum latency on the bottleneck.

FIGURE 2. State machine and network path model in BBR congestion
control.

Fig. 2 depicts how two versions of BBR work in TCP
congestion control. They commonly measure the parameters
of the network pathmodel through state machines comprising
four operating states. BBRv1 uses only BtlBw and RTprop
as components of the network path model; in contrast,
BBRv2 utilizes loss/ECN rate and aggregation aiming to
build a more accurate link model. The two versions of BBR
control the transmission rate by calculating three output
parameters: pacing_rate, cwnd, and quantum based on
the configured network path model.

Next, the operating modes in BBRv1 and BBRv2 are
discussed. They commonly have two operating states; the
startup and steady-state operations. The startup operation is
divided into Startup and Drain phases, and the steady-state
operation is divided into ProbeBw and ProbeRTT phases.

B. STARTUP OPERATION
[Startup] In this phase, both BBRv1 and BBRv2 expo-
nentially increase the sending rate to quickly measure the
available bandwidth. Therefore, they use a pacing_gain
of 2/ln2 to double the pacing_rate for each RTT (for each
unit of time interval). Then, if the delivery rate sample does
not increase by more than 25% for the three ACK samples,
both versions of BBR consider that the available bandwidth
has been found and terminate the startup phase. However,
if BBRv1 performs the startup phase on a small buffer of
below 1 BDP, the excess data of up to 2 BDP can cause

37134 VOLUME 9, 2021



Y.-J. Song et al.: Understanding of BBRv2: Evaluation and Comparison With BBRv1 Congestion Control Algorithm

FIGURE 3. Steady-state operation in BBR congestion control.

the buffer to overflow, which can cause excessive packet
retransmission and unfairness with other TCP flows.

To reduce the aggressiveness in bandwidth probing,
BBRv2 uses loss and ECN rate as the congestion signal.
If BBRv2 detects packet loss or ECN-marked rate higher
than the predefined threshold, it stops increasing the inflight
data and exits the startup phase. Then, BBRv2 sets the
inflight_hi where it prevents inflight data from exceed-
ing this maximum boundary until the new inflight_hi is
updated.

[Drain] After terminating the startup phase, both
BBRv1 and BBRv2 enter the drain phase to empty the excess
queue filled during the startup phase. The drain phase uses
the inverse of the startup’s pacing_gain, and both BBRs
end this phase when the inflight data are equal or less than
1 BDP.

C. STEADY-STATE OPERATION
[ProbeBW] Fig. 3(a) shows that BBRv1 circulates through
eight cycles {1.25, 0.75, 1, 1, 1, 1, 1, 1}, called ProbeBWgain
cycles, to periodically probe the available bandwidth. First,
BBRv1 increases the sending rate using the pacing_gain
of 1.25 to probe for more bandwidth. It maintains this
phase during RTprop, gradually, increasing the amount
of inflight data. However, if the inflight data reaches
1.25 BDP or packet loss is detected, BBRv1 immediately
stops increasing the inflight data regardless of the elapsed
time. Second, BBRv1 decreases the sending rate using a
pacing_gain of 0.75 to drain the excess queue. This
value of pacing_gain lasts until either a full RTprop
elapses or the amount of inflight data decreases below
1 BDP. Finally, for the remaining six cycles, with a
pacing_gain of 1, BBRv1 sends out packets at a constant
pacing_rate, which is calculated by pacing_gain ×
BtlBw × RTprop, and each pacing_gain lasts for 1
RTprop.

The ProbeBW phase has the following characteristics: one
is the randomization of pacing_gain and the other is
max_filter for the bandwidth estimation.

First, BBRv1 randomizes the initial pacing_gain
of 1.25 in the gain cycling of ProbeBW. This is followed
by the pacing_gain of 0.75 to drain the excess queue.
Randomized behavior improves the fairness with other BBR
flows and reduces the queues whenmultiple BBR flows share
the same bottleneck link.

Second, BBRv1 uses the max_filter to estimate the avail-
able bandwidth and calculates the delivery rate by dividing
the amount of data delivered by the time elapsed.

However, the delivery rate samples are normally below
the actual bandwidth of the link because of the several
noises, such as the random variation in physical processes
and the excess queue along the path. Thus, BBRv1 adopted
this max_filter to estimate the BtlBw close to the actual
bandwidth. It estimates the available bandwidth using a
windowedmaximum recent delivery rate sample over the past
10 round-trip times.

However, in multiple BBRv1 flows, each sender overes-
timates the available bandwidth because of the max_filter
that is immediately applied as new sending rate; therefore,
the total amount of data sent from BBR hosts exceeds the
pipe’s capacity, resulting in the standing queue creation.
If the buffer sizes are not large enough to store excess
data, the packet loss occurs. Moreover, this packet loss
persists throughout the entire bandwidth sharing of multiple
BBRv1 flows because BBRv1 does not reduce the maximum
boundary of the inflight data, no matter how much packet
loss occurs. Thismaximumboundary of the above-mentioned
inflight data is the inflight cap, calculated as 2 BDP, and
it is used to maintain the maximum throughput and low
latency.

To resolve the BBRv1’s limitation, BBRv2 uses additional
parameters, such as the loss/ECN signal rate, to recognize
the entrance into a treacherous region in the inflight data.
As depicted in Fig. 3(b), BBRv2 probes the available band-
width by periodically increasing the amount of inflight data;
however, BBRv2 differently limits the growth of the inflight
data. First, when BBRv2 starts probing the bandwidth, it lin-
early increases the amount of inflight data during 1 RTprop
in ProbeBW:Refill phase, which fills the pipe. Thereafter,
BBRv2 performs the ProbeBW:Up phase during which it
exponentially increases the amount of inflight data to quickly
probe the bandwidth. This growth of the inflight data is ter-
minated when the amount of inflight data reaches 1.25 times
of BDP or when the packet loss or the ECN rate exceeds
the threshold predefined in the implementation. In particular,
BBRv2 sets the inflight_hi when it experiences higher
loss/ECN rate than the threshold, so that ensures that it does
not exceed the operating point where the excessive packet loss
may occur. After exiting the ProbeBW:Up, BBRv2 enters the
ProbeBW:Down phase to compensate the queue, and cruises
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at a constant delivery rate until the next bandwidth probing
begins.

Therefore, two versions of BBR behave differently when
new TCP flows enter the bottleneck link or the available
bandwidth rapidly decreases. BBRv1 does not directly reduce
the sending rate. If the delivery rate decreases due to the
bandwidth occupancy by other TCP flows, then BBRv1 flow
measures the lower bottleneck bandwidth and calculates the
lower BDP, resulting in reduction of the sending rate after
10 RTTs. On the other hand, BBRv2 uses more information,
such as loss rate and ECN-marked rate, to recognize the
link’s congestion. When other TCP flows enter, packet loss
may occur. In this case, BBRv2 has safeguards to limit the
inflight data, such as inflight_hi and inflight_lo.
When the packet loss rate exceeds the threshold in the
ProbeBW:Up, BBRv2 sets the inflight_hi, so that it
provides the bandwidth for other flows to share the bot-
tleneck. When BBRv2 experiences packet loss in the
ProbeBW:Cruise, it uses inflight_lo to cope with the
temporary packet loss, and the amount of inflight data
is limited by inflight_lo until the next ProbeBW:Up
phase. This allows BBRv2 to adapt to the changing network
environment by temporarily restricting inflight data during
one cruising period before updating a new path model.

[ProbeRTT] Both BBRv1 and BBRv2 always maintain
the timestamp when RTprop was last measured, and if the
newlymeasured RTT is lower than the existingRTprop, they
immediately update the RTprop and record the timestamp
when a new RTprop is measured. However, if the new
RTprop is not measured for a predefined time (BBRv1: 10 s,
BBRv2: 5 s), BBR is forced to enter the ProbeRTT phase. As
soon as BBR enters the ProbeRTT phase, it initializes and sets
the shortest value of RTT measured during this ProbeRTT
phase. Initially, BBRv1 sets the cwnd to only four packets
in the ProbeRTT phase. However, this approach causes a
drastic change in RTprop resulting in throughput fluctuation
in coexistence with loss-based congestion control algorithms.
Therefore, in the BBRv2 implementation, the cwnd size in
ProbeRTT is set to BDP/2.

IV. EXPERIMENTAL RESULTS AND EVALUATION
A. EXPERIMENTAL ENVIRONMENT SETUP
We configured a Mininet emulator and a physical testbed
using the host system (6-core Intel 3.6 GHz CPU and
32 GB memory, 2.5G NIC) and the switch system (Intel
core i5 3.0 GHz CPU, 16 GB memory). In the host systems,
we installed the 5.4.0-rc6 version of the Linux kernel includ-
ing the implementation of BBR v2 alpha/preview, updated on
Nov. 22, 2019 [21].

The Mininet emulation environment was configured only
the host system. We implemented the Mininet framework
to perform the experiment, to trace the parameters, and to
analyze the results, referring to the measurement framework
by Scholz et al. [60]. To evaluate the behavior in various
network scenarios, we configured a dumbbell topology,
in which multiple TCP hosts shared the same bottleneck

FIGURE 4. Experimental topology setup.

link, as shown in Fig. 4. This framework was used only
in the experiments where the bottleneck bandwidth was
below 100 Mbps. We used three switches to configure the
bottleneck for clearly separating the functions of the network
configuration and evaluating the performance.

Furthermore, we constructed a physical testbed to perform
the experiment with gigabit rate. We set the bottleneck
bandwidth to 1 Gbps using ethtool and emulated the bottle-
neck buffer size and delay using netem. Two sending hosts
measured the throughput over time using TCPlog [64].
In both test environments, all hosts set the TCP memory

size to the maximum so that the performance was not
constrained by the host memory size used in the system
(rmem_max=250,000,000, tcp_rmem=‘4,096, 131,072,
250,000,000’, wmem_max=250,000,000, tcp_wmem=
‘4,096, 16,384, 250,000,000’, referring to Google’s test
configuration. Finally, each sending host on the left side
in Fig. 4 sent a TCP segment to each receiving host using
the iperf [65] application with different durations and start
times that depended on each test scenario.

B. PERFORMANCE EVALUATION FOR SINGLE FLOW
1) ACCORDING TO BOTTLENECK BUFFER SIZE
To compare the single flow operation between BBRv1 and
BBRv2 according to the bottleneck buffer size, we con-
structed an experiment in which the bottleneck bandwidth
and the end-to-end round-trip propagation time were set to
50 Mbps and 30ms, respectively. The bottleneck buffer size
was varied from 0.1 to 16 BDP. Each congestion control algo-
rithm flow sends data for 50 s. Fig. 5 shows the throughput,

FIGURE 5. Throughput, number of retransmissions, and average cwnd of
single BBR flow according to bottleneck buffer size.
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FIGURE 6. Throughput according to dynamic change of bottleneck bandwidth.

FIGURE 7. The inflight data of BBRv2 according to bandwidth change.

total number of packet retransmissions, and average cwnd
for BBRv1 and BBRv2.

BBRv1 achieves the maximum throughput regardless of
the bottleneck buffer size. However, it experiences excessive
packet loss when the buffer size is smaller than 0.3 BDP.
This is because BBRv1 periodically increases the inflight
data in the ProbeBW phase to probe the available bandwidth.
If the buffer size is larger than 0.25 BDP, this excess data can
be stored in the bottleneck buffer without buffer overflow.
Otherwise, the excess data will be dropped, resulting in
continuous packet loss.

BBRv2 not only achieves high bandwidth utilization
except when operating on the bottleneck buffer of 0.1 BDP,
but it also reduces the number of packet retransmissions
compared to the BBRv1. When BBRv2 detects a high packet
loss rate, it sets the inflight_hi, the maximum boundary
where the inflight data can increase. As a results, the average
cwnd of BBRv2 are lower than those of BBRv1 only when
the buffer sizes are small.

2) ACCORDING TO BOTTLENECK BANDWIDTH CHANGE
To evaluate how quickly BBRv1 and BBRv2 adapt to the
environment where the bottleneck bandwidth is dramatically
changed, we configured an environment where the bandwidth
switched between 40 and 80 Mbps every 40 s. In this
experiment, the end-to-end round-trip propagation time was
30 ms, and the bottleneck buffer size was fixed to 100 packets
(= 1 BDP on links with 40 Mbps bandwidth and 30 ms
latency).

The evaluation results are presented in Fig. 6. BBRv1
exhibits a high link utilization by rapidly adapting to both
the bandwidth increase (t=80 s) and the decrease (t=120 s)
scenarios. BBRv1 frequently probes the bandwidth by updat-
ing the pacing_gain every RTprop within eight pacing
cycles, therefore, it can quickly update the BDP according
to the changing bandwidth. When the bandwidth increases,
BBRv1 measures more bandwidth of about 25% through
one pacing cycle, and it consumes three pacing cycles to
find the full bandwidth in the scenario where the bandwidth
doubles. As soon as the bandwidth decreases, the inflight data
previously sent from BBRv1 creates a long-standing queue,
resulting in packet loss. However, BBRv1 can quickly avoid
self-inflicted congestion by updating the BDP through fast
bandwidthmeasurement, thus reducing the amount of inflight
data injected into the network.

In contrast, BBRv2, which operates on the link where
the bandwidth is dramatically changed, takes longer than
BBRv1 to fully probe the doubled bandwidth, as shown
in Fig. 6(b). In particular, when the bandwidth increase from
40 to 80 Mbps, BBRv2 takes about 8 s to reach the full
bandwidth. Fig. 7 presents the cwnd, the inflight_hi,
and the amount of inflight data. After BBRv2 performs
ProbeBW:Refill, it linearly increases the inflight data during
one RTprop and tries to probe the available bandwidth by
exponentially increasing the inflight data in ProbeBW:Up
phase. However, as in Fig. 7(a), the ProbeBW:Up phase is
terminated without the exponential growing of the inflight
data. Therefore, it fails to find the full bandwidth in one
cycle and repeats the same cycle three times because the
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ProbeBW:Up phase is terminated immediately after the
inflight data exceeds the previously set 1.25 × BDP, even
though a newBDP has not been updated as shown in Fig. 7(a).
In addition, BBRv2 repeated the ProbeBW:Up phase once
after random intervals (2 to 3 s), so that it takes quite a long
time to probe the full bandwidth.

Fig. 6(b) shows that BBRv2 quickly adapts to the new
test environment where the bandwidth decreases from 80 to
40 Mbps in terms of throughput. However, BBRv2 takes
about 9 seconds to operate at the optimal operating point that
provides the maximum throughput and the minimum latency
as shown in Fig. 7(b). When BBRv2 detected the packet
loss, it sets the inflight_lo to temporarily reduce the
amount of inflight data and waits for the lower BDP to be
calculated. That is, BBRv2 controls the amount of inflight
data depending on the inflight_lo until it estimates the
lower bottleneck bandwidth close to the actual bottleneck
bandwidth.

3) ACCORDING TO RANDOM PACKET LOSS
We measured the average throughput of BBRv1, BBRv2,
and CUBIC that operated on the link where the random
packet loss rate ranging from 0.000001% to 10% occurred,
and Fig. 8 shows the results of the experiments. CUBIC
shows a significant performance degradation despite a small
packet loss rate of 0.01%. That is because CUBIC rec-
ognizes the packet loss as the network congestion signal
and repeatedly reduces the congestion window. Unlike the
loss-based congestion control algorithm, BBRv1 does not
directly reduce the congestion window size no matter how
much packet loss occurs. Hence, BBRv1 achieves a high
data rate despite the high packet loss rate. However, this
operating characteristic caused BBRv1’s aggressiveness in
the coexistence with other TCP flows. To compromise
between the aggressiveness and robustness, BBRv2 reduces
the inflight data if it detects the packet loss that exceeds the
predefined threshold (loss_threshold=2%). Therefore,
BBRv2 shows high link utilization when packet loss rate is
less than 2%, and the throughput rapidly decreases in the
environment where the packet loss rate is more than 2%.

FIGURE 8. Throughput according to random packet loss rate.

C. INTRA-PROTOCOL CONVERGENCE
We configured an experimental environment in which two
BBR flows transmit data for 100 s on the common bottleneck

FIGURE 9. Throughput according to bottleneck buffer size when two
identical BBR flows start at different times. (Flow 1: 0 second, Flow 2:
2 second).

link to evaluate how fast the throughput for two flows with
different start times converge for the existence of two BBR
flows. We set the bottleneck bandwidth to 50 Mbps and
1 Gbps and the round-trip propagation time to 30 ms. The
bottleneck buffer sizes were varied from 0.1 to 16 BDP
according to the test scenarios. One flow (Flow 1) first
started sending data at 0 s, then the other (Flow 2) entered
the bottleneck link after 2 s. In addition, Fig. 9 shows the
average throughput for each flow repeated 10 times in the
same scenario, and Fig. 10 presents the change in throughput,
the buffer backlog of Switch 2, and the timestamp of packet
retransmissions when each version of BBR flows operated on
links of 0.2, 2, and 4 BDP bottleneck buffers.

Considering only the throughput, in Fig. 9(a),(b), two
BBRv1 flows that originate at different times fairly share
the bottleneck link regardless of the bottleneck bandwidth
and buffer size because two BBRv1 flows measure similar
BtlBw and RTprop and calculate a similar BDP. There-
fore, they inject a similar amount of inflight data into the
network. However, the behaviors of the two BBRv1 flows
show significant differences depending on the size of the
bottleneck buffer when analyzed from the standing queue
viewpoint. During the coexistence of two BBRv1 flows, each
BBRv1 host overestimates the bottleneck bandwidth to send
out about 200 KB more data than the actual BDP of the link
as shown in Fig. 10. If the bottleneck buffer is sufficiently
large to prevent buffer overflow like Fig. 10(b),(c), no packet
retransmissions occur except in the startup phase. Otherwise,
BBRv1 flows experience excessive packet retransmissions
as described in Fig. 10(a). Moreover, the duration of the
throughput fluctuation that occurs when the second flow
enters increases with the bottleneck buffer size increases
in Fig. 10(b),(c). As the buffer size increases, the size of the
RTprop increasedwhen the second flow commenced, result-
ing in a superior delivery rate and long-standing queue until
the first flow enters the next ProbeRTT phase. The first flow
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FIGURE 10. The timestamp of packet retransmission, throughput and buffer backlog when two identical BBR flows started at different times (flow 1:
0 second, flow 2: 2 second).

FIGURE 11. The amount of inflight data, inflight_hi, and BtlBw when two BBRv2 flows started at different times.

also measures a higher RTprop than the actual round-trip
propagation time because the long-standing queue is created
by the second flow. This induces the fluctuation between the
two BBRv1 flows, which fluctuation is terminated when the
two flows measure a similar RTprop.

In contrast, when two BBRv2 flows enter the bottleneck
link at different times, the throughput between the two flows
varied depending on the bottleneck buffer size, as shown
in Fig. 9(c),(d). When the buffer sizes are extremely small,
such as 0.1 or 0.2 BDP, two BBRv2 flows achieve high
fairness and reduce the standing queue compared to BBRv1.
For instance, in Fig. 10(d), where the buffer size is 0.2 BDP,
they achieve high fairness, as well as reduce the standing
queue size and number of packet retransmissions. In other
words, with a small buffer of less than 0.25 BDP, they
experience packet loss before reaching 1.25 × BDP. This
makes BBRv2 flows behave like loss-based congestion con-
trol algorithms.

In buffers greater than 0.25 BDP, the throughput of
two flows does not converge during the bandwidth shar-
ing as shown in Fig. 10(e),(f), where the buffer sizes are

2 and 4 BDP. In particular, in case buffer sizes is 2 BDP,
the throughput of flow 2 is lower than that of flow 1. The
difference between the two results for 2 and 4 BDP buffers
is whether the second flow sets the inflight_hi in the
startup phase. Fig. 11 shows the amount of inflight data,
inflight_hi, and BtlBw for two BBRv2 flows when the
buffer sizes are 2 and 4 BDP. In Fig. 11(a), the second-started
flow experiences more than 2% of packet loss in the startup
phase; therefore, it sets the inflight_hi, limiting the
increase in inflight data by terminating the ProbeBW:Up
phase. Thus, flow 2 cannot measure the higher bandwidth.
Consequently, the amount of inflight data of flow 2 is
maintained on a similar level for the entire data transmission
time, as shown in Fig. 10(e). In Fig. 11(b), where the second
flow does not experience packet loss in the startup phase, flow
2 does not set the inflight_hi. Therefore, it can probe
the available bandwidth more freely than when the buffer
size is small. Furthermore, two BBRv2 flows create a length
of standing queue similar to that of BBRv1 because each
BBRv2 flow measures a bandwidth sample larger than the
actual available capacity due to the operating characteristic
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FIGURE 12. The timestamp of packet retransmissions, throughput, RTprop and buffer backlog when five BBR flows started at different times.

of periodically increasing the sending rate to check whether
bandwidth is available.

To evaluate the convergence of multiple BBR flows,
we configured the test environment where the bottleneck
bandwidth was 50 Mbps and five BBR flows entered the
same bottleneck link successively starting every 3 s. Fig. 12
presents the throughput, RTprop, and the timestamps for
retransmitted packets.

From Fig. 12(a), multiple BBRv1 flows exhibit unfair
data transmission. That is because the five flows measure
different delivery rates, leading to calculation of different
levels of BDP. Moreover, the standing queue they create
completely exceeds the bottleneck buffer size, causing the
excessive retransmission of 117,097 packets. When sharing
the bottleneck link with buffers above 2 BDP, the newly
entered flow measures a higher RTprop than the actual
round-trip propagation time in the startup phase because
of the standing queue created by the previous flows. After
the synchronization of RTprop, the five flows evenly share
the bottleneck link, successfully achieving the convergence.
Moreover, the time for convergence between flows tends to
increase with the bottleneck buffer size. In Fig. 12(b),(c),
where the buffer size is 2 and 8 BDP, the flows on the 8 BDP
buffer take more time than those on the 2 BDP buffer to
completely converge.

As presented in Fig. 12(d), five BBRv2 flows coexisting
on the link with a buffer of 0.2 BDP achieve fair bandwidth
sharing and reduce the average standing queue and the
number of packet retransmissions, only 5,441 packets. This
is because five BBRv2 flows set the inflight cap due to packet
loss, limiting the inflight data. With 2 and 8 BDP buffers, five
BBRv2 flows do not converge, although it takes less time to
measure RTprop close to the actual round-trip propagation
time, as illustrated in Fig. 12(e),(f). In Fig. 12(e), the first flow

occupies the most bandwidth among the flows, and the other
flows cannot increase the delivery rate because the flows
commenced later set the inflight_hi, which prevents
BBRv2 flows from measuring higher delivery rate samples.

FIGURE 13. Throughput according to the bottleneck buffer size when
BBRv1 and BBRv2 share the same bottleneck link.

In addition, Fig. 13 represents the throughput according to
the bottleneck buffer size when a BBRv1 and a BBRv2 flow
coexist on the same bottleneck link. With a small buffer less
than 1 BDP, both BBR experience packet loss because they
overestimate the BtlBw in startup phase, resulting in the cre-
ation of a standing queue and causing packet loss. However,
BBRv2 reduces the inflight cap to limit the amount of inflight
data by setting the inflight_hi; however, BBRv1 does
not reduce the inflight cap. Therefore, BBRv1 exerts excess
performance in coexistence with two BBR flows. In contrast,
BBRv1 and BBRv2 exhibit fair bandwidth sharing in a large
buffer of above 1 BDP because both of them only depend only
on the BDP to determine the sending rate when packet loss
does not occur.

D. RTT FAIRNESS
We configured the test topology where the round-trip prop-
agation time of Flow 1 varied from 30 to 90 ms and that
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FIGURE 14. Throughput according to the flow 2’s RTT when two BBR
flows with the different RTTs share the same bottleneck link (Flow 1:
30ms, Flow 2: 30-90ms).

of flow 2 was fixed to 30 ms, to compare the RTT fairness
between BBRv1 and BBRv2. The bottleneck bandwidth is
set to 50 Mbps and 1 Gbps in the test scenarios. In this
experiment, we set the bottleneck buffer to be large enough so
that packet loss does not occur. Then, we evaluated the effect
of the RTT difference between the two BBRv2 flows in the
throughput. Flow 2 started after 2 s. Then, Flow 1 entered the
bottleneck link, and the two flows transmitted data for 100 s.

In Fig. 14(a),(b), two BBRv1 flows with the same latency
show similar throughput. However, as the latency of flow
2 increases, the long RTTflow occupiesmore bandwidth. The
longRTTflowmeasures a higherRTprop than the short RTT
flow; therefore, it calculates a larger BDP. This induces the
long RTT flow to probe a higher BtlBw than before, and the
short RTT flow loses BtlBw, resulting in serious unfairness
in throughput between the two flows.

Similarly, the BBRv2 flow that has a long latency also
occupies more bandwidth than the short RTT flow, as shown
in Fig. 14(c),(d). As we described in Section IV.C, we already
confirmed that two BBRv2 flows cannot evenly share the
same bottleneck link in a sufficiently large buffer. Moreover,
we experimented by changing the order in which flow 1 and
2 enter the bottleneck link to confirm that the unfairness
between the two flows with different RTTs was not due to
the order in which the flows started. The short RTT flow
started first, and the long RTT flow entered the bottleneck
link 2 s later. The results for the experiments are illustrated

FIGURE 15. Throughput according to the bottleneck buffer size when BBR
flows with the different RTTs share the same bottleneck link (Flow 1:
60ms, Flow 2: 30ms).

in Fig. 14(e),(f). If two flows have the same latency of 30 ms,
the flow that started first exhibits higher throughput, which
is consistent with the results of the intra-protocol fairness
evaluation in Section IV.C. Furthermore, Flow 2, which
has a long latency, tends to occupy more bandwidth as
the round-trip propagation time of flow 2 increases. Thus,
the throughput of the BBRv2 flows still depends on the
difference in RTT among the flows.

In addition, we configured the test topology to identify the
effect of the bottleneck buffer size on RTT fairness, where
the round-trip propagation time of flows 1 and 2 are 60 and
30 ms, respectively. The bottleneck buffer size is set from
0.1 to 16 BDP and the bottleneck bandwidth is set to 50Mbps
and 1 Gbps depending on the test scenarios. Fig. 15 shows the
average throughput of BBRv1 and BBRv2. In Fig. 15(a),(b),
two BBRv1 flows show better fairness but create excessive
packet retransmission when the buffer size is smaller than
1 BDP. For example, when two BBRv1 flows coexist on the
bottleneck link with a 0.2 BDP buffer and a 50 Mbps band-
width, they cause 43,016 packet retransmissions in 100 s.
Regardless of how fair the two flows are, the aggressiveness
can cause network congestion and suppress other TCP flows.
As soon as the buffer size increases above 2 BDP, the long
RTTflow occupies most of the bandwidth, causing unfairness
between the two flows.

During the coexistence of BBRv2 flows with different
RTTs, the change in throughput according to the bottleneck
buffer size is similar to that for BBRv1. When the buffer
sizes are smaller than 1 BDP, each BBRv2 flow occupies
half of the bottleneck bandwidth. However, the difference
between BBRv1 and BBRv2 is that the number of packet
retransmissions of BBRv2 is significantly reduced compared
to BBRv1. For instance, in a 0.2 BDP bottleneck buffer and
50 Mbps bandwidth, they only create 1,100 packet retrans-
missions. This is because BBRv2 sets the inflight cap when it
detects the packet loss that exceeds the predefined threshold;
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FIGURE 16. Throughput according to bottleneck buffer size when BBR and CUBIC coexist on the same bottleneck link.

FIGURE 17. The timestamp of packet retransmissions, throughput, RTprop and buffer backlog when BBR and CUBIC coexist on the same bottleneck link.

thus, it induces fair coexistence and reduces packet loss.
Moreover, the long RTT flow still occupies more bandwidth
when the buffer size increased beyond 2 BDP. In summary,
the coexistence on the linkwith a small buffer of below 2BDP
greatly improved on BBRv2 compared to that on BBRv1, but
unfairness still exists between different RTT flows when the
buffer sizes are large enough.

E. FAIRNESS WITH LOSS-BASED ALGORITHMS
This section reports on the evaluation of the inter-protocol
fairness. We conducted an experiment in which the BBR
shared a bottleneck link with CUBIC, one of the loss-based
congestion control algorithm. In this experiment, the bottle-
neck bandwidth was 50 Mbps or 1 Gbps, and the round-trip
propagation time was 30 ms. The bottleneck buffer size
varied from 0.1 to 16 BDP according to the test scenarios.
Fig. 16 shows the average throughput according to the
bottleneck buffer size. Fig. 17 depicts the number of packet
retransmissions, throughput, RTprop of BBR, and buffer
backlog in Switch 2 when buffer sizes are 0.2, 2, and 8 BDP.
Moreover, Fig. 19 shows the throughput when twoBBRflows
and two CUBIC flows coexist on the bottleneck link with

a bandwidth of 50 Mbps and a round-trip propagation time
of 20 ms.

From test results depicted in Fig. 16(a),(b), the throughput
between BBRv1 and CUBIC completely depends on the bot-
tleneck buffer size. As shown in Fig. 17(a), where the buffer
size is 0.2 BDP, BBRv1 occupies the most of the bandwidth
and fills the bottleneck buffer. BBRv1 uses the cwnd to limit
the amount of inflight data to maintain the maximum sending
rate and the minimum latency. The maximum value of the
cwnd is determined by the target_cwnd, calculated as
cwnd_gain× BtlBw× RTprop. However, cwnd_gain
is fixed to 2 so that BBRv1 creates 1 BDP excess queue;
therefore, excessive packet loss occurs when buffer sizes are
smaller than 1 BDP. This prevents CUBIC from increasing
the cwnd, therefore CUBIC cannot take up the bandwidth.

Moreover, BBRv1 and CUBIC flows show completely
different behavior with a 2 BDP buffer; i.e., they periodically
fluctuates as depicted in Fig. 17(b) because BBRv1 measures
RTprop that completely differs from the actual round-trip
propagation time due to the queuing delay. The excess
queue created by CUBIC induces BBRv1 to measure the
higher RTprop, causing BBRv1 to set a higher inflight
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cap than before, making BBRv1 more aggressive than
CUBIC and causing buffer overflow. When the RTprop
expires, BBRv1 completely empties the excess queue so
that BBRv1 can measure the RTprop, similar to the actual
round-trip propagation time. Then, CUBIC increases the
cwnd and achieves higher throughput than BBRv1. This
process is repeated, and the throughput fluctuation continues
over time.

Since the buffer sizes are large enough, as shown
in Fig. 17(c), BBRv1 and CUBIC evenly share the buffer if
the bottleneck buffer size is large enough. This is because the
standing queue created by CUBIC allows the BBRv1 flow
to measure the appropriate RTprop; thus, the amount of
inflight data is similar, achieving convergence between two
flows. However, the time for convergence between the two
flows increases with the buffer size; hence, the CUBIC flow
exhibits higher throughput than BBRv1.

Fig. 16(c),(d) shows that the dependency on the buffer size
in the coexistence of BBRv2 and CUBIC is partially reduced
compared to BBRv1. In a small buffer, as shown in Fig. 17(c),
the BBRv2 and CUBIC flows evenly share the bottleneck
link. Moreover, BBRv2 sets inflight_hi to limit the
amount of inflight data when the packet loss rate exceeds 2%,
which causedmakes BBRv2 behave like a loss-based conges-
tion control algorithm. Therefore, the fairness with CUBIC is
enhanced compared to BBRv1, as shown in Fig. 17(d).

FIGURE 18. The amount of inflight, inflight_hi and the timestamp
when packet loss exceeds 2% in coexistence of BBRv2 and CUBIC (buffer
size: 2 BDP).

However, the coexistence between BBRv2 and CUBIC in
a large buffer exhibits worse fairness compared to BBRv1,
as shown in Fig. 17(e),(f). Moreover, BBRv2 was unable to
estimate the more bandwidth over time because packet loss
caused by CUBIC caused BBRv2 to set the inflight_hi,
and this limits the growth of the inflight data in BBRv2.
Fig. 18 depicts the inflight, inflight_hi, and the
timestamp when packet loss exceeds 2% in the coexistence
of BBRv2 and CUBIC on the bottleneck link with a 2 BDP
buffer. Initially, BBRv2 sets theinflight_hi to 160MSS.
However, the packet loss caused by the continuous increase
in the cwnd of CUBIC induces BBRv2 to set a lower
inflight_hi than before. For example, at t=40 and
t=75 s, BBRv2 sets the inflight_hi to a value signifi-
cantly less than the previous value, continuously reducing the
throughput in BBRv2.

FIGURE 19. Throughput according to the bottleneck buffer size when two
BBR flows and two CUBIC flows coexist on the bottleneck link.

Fig. 19(a) shows the performance changes according to the
buffer size where two BBRv1 and two CUBIC flows share
the bottleneck link. With a small buffer of less than 1 BDP,
most of the bandwidth is occupied by two BBRv1 flows.
With a large buffer fluctuates between the two groups of
algorithms. However, as the buffer size increases, the fluc-
tuation decreases but takes longer to converge. In Fig. 19(b)
the throughput between two BBRv2 and two CUBIC flows
represents similar behavioral characteristics of Fig. 16(c);
i.e., they demonstrate improved throughput fairness in small
buffer of below 1 BDP but worse throughput fairness in large
buffers.

V. CONCLUSION
This study presented the comprehensive evaluation and
comparison between BBR v1 and BBRv2 on a Mininet
emulator and physical testbed comprising of dumbbell topol-
ogy. The results showed that BBRv2 worked well on the
bottleneck link with a small buffer. BBRv2 not only enhanced
the fairness with other TCP flows, but also reduced the
packet loss in comparison to BBRv1. However, with large
buffers, BBRv2 still experienced significant issues such as
coexistence between different RTT flows, competition with
loss-based congestion control algorithms, and convergence
between BBRv2 flows. In particular, we found that when the
identical BBRv2 flows entered the bottleneck link with large
buffers at different times, their throughputs did not converge
at all. The second-started flow experienced the packet loss
in Startup phase, therefore, setting the inflight_hi to
limit the growth of the amount of inflight data. However, this
limitation of inflight data rather prevented BBRv2 flow from
probing the more bandwidth, causing unfairness between two
BBRv2 flows.

At present, Google has released the BBRv2 alpha version,
and is developing the final version of BBRv2. we hope
that these experimental results can help to improve the
performance of the BBRv2 congestion control algorithm.
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