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ABSTRACT The personalized recommendation has become increasingly prevalent in real-world applica-
tions, to help users in discovering items of interest. Graph Convolutional Network (GCN) has achieved great
success and become a new state-of-the-art for collaborative filtering. However, most of the existing GCN
based methods can only capture information about the user’s purchase (or click) history, reflecting only
one aspect of the user preferences and item characteristics. To provide more accurate recommendations,
we need to go beyond modeling user-item interactions and take auxiliary information into consideration.
In this paper, we propose a Light GCN based Aspect-level Collaborative Filtering model (LGC-ACF) to
exploit multi-aspect user-item interaction information. First, we construct aspect-level user-item interaction
graphs according to the interaction history and the knowledge information of items, then feed them to
a delicately designed Light GCN based model to learn aspect-level representations of users and items.
Finally, the representations of all aspects and all propagation layers are fused for recommendation. We apply
LGC-ACF to three datasets: Movielens, Amazon, and Taobao. The experiment results show that LGC-ACF
achieves average NDCG improvements of 5.31%, 4.06%, 14.9% in Movielens, Amazon, and Taobao
datasets, respectively, compared with state-of-the-art baselines for recommendation.

INDEX TERMS Recommender systems, graph convolutional network, representation learning, multi-aspect
information.

I. INTRODUCTION
Recommendation systems are information filtering systems
designed to alleviate information overload [1], which can
provide a set of items according to observed user behaviors.
It has been extensively used in almost any field where infor-
mation needs to be filtered, such as movies [2], music [3],
micro-videos [4], news [5], [6]. As one of the most prevailing
recommendation methods, the basic assumption of Collabo-
rative Filtering (CF) is that people who share similar behav-
iors have similar preferences [7]–[9]. Extensive studies on
CF-based recommenders have been conducted and achieved
great success.

One basic task of CF is to learn the representations
(a.k.a. embedding) of users and items, then conduct predic-
tions based on the representation vectors [10], [11]. Learning
informative representations of users and items is of cru-
cial importance to improving CF. Matrix factorization (MF)
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factorizes the user-item interaction matrix into two low-
rank user-specific and item-specific factors, then remodels
user-item interaction with inner product [12]. Many subse-
quent studies have expanded on MF [13]–[16].

Recently, Graph Convolutional Networks (GCN) [17],
[18], which have demonstrated their remarkable ability in
graph representation learning, are introduced to recom-
mender systems [19] and get great success. By treating the
user-item historical behaviors as a bipartite graph with edges
between users and items, CF can be transformed into the edge
prediction problem in the graph [9], [19]. By iteratively stack-
ing multiple layers of graph convolution operation (neighbor
aggregation and non-linear activation operations), GCN can
effectively capture collaborative signals of high-hop neigh-
bors in the embedding propagation process [8], alleviate the
data sparsity problem in collaborative filtering to some extent.
These GCN-based recommender models show stronger per-
formance compared to traditional models.

Although these methods have achieved great success, one
drawback is that they typically only utilize information from
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the user’s purchase history. Existing GCN-based models have
focused on learning representations of users and items solely
through their interaction graph. However, people always con-
sider multi-aspect of the item in real applications before
adopting an item, e.g., item category, brand, function, appear-
ance, and other item features. Thereby, we believe that mod-
eling multi-aspect information of user and item can refine
user preferences and item characteristics. Fig.1(a) shows a toy
example. U4 is the recommended target user. If only exploit
the purchasing history of the user, it is not clear whether I2
or I3 should be recommended to U4. However, if the item
brand information is added to consider, we may find that I3 is
a better recommendation to U4 because the items purchased
by user U4 belong to the same brand B2 as I3.

FIGURE 1. (a) A toy example of our idea. (b) User-brand interaction graph.

In this paper, we focus on exploiting information from
multiple aspects of user-item interaction. Hence, we devise
a novel model, Light GCN based Aspect-level Collabora-
tive Filtering (LGC-ACF), to effectively model and combine
multiple aspect-level latent factors and generate informative
representations. In particular, our idea is to extract additional
information of items by graph neural network, then integrate
them into the final representation of user and item to obtain
more informative representation. To this end, we imitate the
user-item bipartite graph and construct interaction graphs of
user with other item attributes, as shown in Fig.1(b), in which
the weight of the edge indicates the interaction times between
the user and the corresponding item attribute. Then feed
these graphs into an elaborately designed multi-component
model equipped with light graph convolutional network to
learn different aspects and different hop embeddings of user
and item. Finally, the aspect-level and layer-level embed-
dings are fused for recommendation. Extensive experiments
on three real-world datasets demonstrate that our LGC-ACF
outperforms other state-of-the-art models in recommendation
effectiveness.

The major contributions of this work are as follows:
• To make better use of item attributes information that
may cause user behavior, we take the lead in modeling
the relationship between users and item attributes us-ing
graph convolutional network in the interactive graph
structure.

• We propose LGC-ACF, a novel Light GCN based
approach, which can effectively model and fuse differ-
ent aspect-level latent factors, which comprehensively
represent the user preferences and item characteristics.

• We conduct extensive experiments on three real world
datasets, to demonstrate the state-of-the-art performance
of our LGC-ACF approach and the effectiveness in
improving the embedding quality by fusing multi-aspect
information.

II. RELATED WORK
In this section, we briefly introduce existingwork onCollabo-
rative Filtering and GCN-based method for recommendation,
which are most relevant to our study.

A. COLLABORATIVE FILTERING
CF provides personalized item suggestions to users by
learning user and item embeddings from their historical
behavior data [7], [8], [14]. The most widely studied collab-
orative filtering algorithms are based on matrix factorization,
which basic assumption is to factorize the interaction matrix
(e.g., rating matrix) of users and items into two low-rank
matrix, then conducts product between them to reconstruct
interaction matrix. PMF [20] assumes that the user’s rating
of the item is a random variable with Gaussian noise, and
optimizes the maximum likelihood function by minimizing
the mean square error between the observed value and the
predicted value. BiasedMF [12] improves PMF by introduc-
ing user-specific, item-specific, and global bias.

With the surge of deep learning techniques, recent studies
focus on exploiting deep learning to learn nonlinear interac-
tion features between user and item. For example, NCF [7]
uses a nonlinear neural network to learn the interaction func-
tion of user and item. DMF [21] takes the interaction history
of the user and item as a feature vector and inputs it to a multi-
layer perceptron to learn the latent expression of user and
item. NeuACF [22] introduces aspect-level information on
the framework of NCF and designs an attention mechanism
for learning the weight of aspect-level information. It should
be noted that our method is different from NeuACF, which
adopts meta-path to extract similarity matrix of users and
items from heterogeneous graph.

B. GCN-BASED METHODS FOR RECOMMENDATION
Different from the traditional collaborative filtering methods,
GCN has become a new state-of-the-art for recommenda-
tion and has been widely used because it can capture the
high-order similarity of nodes in the interaction graph.

GCMC [19] stacks a graph convolution layer followed by
a dense layer to accumulate the messages that are aggregated
according to different types of edges as the node representa-
tions, but it basically only considers the first order neighbors.
PinSage [23] is the first application of GCN to a web-scale
recommendation system. NGCF [8] iteratively propagates
user and item embeddings in the graph to distill high-hop
collaborative signals with graph convolutions. KGCN [24]
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FIGURE 2. Overall architecture of LGC-ACF. It takes in the user-item interaction graphs of different aspects and predicts user-item interaction
probabilities. This example is based on the Movielens dataset, the arrowed lines indicate the flow of information. For the description symbols of the
embedding vector, the capital letters in the superscript are abbreviations for aspect-level information, e.g., M denotes the movie-aspect and D
denotes the director-aspect; the super-index (l ), where l = 1, 2, . . . , L denotes the embedding is obtained at the l -th GCN layer.

and KGAT [25] employ GCN to process heterogeneous infor-
mation. The former takes the items in the knowledge graph
as the center, defines a receptive field based on the number of
hops, and then combines the information of the receptive field
to get the embedding of the items, while the user embedding
is trained separately without using knowledge information,
which may limit the performance of the model; The latter
encodes user behaviors and item knowledge as a unified rela-
tional graph, which is called collaborative knowledge graph.
The embeddings of users and items are propagated in the
collaborative knowledge graph to inject the item knowledge
information. DisenGCN [26], DGCF [27], and MCCF [28]
hold that treat a user-item interaction as an isolated data
instance is insufficient to capture the diversity of user intents
on adopting an item, may resulting in suboptimal represen-
tations. LR-GCCF [9] exploits [29] and proposes a resid-
ual network structure to tackle the over-smoothing problem.
Peng and Mine [30] proposes another method to alleviate the
over-smoothing problem, which randomly removes neighbor
messages at each propagation layer. LightGCN [11] conducts
ablation analyses on GCN and improves the model’s perfor-
mance and scalability by removing the feature transformation
and nonlinear activation operation.

III. APPROACH
In this section, we present our model employing the Movie-
lens dataset as an example. Firstly, we briefly describe the
model architecture. Then, we introduce each component of
the model in detail. Finally, we describe the loss function.

A. OVERALL STRUCTURE OF PROPOSED MODEL
Fig.2 shows the overall framework of LGC-ACF. As we
can see, the model takes the user-item interaction graph of
different aspects as input and then output the probability of
users adopting items in the future. Firstly, an embedding layer
provides and initializes the user embeddings about different
aspects of the item, as well as the embeddings of different
aspects of the item. More specifically, for movies recom-
mendation, in addition to the movie ID, we also encode the
genres ID, director ID, actor ID. Please see Fig.3. Note that
these embeddings are trainable. Then, we stack multiple light
graph convolutional layers to extract the high-hop relation-
ship between users and items. Finally, the prediction layer
aggregates the aspect-level and layer-level embeddings to
generate the final representation of user and item. The inner
product operation is then conducted on them to obtain their
affinity score.
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FIGURE 3. Embedding matrix of aspect-level user-item interaction graphs
(an example of Movielens dataset).

B. EMBEDDING LAYER
Before generating the embeddings, we need to construct
multiple aspect-level user-item interaction graphs. Most of
the existing GCN-based recommendation methods explore
the bipartite graph of user-item interaction history. In this
work, we take advantage of item attributes information to
improve the performance of the recommendation. Specif-
ically, by imitating the bipartite graph of user and item,
we construct the user-genres, user-director, and user-actor
interaction graph, respectively, where the weight of the edge
indicates the number of interactions between the user and
the corresponding genres (or director, actor). We name these
graphs as aspect-level user-item interaction graphs in this
paper. For each aspect-level graph, we describe a nodewith an
embedding vector e ∈ Rd , where d indicates the embedding
dimension. This can be thought of as creating a parameter
matrix for each aspect-level graph. Taking the user-director
graph as an example:

ED = [eDu1 , · · · , e
D
uN , e

D
i1 , · · · , e

D
iMD

], (1)

where superscriptD denotes the aspect of director; N denotes
the number of users; MD denotes the number of directors.
Other aspect-level embedding matrices are provided simi-
larly. Fig.3 shows an example of Movielens dataset, where
each embedding matrix represents the corresponding inter-
action graph. We adopt Gaussian distribution to initialize all
embeddings, and they will be optimized in an end-to-end
manner. Table 1 shows examples of more aspects adopted in
our experimental datasets.

TABLE 1. Aspect-level information used in experiments.

C. LEARNING ASPECT-LEVEL EMBEDDING
This part will refine the aspect-level embedding by
propagating them in the corresponding aspect-level
interaction graph. A standard GCN layer consists of three
operations: feature transformation, neighbor aggregation, and

non-linear activation. The propagation rule is defined as:

E (l+1)
= σ (D̃−

1
2 ÃD̃−

1
2E (l)W (l)), (2)

where the augmented adjacency matrix Ã = A + I , here
I indicates identity matrix and is introduced to add self-
connections; D̃ is the degree matrix, where D̃ii =

∑
j Ãij;

W (l) denotes layer-specific feature transformation matrix;
σ (·) denotes non-linear activation function.
Recently, He.et al. [11] find that feature transformation

and non-linear activation in standard GCN contribute little to
the recommendation performance. They propose LightGCN,
which only retains the neighborhood aggregation operation
in standard GCN. Advanced performance and model sim-
plicity make it more scalable. Thereby we follow their work,
employing LightGCN to spread and refine the aspect-level
embeddings of user and item. In this work, taking the
aspect of user-director for example, the propagation rule of
LightGCN can be formulated as:

ED,(l+1) = ((DD)−
1
2AD(DD)−

1
2 )ED,(l), (3)

where ED,(l+1) ∈ R(N+MD)×d is the embedding matrix of the
user-director graph obtained after l + 1 steps of embedding
propagation; ED,(0) = ED as the initial representations; AD is
the adjacency matrix of user-director graph, it is defined as:

AD =
(

0 RD

(RD)> 0

)
(4)

RD ∈ RN×MD denotes the user-director interaction matrix,
where each element represents the number of times a user
has seen the movies directed by the corresponding director; 0
is all-zero matrix.

In fact, Eq.(3) with matrix form is equivalent to modeling
updated embedding of each user u and each director i as:

eD,(l+1)u =

∑
i∈ND

u

ADui√
|
∑

j R
D
uj|

√
|
∑

j R
D
ji |
eD,(l)i , (5)

eD,(l+1)i =

∑
u∈ND

i

ADui√
|
∑

j R
D
ji |

√
|
∑

j R
D
uj|
eD,(l)u , (6)

where
∑

j R
D
uj and

∑
j R

D
ji respectively denote the degree of

node u and node i in the user-director interaction graph;
ND
u and ND

i respectively denote the neighbor set of user u
and director i in the user-director graph.

We elaborately describe the node representation learning
process of the user-director graph. Since the user-movie, user-
genres, and user-actor aspect representation learning process
is similar, we omit it for brevity.

D. RATING PREDICTION
After the previous step, we can obtain embeddings at each
aspect-level module and each propagation layer of each mod-
ule. Each user u can be expressed as:

eu = [eA0u , · · · , e
AK
u ], (7)
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where, eAku = [eAk ,(0)u , · · · , eAk ,(L)u ], the superscript Ak
represents the corresponding aspect. We need to combine
these embeddings to generate the final representation of
the users and items. We divide the process into two steps:
(1) Layer-level embeddings fusion. (2) Aspect-level embed-
dings fusion.

1) LAYER-LEVEL EMBEDDINGS FUSION
We employ the weighted average to combine the layer-level
embeddings:

eAku =
1

L + 1

L∑
l=0

eAk ,(l)u , (8)

eAki =
1

L + 1

L∑
l=0

eAk ,(l)i . (9)

2) ASPECT-LEVEL EMBEDDINGS FUSION
We need to fuse the aspect-level embeddings further to build
the final representation of user and item. For aspect-level
embeddings, we still employ the weighted average for
simplicity:

eu =
1

K + 1

K∑
k=0

eAku , (10)

ei =
1

K + 1

K∑
k=0

eAki . (11)

We combine the movie’s embedding with the correspond-
ing embedding of genres, director, and actor as the movie’s
final representation. It should be noted that we implement
this process in a matrix form, while the number of genres,
directors, and actors is lower than the number of movies
because an actor may have participated in more than one
movie, which leads to different dimensions of the embedding
matrix. So before performing aspect-level embedding com-
bination, we employ a mapping table to perform redundant
operations on the rows of embedding matrix of aspects of
genres, director, and actor, so that their dimensions consistent
with the movie-aspect embedding matrix.

3) RATING PREDICTION
We conduct inner product operation on the final embedding
of user and item to obtain their affinity scores.

ŷ(u, i) = e>u ei. (12)

E. OPTIMIZATION
We employ Bayesian Personalized Ranking (BPR) loss to
update model parameters that assume that observed interac-
tions better reflect user preferences than unobserved interac-
tions, and therefore should be assigned a higher affinity score.
The objective function is formulated as follow:

Loss =
∑

(u,i,j)∈T

− ln σ (ŷui − ŷuj)+ λ‖2‖2, (13)

where T = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−}, R+ denotes
observed interactions and R− denotes unobserved interac-
tions; 2 = {EAk ,(0)|k ∈ 0, . . . ,K } is trainable parameters,
which only including the multi-aspect embedding matrix of
the 0-th layers. λ is the regularization parameter to pre-
vent over fitting; σ (·) is the sigmoid function. We use the
mini-batch Adam as the optimizer, which is able to adaptively
control the learning rate with respect to the absolute value
of gradient. Note that the training pairs in T is sampled
randomly and we update the embeddings for all nodes in each
batch.

F. TIME COMPLEXITY ANALYSES
This subsection will compare the time complexity of the three
algorithms LGC-ACF (our), NGCF, and LightGCN.

For the l-th propagation layer of GCN, the computational
complexity is O(|R+|dl−1 + ndldl−1) [31], where |R+| is
the number of non-zero elements in the Laplacian matrix;
n is number of nodes; dl and dl−1 are the embedding size
of the current layer and the previous layer, respectively. For
the sake of comparison, we assume that the feature transfor-
mation keeps the dimension of the embedding matrix con-
stant, that is, the node embedding dimension of each layer
is d . Then the computational complexity of a GCN layer
is O(|R+|d + nd2).
• NGCF [8] stacksmultiple GCN layers, its time complex-
ity is O(L|R+|d + Lnd2), where L is the layer number.

• LightGCN [11] removes the feature transformation and
nonlinear activation, and only retains the neighbor
aggregation operation in the standard GCN. Its time
complexity is O(L|R+|d).

• LGC-ACF introduces multi-aspect information on the
basis of LightGCN, which inevitably increases the
computational complexity. The time complexity of
LGC-ACF is O(L

∑K
a=1 |Ra

+
|d), where K denotes the

number of aspect-level information. In practical appli-
cations, employing too much auxiliary information
increases the computational complexity and contributes
little to recommendation performance, so K is usu-
ally small (no more then 5). We introduce multi-aspect
user-item interaction information, and the computational
complexity remains at the same level, which is tradeof-
fable in practical applications.

IV. EXPERIMENTS
In this part, we evaluate our model on three real-world
datasets. We introduce the experimental settings in
section IV-A. Then, we compared with other methods
in section IV-B. To prove the effectiveness of fusing
multi-aspect information, we conduct ablation experiments
in section IV-C. Finally, we conduct hyper-parameter studies
in section IV-D.

A. EXPERIMENTAL SETTINGS
1) DATASETS
We conduct extensive experiments on three real-world
datasets: Movielens [32], Amazon [33], Taobao [34], all of
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which are accessible and vary in terms of domain, size,
and sparsity. The statistics of the datasets are summarized
in Table 2 and Table 3.

TABLE 2. The statistics of the datasets.

TABLE 3. The statistics of the auxiliary information.

Movielens: Movielens dataset has been widely used to
evaluate recommendation methods. The version we selected
is ml latest small, which contains more than 600 users’
rating information on more than 9000 movies. To get more
information about movies, we crawled the genres, director,
and actor information of movies from IMDB, and for a few
invalid links or missing entries, we delete it from the data set.
We change the explicit rating data to implicit data.

Amazon: Amazon-review is a widely used recommen-
dation dataset. In our experiment, we select Amazon-
Electronics for evaluation. For this dataset, we remove items
that interact less than 5, while ensuring that each user interacts
with no less than 20 items. We change the explicit rating data
to implicit data.

Taobao:The Taobao dataset is a public online e-commerce
dataset collected from taobao.com. We consider ‘buy’ and
‘add to cart’ behaviors as positive interactions, and we
remove users with fewer than 10 interactions.

2) EVALUATION METRICS AND BASELINES
To evaluate the performance of top-k recommendation,
we adopt twowidely used rankingmetrics [7], [35]: recall@K
and NDCG@K, where K = 20 by default. For each user in
the test set, we take all items into ranking, except the items
in the training set. We compare our proposed LGC-ACF with
the following methods:
• MF [14] is a classical matrix factorization model.
• DMF [21] uses the interaction matrix as input and uses a
deep neural network tomap users and items to a common
low dimensional space.

• GCMC [19] originally focuses on explicit feedback,
constructs multiple adjacency matrices according to
the type of score, and uses different weight matri-
ces to decode different types of edges. In this paper,

we use implicit feedback to simplify it to a single-layer
GCN model.

• NGCF [8] stacks multiple standard GCNs, aiming to
inject high-order collaborative signal into the embed-
ding process.

• DGCF [27] focus on user-item relationships at the finer
granularity of user intents, and disentangle these intents
to generate disentangled representations.

• LR-GCCF [9] proposes a residual network structure to
deal with the over-smoothing problem.

• LightGCN [11] explores the embedding propagation
process, eliminates the nonlinear activation function and
feature transformation matrix, simplifies the model, and
improves the performance.

3) IMPLEMENTATION
We implement our LGC-ACF model in Pytorch. For a fair
comparison, we tune the parameter settings of each model
to get the best performance. For example, in particular, for
NGCF and LightGCN, we search the learning rate in {0.0001,
0.0005, 0.001, 0.005} and layer number in {1, 2, 3}, the coef-
ficient of L2 normalization is searched in {1e-1, 1e-2, 1e-3,
1e-4}. In other baseline models, we adjust the parameters in
a similar way to get the best performance. For our proposed
model, we initialize the model parameters with a Gaussian
distribution of mean 0 and standard deviation 0.1, and apply
grid research for learning the hyperparameters. We randomly
select 80% of the interaction record for training and the rest
for test. All experiments are conducted on a machine with a
GPU (NVIDIA RTX-2080) and a CPU (Intel i-7 9700k).

B. PERFORMANCE COMPARISON
The results of the performance comparison are shown
in Table 4. We have the following observations:

• Our proposed LGC-ACF achieves the best performance
over all the datasets and metrics. In particular, compared
with the strongest baseline, the improvement on Movie-
lens, Amazon, Taobao is 4.975%, 1.305%, 14.35%,
respectively, in terms of recall. The significant improve-
ment indicates that the fusion of user-item interaction
information of multi-aspect is useful for distilling the
representative embeddings. Note that our method can
be further improved by employing a more reasonable
aggregator, e.g., attention [36], LSTM [37] etc. Since the
contribution of different aspects of information to rec-
ommendation performance is always distinct. We leav-
ing the problem in future work.

• MF performs poorly on all three datasets, indicating that
inner product is hard to fully model the complicated
relationship between users and items. DMF performs
consistently better than MF in all cases, which shows
that non-linear projection can capture more information.
The performance of GCN-based methods is better than
DMF, which indicates the effectiveness of exploiting the
high-order connectivity.
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TABLE 4. Overall comparison. The best performance is highlighted in bold, and the second is underlined. The last row is the improvement of LGC-ACF
over the best baseline.

• We notice that the GCMC, which is also based on GCN,
performs mediocre. It is at the same level as DMF
on Movielens and Amazon, and lower than DMF on
Taobao. We guess a possible reason is that GCMC only
models the first-order relationship, and it does not inte-
grate the initial embedding into the final representation
of users and items.

• With the increasing sparsity of datasets, the gap of per-
formance between GCN-based methods and classical
methods is also widening. One possible reason is that on
dense datasets, the user-item interaction is informative
enough to describe user preference; on sparse datasets,
due to the lack of interaction between users and items,
it is necessary to explore higher-order relationships to
express user preferences.

• LightGCN outperforms NGCF by a large margin in
all cases, which proves once again that the fea-
ture transformation and nonlinear activation operation
in standard GCN will damage the recommendation
performance.

C. ABLATION ANALYSES
To investigate whether LGC-ACF can benefit from
multi-aspect user-item interaction information, we con-
duct experiments with the increase of aspect to fuse more
information into our model. Fig.4 shows the experimental
results. It demonstrates that combining different aspects of
information can improve the performance of recommenda-
tion. Specifically, Fig.4(a) shows the results on Movielens.
M1 means the result of only exploiting the user-item inter-
action on the movie aspect. M2 means that genres aspect
interaction information is added. M3 means the director
aspect information is further added. M4 means we use all
four aspects of information. Fig.4(b) shows the results on
Amazon. We integrate the aspect-level information in the
order of product, brand, and category. From the experimental
results of the above two datasets, we have the following
observation:

FIGURE 4. Ablation study of aspect-level information. (a)On Movielens
dataset. (b)On Amazon dataset.

• Each aspect of user-item interaction can bring unique
information, which reflects user preferences to some
extent, improve the performance of recommendation.

• The performance of the model will be greatly improved
after adding additional information of one aspect,
but with aspect-level information is added further,
the growth of the model performance becomes slower,
i.e., the improvement is non-linear. One possible reason
is that noise is introduced as well as information, and it
will increase the training difficulty.

In fact, LightGCN is a particular case of our LGC-ACF.
If only exploit purchase (or click) history, then LGC-ACF is
equivalent to LightGCN. Our main contribution is to model
and fuse different aspects of user-item interaction information
through graph convolutional network, aiming to obtain a
more accurate representation of users and items.

D. HYPER-PARAMETER STUDIES
1) IMPACT OF LAYER NUMBERS
To investigate the effect of the number of embedding prop-
agation layers on performance, we set the number of prop-
agation layers in range of {1, 2, 3, 4} and summarize the
empirical results in Fig.5.

As we can see, on Movielens, recall@20 reaches the opti-
mal valuewhen the number of layers is 2, NDCG@20 reaches
the optimal value when the number of layers is 3. Further
stacking propagation layer on the top of the model will
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FIGURE 5. Effect of embedding propagation layer numbers.

FIGURE 6. Effect of different embedding dimensions.

lead to performance degradation. Since Movielens is a dense
dataset with rich interactive information, a shallow network
is enough to extract high-quality expression, and stacking
more layers will lead to over-fitting. On Amazon and Taobao,
recall@20 and NDCG@20 keep growing with the increase
of propagation layers, which proves the effectiveness of our
LGC-ACF on sparse datasets.

2) IMPACT OF EMBEDDING DIMENSIONS
The dimension of embeddings d is also a crucial
hyper-parameter to control the complexity and capacity of
our proposed LGC-ACF. Therefore, we study the effect of the
embedding dimension on recommendation performance, and
we set the embedding size from 8 to 512. The experimental
results are shown in Fig.6. These three subplots describe the
performance curves with different numbers of dimensions of
LGC-ACF on Movielens, Amazon, and Taobao, respectively.
They all share a common trend: with the gradually increasing
of embedding dimension, recommendation performance will
first gradually increase and reach the peak, and then with the
further increase of dimension, the performance will remain
stable or even decline.

V. CONCLUSION
In this work, we focus on how to model additional infor-
mation beyond user-item interaction history through graph
convolutional networks. To this end, we propose a novel
Light GCN based Aspect-level Collaborative Filtering model
(LGC-ACF), which exploit user-item interaction information

from different aspects through the bipartite graph structure.
Distinct from existing methods that perform graph convo-
lution operations in the knowledge graph [24], [25], we
first construct aspect-level interaction graphs through inter-
action history and item knowledge information. Then, our
model learns the aspect-level embeddings of user and item
based on these interaction graphs, separately. Finally, we per-
form a weighted average over all aspect-level embeddings
to construct the final representation of user and item prior
to generate predictions. Extensive experimental results on
three real-world datasets verify the effectiveness of our pro-
posed model. In future, we will work on further improve-
ment by studying more reasonable combination mechanism
of aspect-level representation of users and items.
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