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ABSTRACT With the rapid development of mobile applications, more and more traffic is generated at the
network’s edge and forwarded between many users. The explosive growth of network traffic has imposed
massive pressure on traditional network architectures. At the same time, users have increasing data security
requirements because of frequent data breaches. Mobile edge storage is an emerging computing framework
that ensures users enjoy a high quality of experience when they access cloud services and is gradually
becoming the key technology to solve the above problems. In this paper, by exploiting searchable encryption
and cooperative edge computing, we proposed an efficient ciphertext index retrieval scheme to tackle three
issues simultaneously in a secure and efficient data search service scenario: (1) reducing data transportation
latency to improve mobile user’s quality of experience; (2) mitigating data traffic pressure on the backbone
network; (3) guaranteeing the security of the data when users search data in the edge network. Simulation
results show that our scheme can save about 80% of backbone network traffic than the traditional cloud
computing scheme. It can also reduce network latency by approximately 30% for users.

INDEX TERMS Searchable encryption, cache hit radio, non-cooperative game theory, cache replacement
strategy, edge computing.

I. INTRODUCTION
With the rapid development of mobile applications, mobile
communications have generated more and more traffic
between network edges and users. The explosive growth
of network traffic has put tremendous pressure on tradi-
tional network architecture. Mobile edge storage is an emerg-
ing computing framework when users enjoy a high-quality
experience when accessing cloud services. It has gradually
become a key technology to solve the above problem. Fore-
casts predict that the world’s mobile data traffic will surpass
90% of mobile data traffic and reach 77.5 monthly exabytes
by 2022 [1]. Such explosive traffic has exerted a heavy burden
on the current network architecture [2]. With the frequent
interaction of these massive data, information leakage and
data privacy have gradually become the focus of attention in
mobile edge storage system.

As a new encryption technology, searchable encryption
is favored by governments and enterprises, which enables
users to search over encrypted data without exposing the con-
tents of messages or the searched keyword to cloud storage
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operators. This has a huge appeal for governments and com-
panies with a need for secrecy. Through many researchers’
efforts in the field of encryption, many efficient searchable
encryption schemes have been formed [3]–[22].

An important research direction of searchable encryption
is symmetric searchable encryption (SSE), which has a low
computational cost, reduced algorithm, fast speed, and is
closer to the practical application scene. A classic SSE system
is as follows [23]:

1) Users first extract keywords from local files and con-
struct the index, then encrypt the index and files with
the private key, and then upload them to the cloud
server.

2) Users with query permissions use the private key to
generate a trapdoor for the keyword that needs to be
queried and then sent to the server. The trapdoor cannot
reveal any information about the keyword. The simplest
trapdoor is the keyword encrypted with the key.

3) The server executes the retrieval algorithm after receiv-
ing the trapdoor. The retrieval algorithm finds the
encrypted file name corresponding to the trapdoor’s
keyword from the inverted index structure. Finally,
the encrypted file corresponding to the user’s file name
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FIGURE 1. Symmetric searchable encryption schema process.

is returned. The server can only know whether the
encrypted file has a keyword contained in the trapdoor.

4) Users use the key to decrypt the encrypted file returned
by the server to obtain query results.

In the above process, the user can obtain the ciphertext’s
query authority by sharing the key and other methods. The
user’s key keep secret from the third party. The server nei-
ther knows the user’s key nor the file content. So the user’s
encrypted file content is safe. Figure 1 shows the specific SSE
process. However, most of the traditional SSE is based on
cloud storage mode. Obviously, the cloud server undertakes
a large number of search operations, and the file transmis-
sion has a large transmission overhead. In the mobile edge
network, the base station is close to the user’s site, which
has a certain storage capacity and computing power. In this
paper, we use the resources of the edge base station to cache
encrypted file index to provide search efficiency.

Symmetric searchable encryption usually combines with a
variety of encryption techniques. For example, the combina-
tion of symmetric searchable encryption and attribute-based
encryption technology [18], [24] can make the combined
scheme have the function of querying by fine-grained
attributes. The combination of symmetric searchable encryp-
tion and proxy re-encryption [25] can enable the combined
scheme to realize a multi-user search function. It should be
pointed out that multi-user and multi-keyword often increase
the complexity of the system. How to prevent the cost of
encryption algorithm increase with the increase of users,
which also has some work [26].

Current work on searchable encryption has focused on the
single-server model. All data store in a single server rather
than multiple servers. Users tend to choose multiple cloud
service providers at the same time to ensure data security,
while cloud service providers tend to provide services tomore
users to make money. Therefore, the multi-server multi-user
model is one of the future development trends of searchable
encryption [17]. The multi-server multi-user model’s diffi-
culties are as follows: keyword retrieval involves multiple
untrusted objects; [27] exists key leakage problem under
multi-user sharing; the multi-user single server model has the
query result ordering problem the safety of PEKS.

With the rapid increase in the number of users with search-
able encryption, the traditional server-centric service model

will not cope with such a large number of requests. Search-
able encryption in the encryption, update, retrieval phase will
have more energy consumption. Computing migration and
content caching in mobile edge networks must diffuse the
pressure on the central servers. At present, the mainstream
searchable encryption scheme bases on symmetric searchable
encryption (SSE). By constructing the keyword of custom
ciphertext into an inverted index [19], the user can find the
trapdoor and the corresponding ciphertext in the inverted
index according to the ciphertext of the user’s keywords when
querying. An index can be split into multiple units or merged
into a single global index [28]. Therefore, with SSE, indexes
can be naturally divided and cached in the edge network.

As we know, the user’s request conforms to Zipf Law [29].
Users of the same network will often access the same
index item. The same user will repeatedly request the same
index item. Therefore, there are numerous application scenar-
ios [24] in the cache edge network. Suppose the base station in
the edge network near the user happens to have the index item
needed by the user. In that case, the user does not need to get it
from the remote central server, which significantly saves the
traffic [30] in the edge network. For the central server, reduc-
ing the number of direct requests from users, the server’s
pressure and cost can be significantly reduced. The service
provider saves the traffic cost paid to the network operator
by reducing the backbone network traffic. Chen et al. [31]
discussed in detail a partial migration decision problem in
a multi-mobile device scenario. The author abstracts it into
a solvable linear programming problem. The best solution
obtained by exhaustive can reduce the amount of computation
by 40% compared with no strategy. Searchable encrypted
index entries are like static data cached by Content Delivery
Network (CDN ) in [32], and there can be many caching
algorithms that ultimately reduce carrier traffic.

One approach is to use online technology that selects a
specific cache item [24], [33] based on recent requests. It
has the advantage of being able to change itself in more real-
time to respond to user requests. The impact of caching on
request delays can be felt more intuitively by users. Online
technology is necessary for systems with higher real-time
requirements. One problem with this technology is that base
stations take up a lot of computing power and cannot integrate
with other base stations. An alternative approach is to use the
offline technique to preload possible index entries [34] on a
base station close to the user. The base station can choose
to cache index entries when the network is idle. The optimal
cache algorithm is an NPC problem. If the optimal solution is
required, it will consume too much computing resources. In
order to improve the effectiveness of caching, there is much
work on caching algorithms in edge networks. The number of
indexes that the base station can cache is much smaller than
the number of global indexes that the central server has. The
number of indexes that the base station can cache and its strat-
egy to cache data will significantly affect the edge network’s
performance [35]. Some of the work has focused on creating
a collaborative cache [33], [36] which collaborates between
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edge devices to form a connection network [34], [37] with
minimal latency and energy consumption.

In this paper, we propose a cache placement algorithm,
which combined a mobile edge network model and an edge
network with game theory. This algorithm solves the search-
able encrypted’s index caching problem in the edge network.
In our algorithm, we will build a mobile edge network model
based on game theory algorithms [35]. Each node of the
network is a base station, which can store index entries. Each
node is responsible for maximizing its interests. Our primary
researches are as follows:

1) We define an edge caching network model. The net-
work contains many base station nodes. Base stations
can provide services for mobile users. Every base sta-
tion in the edge network can keep a limited number of
indexes. Base stations can get indexes from other base
stations that they do not have. If the requested index
does not exist in any base station, the base station will
obtain it from the central server.

2) We define a game theory model to find spontaneous
cooperation phenomena in non-cooperative games. In
our game, every base station is a player. Each player
can decide what index to store and modify its strategy
based on the data currently held by other players. If
a player asks other players to provide data, they need
to pay. In the game, we find the Nash equilibrium by
maximizing the utility of each player. After further
analysis, we find a pure Nash equilibrium. At the Nash
equilibrium point, we can obtain a cache placement
scheme for the locally optimal solution. By analyzing
each player’s cache strategy, we can find that there is a
spontaneous collaboration between the caches. Finally,
we design a distributed algorithm that can achieve bal-
ance.

Our solution has better security than CDN. Our scheme
adopts the searchable encryption mechanism, which can
search for content on the premise that the server is not aware
of the encrypted content. Our scheme has better performance
than the traditional encryption scheme because it distributes
the data to the edge network for processing and reduces the
pressure on the server.

The rest of this work is structured as follows. Section II
describes the content migration strategies for edge networks
and searchable encryption. Section III describes the problem,
defines the system model and the game model and stud-
ies. Section IV provide the Nash equilibrium exists in the
game. In section V, we found the pure Nash equilibrium and
proposed a caching algorithm. The simulation results and
conclusions are presented in Section VI and Section VII,
respecively.

II. RELATED WORKS
A. SEARCHABLE ENCRYPTION
Searchable encryption so far there had been a lot of work
research direction included: symmetrical searchable encryp-
tion and asymmetric searchable encryption; unconventional

searchable encryption scheme; supported for multi-user
multi-server; fine-grained control of retrieval content; the
key to weight and add or delete; fuzzy query; the more
keyword query; query results sorting [17]. Many lightweight
solutions [4], [15], [21], [38] had been derived from sym-
metric searchable encryption (SSE), which had low key
generation overhead. Lightweight solutions typically used
pseudo-random number encryption [21]. Alternatively, del-
egating the encryption operation to the edge device for quick
computation [39]. Generally speaking, lightweight could
have lower energy consumption. An essential requirement in
an encrypted search was to allow multi-user retrieval.

Liu et al. [9] and Cui et al. [40] proposed an encrypted
search scheme that allowed multi-user to search in cloud
storage. Users could generate private keys for encryption,
and other users could query the encrypted content via the
public key. As the number of users increases, it tended to
increase the load on the server. It was very unfriendly to a
service provider of searchable encryption. Li et al. [22] pro-
posed a potentially secure multi-user multi-keyword search-
able encryption scheme. This approach did not increase the
data owner’s encryption workload as the number of data users
increases. To improve the accuracy of multi-keyword fuzzy
search, Zhong et al. [41] develop an index tree and top-k
search algorithm.

To reduce the load on the cloud server, Mollah et al. [42]
proposed a secure data search and sharing scheme. The
scheme implemented the weak trust hypothesis on edge
devices. It also supported delegating computation-intensive
encryption and decryption to edge devices, which reduced
the overhead of keyword search latches. Zhong et al. [43]
proposed a two-stage index-based central-keyword ranked
search scheme. The scheme can reduce the computa-
tion cost in the query process. For multiple query key-
words, the scheme’s search results are more accurate.
Wang et al. [16] used fog computing to distribute encrypted
essential data to multiple fog nodes of an edge network. To
support the distribution of encrypted data, Curtmola et al. [23]
studied the trusted data outsourcing mechanism in encrypted
search. This mechanism could send encrypted data security
scores to untrusted objects. Cui et al. [44] use online/offline
ABE technology and outsourcing technology to reduce the
online calculation cost and the local calculation cost of
mobile users. Some authors tried to apply blockchain to
encrypted search [10], which improved the efficiency of
search.

B. CONTENT MIGRATION STRATEGIES FOR EDGE
NETWORKS
The traditional content migration strategy was similar to
CDN. In an edge network, static resources could cache
locally. It could be retrieved directly from the local when a
single user requests, significantly reducing the response time.
The related work mainly focuses on reducing the traffic of
operators. The distributed algorithm [32] was adopted for
CDN with the method of cumulative value compensation
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and objective value compensation. Gharaibeh et al. [33] also
worked on the impact of caching capacity on the caching
effect. Caching capacity could improve the hit rate to a certain
extent. If there were a cooperative feature in the migration
strategy, the hit rate would be much higher than a non-
cooperative strategy. The author of [33] studied the problem
of collaborative caching in multi-cluster collaborative sys-
tems and proved its NP-completeness. This paper presented
an online cache multi-unit collaboration system, which could
obtain the best competition ratio without content popularity.
Correspondingly, Garetto et al. [30] focused on the impact
of content popularity on caching. The change in the cache
performance of traditional LRU, random Q-LRU, and 2-LRU
caching strategies for dynamically changing content popu-
larity was tested. Since the mobile edge computing server
(MECS) consumed a lot of computing power, The author
of [45] proposed an energy-saving edge device uncertainty
strategy. This strategy, which took into account size, mobility
, and cost, could significantly reduce energy demand. The
authors of [18] gave a comprehensive analysis of the security
threats, challenges, and mechanisms that existed in edge net-
works and cloud computing, with an in-depth analysis of the
potential synergies. The author of [34] presented a scheme for
moving edge computing that minimized the energy allocated
by cache resources. A connection network with the minimum
delay and energy consumption construct through the alloca-
tion of cache resources. In general, researchers focused on
the hit rate and the ultimate benefit of caching. Collaboration
between nodes could have a significant impact on the final
cache performance. Thus, many cooperation-based caching
strategies had sprung up [24], [33], [36], [39], [46]. There is
a game-theory-based content migration strategy in the offline
strategies [35], [37], [47]. This strategy could reduce the
energy consumption ratio by 40%without a contentmigration
strategy. In our scheme, we drew on this game theory. In
the simulation, we adopted the non-cooperative game theory
scheme. We were surprised to find the potential synergies
and collaboration scenarios mentioned in [18]. Moreover,
our method could increase the edge network nodes into an
increase of cache capacity, further improving the hit ratio
because of this synergistic effect.

Overall, much work had focused on reducing the overhead
of encrypted data [4], [13], [15], [21], [23], [39]. Some of
the work focused on the edge of the contents of the network
optimization of migration policies [17], [24], [31]–[35], [37],
[45]. Some work also focused on data security [5], [6], [12],
[15], [17], [23].

The above method considers the benefits of a single node.
In our proposed scheme considers the network load increased
by requests within the network. Combined with the cost in the
network, we consider each node’s comprehensive income as
the game’s goal and analyze our model offline.

III. MODEL AND PROBLEM FORMULATION
Much work has been done on searchable encryption and
content migration decisions of mobile edge networks. The

original SSE encryption scheme is to store the index on a
cloud server. It does not take into account the efficiency of
the network. We introduced edge caching on top of the orig-
inal cloud storage-based encryption scheme, which is rare in
past work. From the perspective of optimizing edge caching,
we introduced a non-cooperative game algorithm to optimize
the cloud storage index to increase the probability of users
searching from the edge to the index, thereby reducing the
user’s search delay. This dramatically improves the efficiency
and experience of user queries.

For example, suppose the time it takes for the user to
look up the index from the cloud server is t1, the time for
the user to look up the index from the edge cache is t2,
the round-trip delay from the user to the cloud service is
RTT1, and the round-trip delay from the user request to the
base station is RTT2. Because users only need to query the
file list when searching for files. They do not necessarily
need to download encrypted files, so the time to download the
files is not considered. Before using the edge cache, the user
requested time tr1 = t1 + RTT1. In the best case, the user
can find the target index in the edge node and the total time
requested by the user tr2 = t2 + RTT2, tr2 � tr1. In the
worst case, the user cannot find the target index at the edge
node, tr2 = t1 + t2 + RTT1 + RTT2, tr2 > tr1. Because
t2 + RTT2 � t1 + RTT1, tr2 = tr1. Even with only a 50%
hit rate, the average time for users to find will also be greatly
reduced.

This section considers a searchable encryption scheme
where the edge network cache the index of a keyword trap-
door. In this case, the user only needs to query the index
from the edge network’s base station. Compared with cloud
computing’s search method, edge computing can complete
computing tasks closer to users. So our scheme can reduce the
pressure of core network traffic and improve users’ service
experience.

A. SYSTEM MODEL
The development of encrypted search technology has been
widely used in cloud storage (such as network disk, personal
file storage, trade secret storage). In such a typical application
scenario, reducing the delay of user acquisition and reducing
core traffic has become the focus of academic attention.
A vital optimization direction is to store the indexed content
of the search in the margin. Different from CDN, our scheme
stores the index of the encrypted content. Only users with the
key can decrypt the content. A simple example of the scenario
is shown in Figure 2.

In our scheme, the central server stores a large amount of
ciphertext index information. Users can get whatever content
they want from the central server. The base stations are on the
edge of the network. Their computing and storage capacity is
generally limited. The base station can cache the ciphertext
trapdoor index and return the index information when a user
requests a particular file. There are multiple base stations in
the edge network. When a user requests something, the user
first sends the index to the nearest edge base station. Then
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FIGURE 2. Example of the index cache network model.

the result of the ciphertext query is obtained by querying the
index obtained. The index of the ciphertext will be distributed
in the base station near the user (The base station collects the
trapdoor of the keyword in the user’s request when querying
the encrypted file and the index of the file in the server’s
response). The base station queries the user’s index, and then
the base station looks for the same index in its cache. If
the base station directly connected to the user has the index
of encrypted file required by the user, the base station will
deliver the index of encrypted file directly to the user. The
base station can construct its ciphertext index of keywords in
the nearest edge network through the information recorded by
the base station. Suppose the index does not exist in the near-
est base station but exists in a neighboring base station. In that
case, the base station will send a request to the neighboring
base station and return the query result to the user separately.

In our game theory scheme, base stations collaborate to
reduce the cache redundancy and improve base stations’ stor-
age resources’ utilization rate. A single base station will also
choose to replace the index of infrequently used keywords
based on the request’s content, aiming to increase the pro-
portion of valid data in memory. We can reduce the pressure
on the information center query through our scheme, improve
the user’s query speed, and reduce the base station cache cost.
Our proposed scheme defines the base stations’ cost as the
delay between the request and the query result. Base stations’
revenue is related to the number of file requests. When the
user’s request arrives at the base station, the base station will
first search for encrypted files through the inverted index.
Suppose the local base station has the keyword ciphertext
searched by the user. In that case, the base station will directly
return the list of the encrypted files corresponding to the
keyword inverted index to the user. If the index does not
exist, the base station will ask the base station’s neighbor to
query this keyword. At this time, if the neighbor base station
exists, the base station will get the encrypted file list from
the neighbor base station and return the encrypted file to the

FIGURE 3. Invert index structure.

user. The base station will query the ciphertext corresponding
to the keyword to the central server and send ciphertext to
the user if it does not exist. The difference between these
scenarios is that the user’s query time increases over time.We
assume that the corresponding encrypted file in the inverted
index will not be changed to simplify our model, and we do
not consider cache expiration cases.

Therefore, allocating an inverted index in the base station
is the key to the problemwe studied. It affects the user’s query
experience (query wait time) and is closely related to the base
station’s cache cost and utilization rate.

B. SYSTEM FLOW
This section provides a detailed system flow description of
searchable encryption in the edge network cache system. The
details are shown in Figure 2. We considered a classic SSE
scheme [23]. In this SSE scheme, the user uses the private
key to encrypt the file. Then the user encrypts the keyword by
the private key to obtain trapdoors. Finally, the trapdoor and
encrypted files are uploaded to the server and organized into
an inverted index. Specifically, the structure of the inverted
index is shown in Figure 3:

The construction of SSE’s inverted index [23] is shown in
Algorithm 1. Because the encrypted files are all encrypted
and decrypted by the user, each encrypted file’s key is unique.
Each node’s previous node stores the key of the node’s file
id in the array linked of keywords in the SSE scheme. By
encrypting the file id, the server cannot know the specific
file corresponding to the keyword searched by the user. This
prevents the server from inferring the content of the file
through the keyword.

In the traditional cloud-based search model, as the number
of ciphertext increases, the index will snowball. The query
time will also be longer. If a large number of users access
the ciphertext simultaneously, the server will be blocked or
even crash. A practical solution is to store part of the index
in an edge base station, just like a CDN. The user’s request
conforms to Zipf law, and users in the same base station are
likely to query the same several keywords. So for encrypted
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Algorithm 1: SSE Index Construction Algorithm

Gen(1k ): sample K1,K2,K3
$
← {0, 1}k , generate K4←

SKE2.Gen(1k ) and output K = (K1,K2,K3,K4)
EncK (D):
Initialization:
scan D and generate the set of distinct keywords δ(D)
for all w ∈ δ(D),generate D(w)
initialize a global counter ctr = 1
Building the array A:
//build a list Li with nodes Ni,j and store it in array A
for 1 ≤ i ≤ |δ(D)| do

sample a key Ki,0
$
← {0, 1}

for 1 ≤ j ≤ |D(wi)| − 1 do
let id(Di,j) be the jth identifier in D(wi)
generate a key Ki,j← SKE1Gen(1k )
create a node Ni,j = id(Di,j)||Ki,j||9Ki (ctr+ 1)
encrypt node Ni,j under key Ki,j−1 and store it in
A:
A[9Ki (ctr)]← SKE1.EncKi,j−1 (Ni,j)
set ctr = ctr+ 1

end
for the last node of Li:
set the address of the next node to NULL:
Ni|D(wi)| = id(Di,|D(wi)|)||0k ||NULL

encrypt the node Ni|D(wi) under key Ki,D(wi)|−1 and
store it in A:
A[9Ki (ctr)]← SKE.EncKi,|D(wi)|−1 (Ni,|D(wi)|)

set ctr = ctr+ 1
end
let s′ =

∑
wi∈δ(D) |D(wi)|

if s′ < s then
set the remaining s− s′ entries of A to random
values of the same size the existing s′ entries of A

end

searches, it is reasonable to add an index to the base station.
The distance between base stations and the transmission cost
is much less than direct access to the central server. Therefore,
cooperation between base stations with limited capacity is
crucial. A larger edge buffer pool can establish through coop-
eration between base stations. Based on the above analysis,
we propose the following solutions:

1) In the first step, the user uses the terminal device to
query a keyword; the terminal device will connect to
the nearest base station. The base station is expected to
help the user get the ciphertext list corresponding to the
keyword searched by the user from the server. Because
the base station query close to the user has a shorter
delay, and the probability of the same content query by
different users covered by the same base station is high.
So the priority is to try to query from the nearest base
station. We do not need to know the user’s specific
geographic location. By comparing the signal-to-noise
ratio of different base stations and choosing the base

FIGURE 4. System flow chart.

station with the highest signal-to-noise ratio, we can get
the base station closest to the user on geographical.

2) In the second step, if the base station cannot find the
content required by the keywords in the local index
cache request, it will first forward the request to other
adjacent nodes. Each forwarding is called a hop. The
distance between the base station is greater than the
distance between the user and the nearest base station.
However, still much greater than the distance between
the base station and the central server. (the time spent
on the request positively correlates with the distance)
Merely looking up between base stations takes less
time than directly querying the central server. The base
station can be guaranteed to be profitable. The adjacent
base station is not necessarily directly connected, may
also be across from other base stations. As long as it
is the final appears to be beneficial, that is an adjacent
base station.

3) In the third step, if nearby nodes cannot find the target
content, the base station will forward the request to the
server equipped with all the data. Because the center
server needs to respond to a base station’s request,
the number of ciphertext indexes is greater than the
number of base station’s indexes. The search process
will be prolonged. To simplify this, we combine the
lookup time with the time the request travels over the
network.

4) In the fourth step, the base station has obtained the
contents of the ciphertext searched this time. The base
station will make a judgment on the cache locally to
determine whether to store the cache. For each base
station, the base station will give value to each data.
The data distribution of the entire edge network will
determine The value of this data. If the base station
caches some data, it will reduce the base station’s total
cost, and then the data will be valuable. Each base
station caches the data that is most valuable to it.
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C. PROBLEM FORMULATION
According to our description above, we consider the topology
of an edge network G = (D, e), which contains a set of finite
cache base stations D = {1, 2 . . . ,D}. ei,j represents whether
base station i is connected to base station j. h(i, j) represents
the shortest number of hops between base station i and base
station j, so h(i, j) = 0, h(i,D + 1) = K represents the time
needed for base station to directly obtain index information
from the central server. We assume that the distance between
the central server and the base station is much greater than
the distance between the base stations, so h(i,D+ 1) = K �
h(i, j),∀j ∈ D. We have K = {1, 2, . . . , j, . . . ,K } users in the
edge network, which will make searchable encrypted query
request. Let wri be the number of times the user queries r
keywords to a base station, and tr represents the sum of all
times the base station queries r keywords. Let ari represent
whether base station i caches the index r . We use ω to
represent the revenue that the base station satisfies the users.
ε denotes each hop’s cost to an adjacent base station, and λ
is the cost of a base station to query the index directly from
a central server. Obviously, ω < ε � λ. To simplify the
problem, we assume that all base stations have a cache size
of c.

D. GAME MODLE
In our basic game model, the player is the base station on the
edge network. There are D players in the game. Each player
can hold c indexes in the set K . Different players can hold
the same index repeatedly. The goal of the game is to find the
best index placement strategy.

In the game model, what each base station needs to do
during the game is adjust the cache configuration (Pi =
{ai|

∑
i a
r
i ≤ p } ⊂ {0, 1}|K |) holds. Most importantly, each

base station’s cache is only for its benefit maximization, not
for the benefit maximization of all base stations. The reason
ri ≤ p exists in the formula is that each base station’s cache
is not necessarily filled. ari is used to describe whether the
index r is cached in base station i. Use P−i to represent
the cache policy configuration that base station i expects.

Ri(P−i)
def
−→ {n|ar = 1,∀n ∈ D}. According to our base

station model, the utility of a base station in the edge network
can be obtained in the following:

if ari = 0

Cr
i ({a

r
i },P−i) =

{
tri (λ− ω), ari /∈ Ri(P−i)
tri (εl(i, j)− ω), a

r
i ∈ Ri(P−i)

(1)

if ari = 1

Cr
i ({a

r
i },P−i) =



tri ω +
∑

k∈D\{i}
trk εh(i, k),

ari /∈ Ri(P−i)

tri ω +
∑

q
trqεh(i, q)/F

+

∑
s
trs εh(i, s), a

r
i ∈ Ri(P−i)

(2)

We use Cr
i (Pi,P−i) to denote the utility of the base station.

q = {h(i, q) − h(Ri(P−i, q) = 0|q ∈ D \ ({i} ∪ Ri(P−i))},

q = {h(i, p) − h(Ri(P−i, p) < 0|p ∈ D \ ({i} ∪ Ri(P−i))},
F = |q| represents the number of the nearest player that cache
index r .
The expression (1) indicates that when base station i does

not have an index r . Other base stations, except base station i,
may have two situations: other base stations cache index r .
The other is that other base stations do not cache index r .
In the first case, since no base station has cached index r ,
the user requesting index r can only get resources from the
central server. The user pays the base station some virtual
money, and the base station pays the central server. In the sec-
ond case, other base stations cache the index r , assuming that
base station j stores the index r and is closest to base station i.
The base station i can obtain the index r from base station j.
The user pays base station i, which pays base station j. (the
cost depends on the minimum number of hops from base
station i to base station j) The user requests an index from base
station i because the distance from the user to base station j
is greater than the distance from base station i to base station
j plus the distance from the user to base station i.

The expression (2) indicates that when base station i caches
index r , there are also two cases. The first case is that no base
station except base station i has index r , and base station i
does not have any cost. Base station i benefits from fees paid
by nearby users and other base stations that pay base station
i when requested to index r . In the second case, at least one
base station besides base station i also has index r . In this
case, base station i does not have any cost. The revenue comes
from users’ payment close to base station i and the payment
of nodes closer to base station i than other nodes with index r .
Suppose another base station j and base station i are the same
number of hops away from the requested base station and
have an index r . In that case, base station i and base station j
will split the benefits equally.

We analyze the utility of each base station node. The
utility of base station i is divided into four parts, which are
represented by u1, u2, u3 and u4, respectively:
Video r is cached in both base station i and other base

stations. If the user requests index r , then u1 in the utility of
the base station can be described as:

u1 =
∑

ari ∈Ri(P−i)

((tri ω)+
∑
q

trqεh(i, q)/F +
∑
s

trs εh(i, s))

(3)

The above expression indicates that base station i and
at least one other base station cache index r . If the edge
network’s base station has an index r , the user closest to the
base station iwill directly obtain the index r from base station
i. If the base station j of the edge network without index r .
Base station i is the nearest base station with index r . Base
Station j will request index r from base station i and pay
the fee. If multiple base stations have an index r , and the
distance from the requested base station without index r is
equal, multiple base stations will provide the index r , and the
revenue will be shared. Finally, if base station i is the only one
in the edge network with index r cached, there is no need to
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share the benefits with other base stations. In the same way,
we can analyze u2, u3, and u4.
When index r is cached in any base station except base

station i, sub-utility u2 can only be obtained from the base
station directly connected to base station i. Therefore, u2 is
described as follows:

u2 =
∑

ari ∈Ri(P−i)

tri (εh(i, j)− ω) (4)

In this case, because base station i does not cache index r ,
it cannot provide the desired index r directly to the user from
the local. Therefore, the revenue obtained by base station i
should deduct the cost paid by base station i to other base
stations, and the cost increases with the increase of h(i, j).
When index r is cached only in base station i and no

other base station exists, the sub-utility u3 of base station i
is expressed as:

u3 =
∑

ari /∈Ri(P−i)

ari (t
r
i ω)+

∑
k∈D\{i}

trk εh(i, k)) (5)

Obviously, since only base station i caches index r , all
requests for index r from users on the edge network are
passed to base station i. Therefore, sub-utility u3 is the sum of
the revenue requested by the local user of base station i and
the fees paid by other base stations to base station i.
In the last case, no base station has index r . When the user

requests index r , the base station cannot be found in the edge
network. We use sub-utility u4 to describe:

u4 =
∑

ari /∈Ri(P−i)

tri (λ− ω) (6)

There is no base station cache index r in the edge network,
and no base station can provide services for users. Hence,
base stations need to obtain resources from the central server,
which is the highest cost.

Finally, we can get the total utility of base station i
through the above four sub-utilities, which can be described
as follows:

Ui(Pi,P−i) =
∑
r

Cr
i (a

r
i ,P−i) = u1 + u2 + u3 + u4 (7)

The equation shows the utility of a base station i so that
we can define a game strategy. The game goal of the base
station i is to maximize the utility of the base station i. The
base station adjusts the cache placement strategy through
the current mitigation situation of the edge network. Table 1
summarizes the key symbols used in this paper.

IV. NASH EQUILIBRIUM IN THE COOPERATIVE CACHE
No matter how the initial index distributes in base stations.
It is not apparent whether the base stations on the edge net-
work can achieve a stable cache allocation strategy through
the summarized revenue maximization expression. We will
then discuss whether base stations on the edge network can
produce stable index allocations when given initial cache
allocations.

TABLE 1. The key symbols used in this paper.

When we study game theory, a key point is whether there
is a Nash equilibrium in the defined game. In our game, Nash
equilibrium shows that no base station changes its strategy
when the index cached in other base stations is not changed
and under the current strategy mode. According to the Nash
equilibrium definition in the game, we can finally prove
whether a Nash equilibrium exists.
Definition 1: Player i’s best response to the profile pi is

mixed strategy p∗
−i ∈ P−i such that mi(pi, p−i) ≤ mi(p

∗
i , p−i)

for all strategies si ∈ Si.
In our game model, if more than one player receives a

request at the same time. Those players can try to adjust
the index cache configuration strategy until maximized their
respective revenue. Because we have more than two players
and indexes, we can have multiple local-revenue maximizers,
which means there are multiple best responses.
Definition 2: If a strategy profile P = (p1, p2 . . . pn) is a

Nash equilibrium, for all players i, pi is a best response to
p−i.
The Nash equilibrium strategy is not necessarily the opti-

mal solution among many strategies, but it is a stable one
among many strategies. In a Nash equilibrium, everyone
makes their own best strategy based on the other players, so as
long as all the players know the other players’ strategy, they
won’t change their strategy.
Theorem 1 (Nash 1951): Every game with a finite number

of players and action profiles has at least one nash equilib-
rium.

For our model, the number of indexes that base stations
can cache is limited, as are the number of base stations (play-
ers) on the edge network. According to theorem 1, we can
know that there must be a non-cooperative Nash equilibrium
scheme in the model.

V. PURE STRATEGY NASH EQUILIBRIUM
According to the derivation in the previous section and the
conclusion of Theorem 1, we can prove that there must be a
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Nash equilibrium strategy for a base station i. However, this
does not mean that we can get a pure strategy Nash equilib-
rium from it, nor guide the actual process. Pure strategy Nash
equilibriummeans that in a pure policy combination, the node
itself will not change if other base stations’ given strategy
does not change. Next, we will prove how to obtain a pure
strategy Nash equilibrium.

In the edge network, each base station can communicate
with other base stations to know each other’s strategy, and
finally form a unique strategy. Suppose that at some point
before Nash equilibrium is reached, base station i has a
strategy e1, e2 . . . , ei, . . . eD, to optimize the utility, assum-
ing that there is a policy for ui(e1, e2, . . . , ai, . . . eD)>ui(e1,
e2, . . . , ei, . . . eD), This new strategy can be replaced with
base station i as long as the utility is increased. At this time,
from the perspective of the entire edge network as a whole,
base station i achieves a pure strategy Nash equilibrium.
Let’s take base station i as an example and look at the

whole process. At first base station i is full of empty {∅1,
∅2 . . . ,∅N}, we select any slot in it and put an index e1,
which makes ui(e1,∅2 . . . ,∅D)>ui(∅1,∅2, . . . ,∅N ), so we
replace it with base station i. By repeating this method until
no new replacement strategy can increase the utility, we make
base station i achieve a pure strategy Nash equilibrium.

VI. COMPUTATINAL EXPERIMENTS
In this section, we will perform a computational simulation
of the game theory model. The simulation aims to determine
the influence of the number of nodes and key parameters on
themodel’s final performance. Finally, by comparingwith the
greedy cache algorithm and global optimal solution, we find
out the game theory model’s suitable application scenario.
In the greedy algorithm, each node only considers how to
maximize a single node’s revenue and does not consider the
benefits that other nodes bring to itself. It will not obtain
a Nash Equilibrium through multiple games like game the-
ory algorithms. How to achieve the global optimal solution
algorithm is an NP problem. The algorithm obtains the cache
layout with the most significant benefit to the entire net-
work through a great number of calculations. This algorithm
brings a sizeable computational load to the server. Our key
parameters include cost per hop between base stations, cache
capacity, data popularity, number of nodes, and connectivity
between nodes. The model’s performance is measured by the
nodes’ cost in the hit ratio(including the local hit, one hop hit,
two hops hit, more than two hits), the nodes’ revenue, and the
trunk network traffic.

In the simulation, we base on Python, build a small edge
network model, and implement the game theory algorithm.
The game theory algorithm is shown in Algorithm 2:

We set the default parameters ω = 10, ε = 10, λ =
1000, D = 20. These parameters change with the simula-
tion requirements in the specific simulation. Our request in
simulation is generated by Zipf distribution. The parameter
A used in generation represents the uniformity of distributed
data. The larger parameter A is, the more concentrated the

Algorithm 2: Cache Placement Algorithm

Input: D, p, ω, ε, λ, tji, h(i, j)
Output: sD{a1, a2, . . . , ai, . . . , aD}

1 sD{∅1,∅2, . . . ,∅i, . . . ,∅D}
2 ui(Pi,P−i)=0
3 i = 1
4 flag=True
5 while flag do
6 for i<D do
7 ei = ui(ari = 1,P−i)− ui(ari = 0,P−i)
8 earnings add (i, ei)
9 sort earning by value with desc and truncated to

the p th
10 if earnings == sD then
11 flag = Flase
12 end
13 update sD by earnings
14 end
15 end
16 return sD

data distribution is, the closer it is to 1, and the more uniform
the data distribution is.

In the specific operation, we simulate the user sending a
request to the base station. The user will provide λ benefit
to the base station. If the base station can respond to the
user’s request, the base station does not need to pay any cost.
If the base station itself cannot respond to the request, but
other nodes can respond to the request, then a cost will be
paid to the base station in the middle at each hop, and the
cost of ε will intercept each hop. If none of the edge stations
can respond to the user’s request, the base station will fetch
the central server’s content. However, this process will cost
the base station all of its benefits. In the simulation, we will
test the same data set for each base station and calculate its
average value to avoid single-node position influence. The
number of user requests for different indexes will be divided
by the number of all user requests to eliminate the sample
size’s effect.

The parameters we set in the simulation are only for study-
ing our game theory model’s performance under different
conditions. It does not represent the specific parameters in the
actual application scenario, so we do not need to pay special
attention to the units.

A. THE INFLUENCE OF BASE STATION NUMBER ON
SYSTEM PERFORMANCE
Each base station’s cache index capacity is much smaller than
the total number of indexes stored in the central server. So a
single node cannot achieve a 100% hit rate. Under the caching
scheme based on game theory, each base station maximizes
its interests but finally forms partial cooperation characteris-
tics. As the number of base stations increases, the remaining
cache space will be split with other nodes, except for the
extremely high-frequency index. As the number of nodes in
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FIGURE 5. The hit ratio varies with the number of nodes.

FIGURE 6. Consider the impact of cost on the hit ratio as nodes increase.

the network increases, each node’s cache size stays the same,
the overall cache size increases, and eventually, the edge
network caches all the indexes, which makes the edge hit rate
up to 100%.

In Figure 5, you can see the distribution of hit rates. The hit
rate for local requests stabilizes at 60%, indicating that each
node stores the same high-frequency data. The one-hop hit
rate is also stable, with very close nodes working in pairs to
keep it steady, just like the local hit rate. It can be seen that
with the expansion of the number of nodes in the edge net-
work, the hit rate of the central server is gradually squeezed.
As the edge network’s scale grows to expand, the probability
of rare indexes cached in other base stations will be larger.
Because the network size is small enough, base stations can
get the indexes requested by users from further nodes. The
direct result of the expansion is that the base station can leave
enough space for the cache to cooperate with the surrounding
nodes to improve further the cache hit ratio.

The figure 6 compares the game theory’s average edge hit
ratio cache model within and without considering cost when
the number of nodes changes. When the number of hops is
so high that it costs more than getting the index directly from
the central server, the base station needs to decide whether to
consider the cost’s impact. Suppose the cost take into account.
The base station fetches from the central server directly when
there are too many hops, even if the base station’s index exists
in the edge network. This node costs more to obtain the index
from the base station than to obtain it directly from the server,

FIGURE 7. Consider the impact of costs on the traffic load as nodes
increase.

FIGURE 8. The hit ratio varies with the number of nodes.

which is a negative return for the base station. The goal of the
base station is to obtain more revenue rather than a higher hit
ratio.

Figure 7 compares each node’s flow load with the node
overview change with and without cost consideration. In
the experiment, each node underwent 1000 test cases. The
traffic complexity of each node refers to the communication
required by the node to request outward once. Each hop will
consider traffic if the request to the server directly is also
considered traffic. To avoid the influence of changes in the
number of nodes on the total traffic, we use the average traffic
of each node as the reference object. According to Figure 7,
we can see that when considering the cost, the traffic load is
much smaller than that without considering the cost. Because
without considering the cost, the direct cost exceeds the direct
request to the server. The index will also be requested from
the base station that exists nearby. It leads to a sharp increase
in traffic on the edge network. The traffic load increases with
the increase of the number of nodes because the base station
has further choices with increased network size. Hence, the
increase in hops leads to an increase in traffic load. Combine
Figure 7. It can also find that the local hit and one hop hit
remain basically unchanged, while the hit ratio of farther base
stations increases. It is related to our parameter because we
think the traffic load required to request the server directly
is 1.

Figure 8 compares the hit ratio between the game theory
caching model algorithm and the greedy caching algorithm.
A greedy algorithm means that when a node caches an index,
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FIGURE 9. The average revenue varies with cost per hop.

it does not consider other nodes’ interests but only consid-
ers its own interests maximization. In the greedy model,
the nodes do not cooperate because we assume that each node
receives the same user requests. Then the node caches the
index with the highest frequency, and if each node receives
the same request, the cached content of each node is the same.
Since there is no cooperation, even if the number of nodes
increases, each node is an isolated individual and does not
cooperate to maximize the cache. As the number of nodes
increases, the game theory model takes out part of the cache
to cooperate with the nearby base stations. The increase in
nodes represents an increase in the number of portions of the
cache that work together, ultimately increasing the cache’s hit
rate.

B. IMPACT OF BASE STATION CACHE CAPACITY AND
COST PER HOP ON MODEL PERFORMANCE
As can be seen from Figure 9, with the increasing cost of
each hop, the revenue obtained by the node will decrease
regardless of whether the cost is considered or not. The differ-
ence is that without accounting for costs, the node’s revenue
declines until it becomes a negative income. It is unacceptable
to mobile operators. In the case of considering the expense,
although the income is relatively low at the beginning, with
the increase of each hop of expense, the decline becomes
limited and finally reaches the fundamental stability. When
considering the cost, if the cost is too much, it will limit the
access distance and form a small collaborative network base
station topology around it. The higher the cost, the smaller
the topology. Although the total capacity is small, the further
increase in overhead is limited. It also indicates that our game
theory model will perform well in small network structures.

Figure 10 shows how the cache hit ratio varies with
each base station’s cache capacity. The local cache hit ratio
increases significantly at the beginning as the cache size
increases and gradually stabilizes as the local cache hit ratio
reaches close to 50%. After the initial local hit rate rises to
a specific bottleneck, the hit rate of nodes with more than
two hops replaces the local hit rate. Finally, making the edge
network hit rate reach 100%. There was a slight increase in
the percentage of first-hop and second-hop shots, but it was
not significant. The local hit ratio is themost important for the

FIGURE 10. The hit ratio varies with the number of nodes.

FIGURE 11. Hit ratio varies with the popularity of the data.

base station. The local response request does not need to pay
the cost to other base stations so that the higher profit can be
obtained. However, when the high-frequency index of local
storage reaches a bottleneck, each additional index does not
benefit the base station. Cooperate with other base stations to
provide low-frequency indexes for other base stations. There
are enough other base stations that will bring more revenue.
Therefore, after the cache capacity exceeds 30, more than
two hops’ hit rate increases rapidly. Compared to Figure 5,
you can see that the base station’s cache capacity primarily
determines the local hit ratio. The edge network’s total cache
capacity has the most significant impact on the cache hit ratio
of two hops and above.

Figure 11, we test the impact of data popularity on the
model’s average hit ratio. The data popularity is the concen-
tration degree of index data, the closer to 1, the more uniform.
In greedy caching algorithms, all the data is distributed evenly
initially. Even if the greedy algorithm caches the index with
the highest frequency, it will not have a high hit rate because
the data is too scattered. Base stations in the game theory
model can get indexes from nearby base stations, so the
average hit rate is higher than greedy cache algorithms.

C. A COMPARISON BETWEEN GLOBAL OPTIMIZATION
AND GAME THEORY
We test the average return of both the game theory algorithm
and the global optimal solution algorithm in figure 12. As the
number of nodes increases, the revenue of both is increasing
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FIGURE 12. Comparison of algorithm returns with the number of nodes.

FIGURE 13. Comparison of the hit ratio of the algorithm with the number
of nodes.

rapidly. In the game theory model, this is because the net-
work’s size increases the probability of storing the needed
low-frequency index in further nodes. For the global opti-
mal solution, the cooperation between nodes is considered
initially. The average revenue will increase with the increase
of nodes. The global optimal solution takes global benefit
as the ultimate goal, so it pays less attention to the nodes.
Finally, the game theorymodel’s average node yield is greater
than that of the global optimal solution. In Figure 13, we test
the effect of the number of nodes on the game theory cache
algorithm’s average hit ratio and the global optimal cache
algorithm.We can see that the game theory cache algorithm’s
average hit ratio increases rapidly as the node size increases.
The global optimal solution does not make better use of the
added nodes than the game theory algorithm. Although the
hit rate also increases with the number of nodes, the global
optimal solution rises more slowly than the game theory
algorithm. The global optimal solution algorithm focuses on
global revenue rather than the hit ratio. It is more sensitive
to the increase in count of hops and the increase in cost.
Game theory caching algorithms can be considered a viable
operation as long as the cost does not exceed the request’s
benefit, and therefore the hit ratio is higher.

D. COMPARISON OF EXISTING EDGE CACHING
SOLUTIONS
The existing edge caching scheme mainly improves the over-
all system capacity, improves the cache hit rate, and reduces
transmission overhead. Table 2 compares the existing edge

TABLE 2. Comparison of edge cache solutions.

caching schemes with the game theory-based scheme we pro-
posed. The results show that our scheme has a clear advantage
in improving the cache hit rate and reduce network traffic
aspects.

VII. CONCLUSION
In this paper, we propose a game-theoretic caching strategy
for indexing in mobile edge networks. Through our cache
placement algorithm, each edge node could select its caching
strategy in advance, effectively alleviating the traffic pressure
on the backbone network. Compared with the global optimal
solution algorithm, the game theory algorithm’s hit rate has
increased by about 10%, and the average node revenue has
increased by about 20%. Compared with traditional cloud
computing, our solution saves about 80% of backbone net-
work traffic and 30% of network latency. In further work,
we will study how this paper’s caching strategy ensures
security under heterogeneous infrastructure [53]. In addition,
we will study the sorting optimization problem in distributed
caches in the future.
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