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ABSTRACT The belief-rule-base (BRB) inference methodology using the evidential reasoning (ER)
approach is widely used in different fields, such as fault diagnosis, system identification, and decision
analysis. However, the calculation characteristic of the conventional rule activation weight makes the
inference system have the rule zero activation problem. The difficulty of constructing partial derivatives
restricts the optimization of parameters using the gradient method. Hence, this paper proposes a new belief
rule structure and its gradient training method to solve the rule zero activation problem during the inference
process and improve inference accuracy. The Gaussian function is applied to calculate the activation weight
of the rule with the new structure. Its characteristics avoid the zero activation problem caused by the
attribute reference value set in the original method. Based on the newly proposed method, the corresponding
distance-sensitive parameter is set for each attribute, and the weight parameter of each rule is discarded.
It simplifies the calculation of rule activation weights in the inference process and enables the partial
derivatives of the parameters of the inference system to be easily constructed. In the parameter optimization,
the momentum optimization gradient stochastic descent method is used to train the new BRB system,
which improves the training speed and accuracy compared with the conventional methods. Experiments with
nonlinear function fitting, oil pipeline leak detection, and classification of several public datasets are carried
out to verify whether the new BRB system trained with momentum stochastic gradient descent (SGDM-
BRB) has better performance than other conventional methods. The experimental results show that in the
case of complete data, SGDM-BRB has higher accuracy and faster training speed than the conventional
methods.

INDEX TERMS Belief-rule-base, structure optimization, stochastic gradient descent, momentum
optimization.

I. INTRODUCTION
It is well known that rule-based intelligent systems are one of
the most common frameworks for expressing various types
of knowledge. The rule-based system has certain expression
and processing capabilities through the use of existing human
knowledge, and at the same time has the flexibility to deal
with ambiguity, incompleteness, uncertainty, and to combine
different types of input data formats. Yang et al. [1] proposed
belief rule-based inference methodology using the evidential
reasoning approach (ER) based on conventional IF-THEN
rules [2], Dempster-Shafer theory of evidence [3], [4],
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decision theory [5] and fuzzy set theory [6]. It shows a
powerful function of representing and processing uncertain
information. By introducing a belief distribution structure in
the rules, this methodology can effectively handle incom-
plete and uncertain information involved in the datasets and
widely used in various problems in different fields such as oil
pipeline leak detection [7], military capability estimation [8],
consumer behavior prediction [9] and so on.

In the inference process of the belief-rule-base (BRB)
system, the attribute weight, rule weight, belief distribu-
tion, and other parameters directly affect the final accu-
racy. Yang et al. [10] proposed optimization models for
training BRB system using fmincon solver in Matlab.
Chang and Zhang [11] and Chang et al. [12] proposed an
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algorithm for training parameters in the BRB system based
on the gradient and dichotomy methods. Wu et al. [13] used
the accelerating of the gradient algorithm to improve the
convergence accuracy and convergence speed. There are also
a series of intelligent algorithms such as the particle swarm
optimization algorithm proposed by Su et al. [14] and the
differential evolution algorithm proposed by Wang et al. [15]
which have excellent training performance on the BRB sys-
tem. Liu et al. [16] introduced the belief distribution structure
into the antecedent attributes and used training data to build
an extended belief rule base (EBRB) system,which simplifies
the construction of the rule base and improves the inference
speed.

At present, the parameter optimization of the BRB system
is mostly based on various intelligent algorithms. However,
the process of those intelligent algorithms is complicated and
there are many intermediate training parameters. When the
conventional gradient method trains the parameters of the
BRB system, the partial derivative of each parameter is diffi-
cult to construct, and the limit method is needed to solve the
approximate value of the partial derivative [13]. Additional
algorithms are needed to search the efficient update step size
for the restricted parameters [11]–[13]. The EBRB system
does not introduce a parameter training process, which makes
the system have higher requirements for the representative-
ness of the training data used to construct the rule base. For a
large number of rules, it is necessary to perform rule reduction
or use the data structure to optimize the storage and activation
process of the rules. Due to the conventional BRB system rule
attribute reference level setting, its potential zero activation
problem may cause the inference system to malfunction.

To solve the above problems, a series of optimization mod-
ifications are proposed for the system structure and reasoning
process, including:

1) A new antecedent structure that does not need to set the
attribute reference level is proposed, and a Gaussian function-
based rule weight activation method is proposed for the new
rule antecedent structure. It effectively avoids the rule zero
activation problem and has the feature of generating rules
from the training data like EBRB.

2) Setting the global weight parameters for antecedent
attributes are canceled, and each rule is set with its own
antecedent attribute weight parameters so that each rule has a
better activation granularity. On this basis, the setting of rule
weight parameters and the related normalization process is
canceled, which simplifies the evidential reasoning process.

3) A normalized exponential function is proposed to pre-
process the restricted parameters to avoid the problem of
parameter failure during the training process.

The remainder of this paper is organized as follows:
Section II introduces the conventional BRB system and our
further improvements for common problems in the system.
Section III gives the preprocessing method of the training
model and proves that the gradient descent method can
be effectively applied to the newly proposed BRB system.
Section IV compares the performance of different gradient

descent parameters on training speed and inference accu-
racy. Experiments on a series of public datasets prove that
the newly proposed BRB model and its training method
have a better performance than other conventional methods.
Section V concludes this paper.

II. BRB SYSTEM WITH NEW ATTRIBUTE STRUCTURE AND
RULE ACTIVATION WEIGHT CALCULATION METHOD
The BRB system proposed by Yang et al. [1] mainly refers
to the rule activation and evidence reasoning method on the
belief rule base. This section will briefly introduce the related
concepts of the BRB system and propose solutions for the
common defects of the conventional BRB system.

A. REPRESENTATION OF BELIEF RULE BASE
Based on the conventional production rules, Yang et al. [1]
proposed the expression form of the belief rules by intro-
ducing the belief distribution structure, the rule antecedent
attribute parameter, and the rule weight parameter. The spe-
cific expression is as follows:

Rk : if {X1isAk1 ∧ · · · ∧ XTk isA
k
Tk }

then{(D1, β
k
1 ), · · · , (DN , β

k
N )},

N∑
i=1

βki ≤ 1 (1)

The equal sign is obtained when the rule information is
complete. Each rule has its rule weight θk and each antecedent
attribute has its weight δ1, δ2, · · · , δTk . A

k
i represents the

reference value selected by the rule on the ith attribute and βki
represents the belief degree of the rule in the ith consequent
attribute. On this basis, the extended belief rule base system
introduces a belief distribution structure to the antecedent
attributes, and its rule form is expressed as follows:

Rk : if {[(Ak11, α
k
11), · · · , (A

k
1J1 , α

k
1J1 )] ∧

· · · ∧ [(AkTk1, α
k
Tk1), · · · , (A

k
TkJTk

, αkTkJTk
)]}

then{(D1, β
k
1 ), · · · , (DN , β

k
N )},

N∑
i=1

βki ≤ 1 (2)

The extended belief rule base converts the original training
data into antecedent attributes with a belief distribution form.
For the input dataX k = (xk1 , · · · , x

k
T ), convert the ith attribute

parameter to construct the ith antecedent attribute of the
corresponding rule in the form of belief distribution:

αkij =
γi(j+1) − xki
γi(j+1)−γij

, γij ≤ xki ≤ γi(j+1)

αki(j+1) = 1− αkij, γij ≤ x
k
i ≤ γi(j+1)

αkit = 0, t = 1, · · · , (j− 1), (j+ 2), · · · , Ji (3)

Using the same conversionmethod, the values of original data
on other attributes can be converted into the corresponding
belief distribution form. It is also possible to obtain the belief
distribution form of the rule consequent attribute according
to this method.
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B. EVIDENCE REASONING APPROACH BASED ON BELIEF
RULE BASE
The calculation and synthesis of activation weights for each
rule in the rule base is the core part of the inference system
of the belief rule base. The whole process mainly includes
two steps: calculate the activation weight, and synthesize the
rules activation weight to get the result. The calculation of
the activation weight of each rule in the belief rule base can
be regarded as calculating the belief distribution similarity on
each attribute and combining the results. Euclidean distance
is used to calculate the individual matching degree of the ith
attribute. After converting the input data to have the same
belief distribution form as the corresponding attribute, the
individual matching degree of the attribute is calculated as:

Ski = 1− dki = 1−

√∑Ji
j=1(αi,j − α

k
i,j)

2

2
(4)

After the individual matching degree of each attribute is
calculated, the individual matching degrees of all attributes
are aggregated. The aggregation function in the form of con-
junctive rules is:

αk =

Tk∏
i=1

(Ski )
δi , δi =

δi

maxj=1,··· ,Tk δj
(5)

In a rule base with a total of L belief rules, the activation
weight of the kth rule is calculated by the following formula:

wk =
θkαk
L∑
l=1
θlαl

(6)

Rule weight normalization operation makes all weights

satisfy 0 ≤ wk ≤ 1,
L∑
k=1

wk = 1.

After the rule weight calculation is completed, all the rules
are synthesized and the inference result is obtained. First,
the belief distribution of the rule is transformed into the
corresponding probability quality information, in a belief rule
base with N result attributes:

mj,k = wkβkj , j = 1, · · · ,N (7)

mD,k = 1−
N∑
j=1

mj,k = 1− wk
N∑
j=1

βkj (8)

mD,k = 1− wk (9)

m̃D,k = wk (1−
N∑
j=1

βkj ) (10)

where mj,k represents the credibility of the k rule on the j
consequent attribute, mD,k represents the credibility that the
kth rule is not assigned to any consequent attribute, and m̃D,k
represents the credibility of the missing reference attribute
of the kth rule. The total uncertainty credibility is given by
mD,k = mD,k + m̃D,k . Synthesize the credibility information

of all rules and obtain the final belief result of each conse-
quent attribute:

mj = k[
L∏
i=1

(mj,i + mD,i)−
L∏
i=1

mD,i], j = 1, · · · ,N (11)

mD = n[
L∏
i=1

mD,i] (12)

m̃D = k[
L∏
i=1

mD,i −
L∏
i=1

mD,i] (13)

k = [
N∑
j=1

L∏
i=1

(mj,i + mD,i)− (N − 1)
L∏
i=1

mD,i]−1 (14)

βj =
mj

1− mD
, j = 1, · · · ,N (15)

βD =
m̃D

1− mD
(16)

C. NEW ATTRIBUTE STRUCTURE AND RULE ACTIVATION
WEIGHT CALCULATION METHOD
The reference value of antecedent attribute information needs
to be set before generating rules. If the input is not in
the neighborhood of the reference value of the antecedent
attribute of a rule, the rule cannot be activated. If all the rules
in the rule base are not activated, the inference system will
fail. A simplified belief rules structure and corresponding
activation weight calculation method are proposed to solve
the above problems. Its structure is as follows:

Rk : if (xk1 , · · · , x
k
Tk )

then{(D1, β
k
1 ), · · · , (DN , β

k
N )},

N∑
i=1

βki ≤ 1 (17)

The simplified belief rule structure can directly use the
training data to generate the rule antecedent attribute with-
out manually setting the reference values of the antecedent
attributes.
The conventional activation weight calculation method is

no longer suitable for the simplified form of belief rules.
The use of the Gaussian function to calculate individual
matching degree for activation weight calculation is pro-
posed to perform weight activation. The degree of indi-
vidual matching of input X (x1, · · · , xTk ) and rule Rk :
if (xk1 , · · · , x

k
Tk )then{(D1, β

k
1 ), · · · , (DN , β

k
N )} on ith attribute

is calculated using the Gaussian function as:

Ski = e−[a
k
i ×(xi−x

k
i )]

2
(18)

The parameter aki represents the sensitivity of the ith attribute
to the distance at the position xki . When the distance between
the rule antecedent attribute and the input data remains
unchanged, the value of parameter a inversely proportional
to the matching degree. The activation weight of a single rule
under conjunctive conditions is calculated by the following
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formula:

wk =
Tk∏
i=1

Ski = e
−

Tk∑
i=1

[aki (xi−x
k
i )]

2

(19)

Assuming a rule with two attributes x and y located at
the (0, 0), the conventional method and Gaussian function
method are used to calculate the activation weights. Set the
reference values on the x-attributes and y-attributes to be
[−4,−3,−2,−1, 0, 1, 2, 3, 4]. Ignore the rule weight set-
ting of the two methods. The activation weight distributions
shown in Figure 1 and Figure 2with distance-sensitive param-
eter a set to 1.0 can be obtained.

FIGURE 1. Activation weight calculated by conventional methods.

FIGURE 2. Activation weight calculated by Gaussian function methods.

Figure 1 shows that if the input on a certain attribute is
not in the neighborhood of the rule attribute, the activation
weight of this rule fluctuates around zero and gets zero when
the attribute gets a reference value. If the activation weight
of all rules is zero, the inference cannot be performed. How-
ever, the weight in Figure 2 smoothly drops close to zero

according to the distance from the rule and will not take
a value of zero. This method uses small values instead of
zero values to measure the activation weight of unimportant
rules, avoiding the inference failure when all rule activa-
tion weights are zero. Moreover, different distance-sensitive
parameters enable the rule to adapt to the calculation of
activation weights at different scales. It eliminates the impact
of rule zero activation on system inference performance and
improves the fitting performance of the inference system by
adding the distance-sensitive parameters.

Another benefit brought by the new rule structure and
activation weight calculation method is that there is no need
to adjust the activation weight of the rule by the attribute
weight and rule weight. By adjusting the distance-sensitive
parameters on each attribute of each rule, a good activation
effect and activation granularity can be obtained. Due to the
characteristics of the Gaussian function, the activation weight
of each rule belongs to (0, 1] without normalization opera-
tions. It greatly simplifies the redundant weight adjustment
and calculation in the inference process.

III. MOMENTUM OPTIMIZED GRADIENT DESCENT
TRAINING PARAMETER
When the conventional gradient method is applied to the
parameter training process of the inference system of the
belief rule base, it is difficult to construct the partial deriva-
tive formula of the rule attribute and the training step is
restricted by the parameter constraints. In the conventional
belief rule base, the partial derivative from the individual
matching degree to the attribute parameter part is difficult to
calculate due to the reference level setting on the attribute. In
the extended belief rule base, the use of Euclidean distance
to calculate individual matching degree may result in the
invalid calculation of partial derivatives. Compared with the
conventional BRB system, the newly proposed rule structure
with its activation weight calculation methodmake it easier to
construct the partial derivative of each part of the parameter.

There are four subsections in this section, including:
1) Calculating the partial derivatives of the parameters

of the new BRB system.
2) Proving the differentiability of the new BRB system.
3) Proposing exponential normalization function for pre-

processing to avoid specific constraints during parameter
training.

4) Proposing a parameter training method using stochas-
tic gradient descent with momentum optimization.

A. THE PARTIAL DERIVATIVE OF THE PARAMETERS OF
THE BRB SYSTEM
The inference process of the improved BRB system is shown
in Figure 3. According to the inference process and com-
pound function chain derivation rules, the partial derivatives
of the output to the different parameters of the system can
be obtained. The model for parameter training using the
gradient method needs to be differentiable. This requires the
inference function to be smooth in the parameter space, and

34490 VOLUME 9, 2021



Y. Guan et al.: BRB Inference Method Based on Gradient Descent With Momentum

FIGURE 3. The operation process of inference system.

the partial derivative of the parameter exists and is continuous
everywhere in the domain.

Since the model construction and experiment in this paper
are carried out with complete data and the rule consequent
attribute does not include uncertain information, for any kth
rule:

N∑
i=1

βik = 1(k = 1, · · · ,L) (20)

mD,k = mD,k , m̃D,k = 0 (21)

In the case of completeness, the jth consequent attribute is
expressed as:

βj =

∏L
i=1(mj,i + mD,i)−

∏L
i=1mD,i∑N

t=1
∏L

i=1(mt,i + mD,i)− N ×
∏L

i=1mD,i
(22)

Then the result of the jth consequent attribute before normal-
ization is expressed as:

β j =

L∏
i=1

(mj,i + mD,i)−
L∏
i=1

mD,i, βj =
β j∑N
k=1 βk

(23)

Substitute mj,i = wiβj,i and mD,i = 1 − wi into the jth
consequent attribute before normalization expression:

β j =

L∏
i=1

(wiβ ij + 1− wi)−
L∏
i=1

(1− wi) (24)

Obtain the partial derivative of the ith consequent attribute βi
to the jth unnormalized consequent attribute β j:

dβi
dβ j
=



N∑
k 6=j
βk

(
N∑
k=1

βk )2
, j = i

−
βi

(
N∑
k=1

βk )2
, j 6= i

(25)

Similarly, the partial derivative of the jth unnormalized con-
sequent attribute β j to the activation weight of the kth rule
and the jth consequent attribute of kth rule can be obtained
as:

dβ j
dwk
= (βkj −1)

L∏
i=1,i6=k

(wiβ ij+1−wi)+
L∏

i=1,i6=k

(1−wi) (26)

dβ j
dβkj
= wk

L∏
i=1,i6=k

(wiβ ij + 1− wi) (27)

According to the activation weight expression of the kth
rule, the partial derivatives of the rule antecedent attribute
parameter and the corresponding attribute distance-sensitive
parameter can be obtained respectively:

dwk
dxkl
= 2(akl )

2(xl − xkl )e
−

Tk∑
i=1

[aki (xi−x
k
i )]

2

(28)

dwk
dakl
= 2akl x

k
l (xl − x

k
l )e
−

Tk∑
i=1

[aki (xi−x
k
i )]

2

(29)

Set the loss function expression of the final output to be
loss = Loss(β1, · · · , βN ). According to the compound func-
tion chain derivation rule, the partial derivative of the final
loss on each parameter can be obtained.

dloss

dβkj
=

N∑
i=1

N∑
j=1

dloss
dβi

dβi
dβ j

dβ j
dβkj

(30)

dloss

dxkl
=

N∑
i=1

N∑
j=1

dloss
dβi

dβi
dβ j

dβ j
dwk

dwk
dxkl

(31)

dloss

dakl
=

N∑
i=1

N∑
j=1

dloss
dβi

dβi
dβ j

dβ j
dwk

dwk
dakl

(32)

B. DIFFERENTIABLE PROOF OF BRB SYSTEM
The evidential reasoning process of the belief rule base sys-
tem is a multivariate compound function process. According
to the differentiable condition of the multivariate compound
function, each intermediate function must satisfy the differ-
ential condition, and the partial derivative of each parame-
ter must exist and be continuous. Since any of the partial
derivatives above are only obtained by elementary functions
through four arithmetic operations and compound operations,
the partial derivatives of any parameter are continuous in its
domain. The existence and continuous partial derivative of
any parameter can prove that the whole inference system is
differentiable.

When the appropriate loss function is selected, the final
output loss is differentiable to all the parameters of the model,
which provides conditions for using the gradient method to
optimize the model parameters. The gradient of the loss result
on the parameters of each part of the model can be obtained.
The gradient of the loss function on all the rule antecedent
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attribute parameters is:

∇x loss =


dloss

dx11
· · ·

dloss

dx1Tk
...

. . .
...

dloss

dxL1
· · ·

dloss

dxLTk

 (33)

The gradient of the loss function on the distance-sensitive
parameters of all rules is:

∇aloss =


dloss

da11
· · ·

dloss

da1Tk
...

. . .
...

dloss

daL1
· · ·

dloss

daLTk

 (34)

The gradient of the loss function on all rule consequent
attribute parameters is:

∇β loss =


dloss
dβ1,1

· · ·
dloss
dβN ,1

...
. . .

...
dloss
dβ1,L

· · ·
dloss
dβN ,L

 (35)

According to the belief distribution output by the inference
system and the loss function of the result, the gradient of
each part of the parameters can be optimized by updating the
parameters along the negative gradient direction.

C. EXPONENTIAL NORMALIZATION FUNCTION
PREPROCESSING
In the training process, to satisfy the restriction that the sum of
the consequent attributes of each rule is one and each conse-
quent attribute is non-negative, the exponential normalization
function is used to preprocess the consequent attributes:

βkj =
eβ

k
j

N∑
i=1

eβ
k
i

(
N∑
i=1

βkj = 1, βkj > 0) (36)

The derivative of the corresponding parameter can be
obtained through the formula:

dβkj

dβkt
=

{
βkt × (1− βkj ), t = j

−βkt × β
k
j , t 6= j

(37)

The partial derivative of the consequent attribute without
preprocessing can be expressed as:

dloss

dβkj
=

N∑
i=1

N∑
t=1

dloss
dβi

dβi
dβ t

dβ t
dβkt

dβkt

dβkj
(38)

Also according to the elementary function chain derivation
rule, the derivative of this parameter is continuous in its

domain, and the parameter is differentiable. Its gradient is
expressed as:

∇β loss =



dloss

dβ11
· · ·

dloss

dβ1N
...

. . .
...

dloss

dβL1
· · ·

dloss

dβLN

 (39)

D. STOCHASTIC GRADIENT DESCENT WITH MOMENTUM
OPTIMIZATION
The optimization process of using the gradient descent
method to update the parameters of the inference model is
given by the following equation:

Mnew(x, a, β) = Mold − µ∇Mold loss (40)

The gradient is given according to the loss function of the
final output, and the learning rate µ is the updated step length
that needs to be set. Chang and Zhang [11] and Wu et al. [13]
used dichotomy in the gradient training process to iteratively
find the optimal step size in the constraint space and added
perturbation parameters when the gradient is zero to avoid
the training process stagnation. For the application of new
rule structures, activation methods, and preprocessing steps,
the gradient training update step size is no longer limited. The
momentum-optimized stochastic gradient descent method is
proposed for faster training.

The stochastic gradient descent method is an iterative opti-
mization method when the objective function is differen-
tiable. It used a random subset of the training data to calculate
the gradient value as the estimated value of the entire training
data gradient, which reduces the computational burden in
high-dimensional optimization problems.

The output of the loss function in the conventional gradient
descent method is determined by all samples, and the model
parameters are updated according to its gradient:

loss =
1
n

n∑
i

Loss(β i1, . . . , β
i
N ) (41)

Randomly select a single sample as the estimated value of
the average value of the loss function output on all samples
to update the model parameters:

loss = Loss(βr1 , . . . , β
r
N ) (42)

Since the update direction completely depends on the gra-
dient of the current sample, the stochastic gradient descent
method is not stable. The momentum method improves the
stability and speed by retaining a certain degree of historical
gradient information and combining it with the current sam-
ple gradient. It also enhances the ability to get rid of locally
optimal solutions.

The momentum method uses a weighted fusion method to
synthesize the historical gradient information and the current

34492 VOLUME 9, 2021



Y. Guan et al.: BRB Inference Method Based on Gradient Descent With Momentum

TABLE 1. Initial rule information.

sample gradient and uses the result as an update parameter
for each round of training:

vt = νvt−1 + µ∇lossM ,M = M − vt (43)

The initial value of v0 is set to zero and ν represents the
ratio of retaining historical gradient information. The same
direction of the current gradient and the historical gradient
will increase the speed of parameter training in this gradient
direction. The different directions of the current gradient and
the historical gradient will inhibit the current gradient from
causing parameter training oscillations.

IV. EXPERIMENTAL RESULTS
This section first compares the training performance of
the gradient method under different momentum parameters
through a nonlinear function fitting experiment and then
compares the performance of the SGDM-BRB system under
different parameter settings through the oil leak detection
experiment. Finally, the SGDM-BRB system is compared
with conventional machine learning algorithms on several
public classification datasets and all experimental results are
summarized.

A. EXPERIMENTAL ENVIRONMENT
The experiment runs on a Ubuntu 20.04 system equipped
with Intel˙ CoreTM i5 8500@3.0GHz CPU, 16GB RAM and
GeForce GTX 1060 Graphics. Use TensorFlow 2 to build the
evidential reasoning framework of the BRB system and use
the Scikit-learn machine learning library to collect and clean
datasets.

B. PERFORMANCE OF THE GRADIENT DESCENT METHOD
WITH DIFFERENT MOMENTUM PARAMETERS
Liu et al. [16] proved that the belief rule base system
can approximate any function. In this section, a nonlin-
ear multi-extreme function is introduced to compare the
training performance of the stochastic gradient descent
method under different momentum parameters. The nonlin-
ear multi-extreme function is as follows:

f (x) = e−(x−2)
2
+ 0.5e−(x+2)

2
, x ∈ [−5, 5] (44)

1) BASIC SETTINGS AND OPTIMIZATION
In the domain defined by function (44), 1000 samples are
uniformly selected as the fitting dataset, and the mean square
error is used as the loss function. According to each extreme

point on the function curve, the rule base consequent attribute
evaluation level and corresponding utility value can be set:

{D1,D2,D3,D4,D5} = {−0.5, 0, 0.5, 1, 1.5}

Select the five extreme points on the function curve and
convert them into corresponding rules as the rules of the rule
base. Set the default distance-sensitive parameter of each rule
to be 1.0. The initial rule information is shown in Table 1.
Figure 4 shows the untrained BRB system output. Set the
number of training samples in each batch to be 128 and
the learning rate µ to be 0.001 for 1000 rounds of training.
Set the momentum optimization parameters ν to be 0.0 (non
momentum optimization), 0.5, 0.9 and 0.99 to compare their
fitting performance.

FIGURE 4. Untrained BRB system output.

2) RESULTS AND ANALYSIS
Figure 5 shows the mean square error loss of each batch
under different momentum parameters. Through the decreas-
ing curve of the mean square error loss function, it can be
found that smaller momentum optimization parameters can
significantly improve model performance. The loss value of
the model with the momentum parameter set to 0.5 has never
been lower than 0.001 during the training process. The loss
of the model with the momentum parameter set to 0.9 and
0.99 rapidly decreased to about 1 × 10−4, and decreased to
about 1× 10−5 after training.
Figure 6 shows that higher momentum parameter values

can obtain better fitting performance, greatly reducing the
distance between the fitted curve and the original curve.
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TABLE 2. Trained rule information.

FIGURE 5. Mean square error loss under different momentum
parameters.

FIGURE 6. Fitting performance of different momentum parameter models.

Table 2 records the information of each rule in the model
with the momentum parameter set to 0.99 when the training
is completed. The distance-sensitive parameters have become
smaller after training, that is, the activation area of each rule
has increased. The consequent attribute in their respective
utility levels is significantly increased, while other levels have
decreased. The antecedent attribute information of each rule
is only slightly adjusted after training.

Table 3 compares the performance of the SGDM-BRB
with several conventional BRB systems, including the final

TABLE 3. Mean square error and training time using different
optimization algorithms.

mean square error results and training time of these models.
It is obvious that the gradient method after the momentum
optimization has an excellent performance in improving the
inference accuracy of the BRB system, but the training model
without the effective momentum parameter optimization can-
not reach the loss level of the conventional method. And the
running speed of the gradient method is much lower than
the conventional BRB system optimized by other intelligent
algorithms or gradient descent algorithms.

C. OIL PIPELINE LEAK DETECTION OF BRB SYSTEM WITH
DIFFERENT SETTINGS
In this section, the oil pipeline leak detection dataset is
applied to validate SGDM-BRB and reveal its practicability,
and compare the performance of models under different types
of distance-sensitive parameters.

The oil pipeline leak detection dataset is a common bench-
mark used for testing the BRB system and its improvements.
There are 2008 sets of sample data collect every 10 seconds.
Each sample includes three continuous variables: flow differ-
ence, pressure difference, and leak size. The flow difference
and pressure difference are used as independent variables, and
the leak size is used as the dependent variable. By comparing
the mean square errors of these two parameter settings and
other conventional BRB system optimization methods, it is
verified that the model with distance-sensitive parameters for
each rule has better performance than the model with uniform
distance-sensitive parameters for each attribute.

1) BASIC SETTINGS AND OPTIMIZATION
Randomly select 500 samples as the training set. The
distance-sensitive parameters of flow difference and pressure
difference are set to be 1.0 and 0.01. There are 5 reference
levels for leak size, including zero (Z ), very small (VS),
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TABLE 4. Comparison with present researches.

medium (M ), high (H ), and very high (VH ). The reference
values are:

DLS ∈ {(Z , 0), (VS, 2), (M , 4), (H , 6), (VH , 8)} (45)

Randomly select 16 samples from the training set and convert
them into the belief rule form and build the corresponding rule
base. For flow difference and pressure difference information,
convert them into the antecedent attribute. For the leak size,
set the consequent attribute to be the negative value of the
distance from leak size to the corresponding reference value.
The corresponding rule for a sample with flow difference fd ,
pressure difference pd ,and leak size ls is expressed as:

R : If (fd, pd)Then{(βZ ,−|ls− 0|), (βVS ,−|ls− 2|),

(βM ,−|ls− 4|), (βH ,−|ls− 6|), (βZ ,−|ls− 8|)} (46)

The initial belief rule-base inference system results for the
training set are shown in Figure 7.

FIGURE 7. Comparison of the initial model output and the leak size of
the training set.

In the training process, the mean square error is
used as the loss function, each batch uses 32 samples,
and a total of 1000 rounds of training. A model with
distance-sensitive parameters for each rule has a total
of 144(No. rule× (No. antecedent+No. distance-sensitive+
No. consequent)=16×(2+2+5)) parameters to be trained,
and a model with uniform distance-sensitive parameters for
each attribute has a total of 114(No. rule× (No. antecedent+
No. consequent) + No. distance-sensitive=16×(2+5)+2)
parameters to be trained. The output of the model with

distance-sensitive parameters for each rule after training is
shown in Figure 8.

FIGURE 8. Comparison of the trained model output and the leak size on
all samples.

2) RESULTS AND ANALYSIS
All of the 2008 samples and estimated output are shown
in Figure 9, it can be observed that the results of the two are
roughly the same, especially when the leak occurred. Note
that there is a large leak estimation error around the 1000th
sample, which may be caused by noisy data.

To further verify the validity of SGDM-BRB, 20 inde-
pendent experiments on two different distance-sensitive
parameter settings methods are conducted. Table 4 lists the
comparison of results of some existing works and two pro-
posed methods, where the mean square error and mean
absolute error are obtained from 2008 samples.

For the method of using uniform distance-sensitive param-
eters for each attribute, the mean absolute error and the mean
square error are both ranks in the top four. For the method
of setting distance-sensitive parameters for each rule respec-
tively, the mean absolute error and the mean square error
are both ranks in the top two. It only lags behind the JOPS
algorithm in the mean absolute error, and only lags behind
the Bi-level BRB model in the mean square error.

Since the new method simplifies the structure of using
reference values to construct the belief distribution of the
antecedent attributes, it reduces a large number of parameters
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FIGURE 9. Estimated output and samples.

FIGURE 10. Absolute error between estimated output and samples.

TABLE 5. Accuracy of the SGDM-BRB method compare with conventional machine learning methods.

compared with the conventional BRB model. If a uniform
distance-sensitive parameter is used for each attribute, the
number of parameters can still be greatly reduced without
significantly reducing the inference accuracy. However, com-
pared with other newer methods, our method still needs to
train a certain number of rule parameters to improve the
inference accuracy and cannot achieve the ultimate parameter
reduction.

In summary, the comparison of experimental results shows
that the proposed method achieves higher inference accuracy,

and a large number of parameters are reduced through sim-
plification based on the traditional rule structure.

D. EXPERIMENT ON PUBLIC CLASSIFICATION DATASETS
This section selects 7 UCI public classification datasets that
are widely used to validate the inference performance of the
SGDM-BRBmethod. Table 6 shows the detailed information
of these classification datasets. Repeat independent 10-fold
cross-validation experiments for 20 times to obtain the final
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TABLE 6. Details of the classification datasets.

results. The results for comparison are measured by average
accuracy.

The results obtained by the SGDM-BRB method will be
compared with the results obtained by other machine learning
methods and belief rule-base inference systems. The machine
methods for comparison include KNN, Naive Bayes (NB)
and C4.5, support vector machine (SVM) and their results are
cited from previous papers [24], [29]. The BRB systems used
for comparison include SRA-EBRB [22], MVP-EBRB [23]
and BA-EBRB [24].

1) BASIC SETTINGS AND OPTIMIZATION
To enable a unified classification process, standardized oper-
ation is performed on each dataset:

x ′ =
x − x
δ

(47)

where x is the mean of x and δ is the standard deviation of
x. After standardization, the data on each attribute can be
approximated to the standard normal distribution, and the
distance-sensitive parameter on all attributes can be conve-
niently set to 1.0. Then choose cross-entropy as the loss
function to train the BRB system. For a multi-classification
task with N categories, the loss function on each sample
y, and the corresponding prediction result y is defined as
follows:

Loss(y, y) = −
N∑
i=1

yi log yi (48)

For the experiment on each dataset, 32 samples are ran-
domly selected from the training set as the initial rule and
convert the classification result into the corresponding belief
result distribution according to the above conversion method.
The rule corresponding to the kth training sample

Xk : (x1, . . . , xTk ),Yk : c, 1 ≤ c ≤ N (49)

is expressed as:

Rk : if (x ′1, · · · , x
′
Tk )

then{(βk1 ,−1), · · · , (β
k
c−1,−1), (β

k
c , 1), (β

k
c+1,−1),

· · · , (βkN ,−1)}

with distance− sensitive parameter(ak1, · · · , a
k
Tk ) (50)

Assign each rule its own distance-sensitive parameters on all
attributes to obtain a finer inference granularity by increasing
the number of parameters.

In the process of parameter optimization using momentum
optimization stochastic gradient descent method, the learning
rate is set to 0.001 and themomentum optimization parameter
is set to 0.99. There are 128 training samples in each batch,
and 2000 rounds of training are performed on each dataset.

2) RESULTS AND ANALYSIS
Table 5 lists the classification accuracy of the SGDM-BRB
method and other machine learning methods include sev-
eral conventional improved BRB methods. Although the
SGDM-BRBmethod is not always the best, it’s ranking never
fell out of the top 3, and it is also the method with the highest
average ranking. As shown in Table 5, our method achieves
higher accuracy than any other method on the four datasets
of wine, glass, seeds, and yeast. For the other results shown
in Table 5, the SGDM-BRB method achieves an accuracy of
96.50% on the dataset iris which is worse than the 96.67%
accuracies obtained from KNN and SVM, and accuracy of
85.43%on dataset ecoli which is worse than the 85.71% accu-
racy obtained from KNN and the 85.61% accuracy obtained
from MVP-BRB, and accuracy of 75.29% on dataset pima is
worse than the 76.30% accuracy obtained from NB.

Since the number of rules to be trained is fixed, the num-
ber of parameters only shows a linear relationship with the
number of antecedent attributes and consequent attributes.
It effectively avoids the problem of parameter explosion that
the conventional BRB method may encounter.

V. CONCLUSION
This paper proposes a new rule structure and its activation
method with the corresponding momentum optimization gra-
dient training method. The new rule structure uses original
data to form rules directly, avoiding the parameter explo-
sion problem caused by excessive reference value settings.
The rule activation weight calculation method improved by
using the Gaussian function has effectively improved the
inference accuracy by introducing distance-sensitive param-
eters, the characteristic of the Gaussian function avoids the
rule zero activation problem and simplifies the process of
normalizing rule activation weights. The new structure and
optimization method makes it easier to construct the par-
tial derivatives of the inference system, providing conditions
for high-performance gradient training methods. The further
conclusions of this paper are summarized as follow:

1) The method of combining attribute distance-sensitive
parameters and Gaussian function avoids the rule zero acti-
vation problem. It also makes the activation weight change
more gentle and has a good fitting performance.

2) The stochastic gradient method combined with larger
momentum optimization parameters greatly improves the
accuracy and convergence speed of the model.

However, the parameter training model proposed in this
paper also has certain defects. The main flaw lies in the selec-
tion of the initial rules to be trained. Whether it is randomly
drawn from a data set or randomly generated rule data, its
distribution greatly affects the final inference accuracy. With
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the increase of the number of rules, there will be redundant
rules that are not used at all after the training, which affects
the inference accuracy and efficiency.

Due to its good fitting performance, future research will
focus on using integrated methods to further improve infer-
ence performance and reduce potential over-fitting risks.
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