
Received January 17, 2021, accepted February 18, 2021, date of publication February 24, 2021, date of current version March 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3061738

An Enhanced Ant Colony Optimization Based
Algorithm to Solve QoS-Aware
Web Service Composition
FADL DAHAN 1,2, KHALIL EL HINDI3, AHMED GHONEIM4, (Member, IEEE),
AND HUSSAIN ALSALMAN3
1Department of Information System, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2Department of Computer Sciences, Faculty of Computing and Information Technology Alturbah, Taiz University, Taiz 9674, Yemen
3Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
4Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Khalil El Hindi (khindi@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research at King Saud University under Grant RG-1439-035.

ABSTRACT Web Service Composition (WSC) can be defined as the problem of consolidating the services
regarding the complex user requirements. These requirements can be represented as a workflow. This
workflow consists of a set of abstract task sequence where each sub-task represents a definition of some user
requirements. In this work, we propose a more efficient neighboring selection process and multi-pheromone
distribution method named Enhanced Flying Ant Colony Optimization (EFACO) to solve this problem. The
WSC problem has a challenging issue, where the optimization algorithms search the best combination of web
services to achieve the functionality of the workflow’s tasks. We aim to improve the computation complexity
of the Flying Ant Colony Optimization (FACO) algorithm by introducing three different enhancements.
We analyze the performance of EFACO against six of existing algorithms and present a summary of our
conclusions.

INDEX TERMS Service-oriented computing (SOC), nature-inspired algorithms, discrete optimization,
meta-heuristic algorithms, ant colony optimization (ACO), enhanced flying ant colony optimization
(EFACO).

I. INTRODUCTION
Service-Oriented Computing (SOC) introduced a new style
for distributed applications, where the software compo-
nents act as services that communicate through the Internet.
The problem of Web Service Composition (WSC) integrates
the services to provide more sophisticated functionality.
In the case of SOC, clients specify their requirements and
theWSC searches for services, and then provides clients with
best services available to achieve their requirements.

The rapid growth of providers leads to the availability of
a large number of WSs that can do the same tasks. This
also made the WSC problem more difficult to achieve in
polynomial time. The selection process is responsible for
selecting the best WS for each task, which generates a good
combination of web services to fulfill the workflow. The user
will receive a concert executable plan that contains the tasks
in the workflow and WSs that satisfy them.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.

The selection process needs to take into account a large
number of candidate WSs for each task because all these
services perform similar functionality. The QoS constraints
represent the non-functional features associated with these
WSs [1]. The process of selecting the most suitable atomic
WS to the QoS constraints is called QoS-aware WSC prob-
lem. QoS constraints may be related to some or all of the
following response time, cost, availability, reliability,. . . etc.

WSC is very challenging because (1) It is very large in
scale where the WSs are retrieved from the registry. The
challenge is how to choose good combination of best WSs
that meet the QoS constraints for each task. (2) It has too
many optimization issues. This include QoS criteria and
transaction criteria. . . .etc To select the best WS the algo-
rithm must consider the value of each QoS of each solution
taken into account the precedence dependency between dif-
ferent tasks. (3) The QoS attributes have many conflicting
objectives that must be handled. For example, theWS that has
minimum response time is probably more expensive which
increases cost (minimization objective) and also will decrease

34098 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5975-0696

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

the availability (maximization objective) of this WS and also
it will be less reliable (maximization objective).

WSC aims to satisfy user requirements by creating a work-
flow that contains abstract representations (tasks) for these
requirements. The workflow then searches the web services
repositories for Web Services (WSs) that execute these rep-
resentations [1]. The number of retrieved WSs may be sig-
nificantly high because of the large number of providers of
WSs with similar functionalities, making the selection of the
best combination a challenging problem [2], [3]. To evaluate
the quality of this combination, different criteria were used
such as Quality of Service (QoS) properties such as Cost (C),
Response Time (RT), Availability (A), and Reliability (R),
etc. [4]. These properties represent the non-functional criteria
attached toWSs. QoS criteria are divided into two categories,
deterministic and nondeterministic [5]. For deterministic cri-
teria, values such as cost or security must be known in
advance before using the WSs. For nondeterministic criteria
uncertain values associated with using WSs must be iden-
tified first e.g., response time, availability, and reliability.
Therefore, providers must test WSs to measure the values
of these criteria in advance. Another issue is that the target
value of each criterion may differ depending on user needs.
For example, users may require cost and response time values
to be minimized, whilst simultaneously expecting availability
and reliability values to be maximized.

The best solution represents a complete combination of
WSs for different tasks in a workflow. The number of avail-
able combinations (solutions) for this problem is exponential
which makes the challenge of finding the best solution an
NP-hard problem [6].

In [7], a Flying Ant Colony Optimization (FACO algo-
rithm has been proposed, based on Ant Colony Optimiza-
tion (ACO) [8]. However, it incorporates imaginary flying
ants which inject pheromones from a distance. In this case,
the best ants share the amount of pheromones with their
neighboring nodes. Although FACO enhances ACO in terms
of solution quality, but it increases the execution time [7]
because it must determine neighboring nodes.

Multi-objective optimization problems are difficult to
solve directly because of the discrepancies in the objectives
and the lack of efficient tools for solving such problems [2].
There are two main approaches for handling multi-objective
optimization problems: preference and Pareto optimality.
The preference-based approach (also called the scalarization)
aims to transform a multi-objective optimization problem
into a single-objective optimization problem. The new single-
objective problem is a composition function that contains
the weight assigned to each objective based on a preference
vector [3]. With Pareto optimality approach, the objective
vectors are compared to find an optimal objective vector.
Each vector contains the values as solutions for the problem
objectives. This approach works based on the dominance
relation between the solutions [3]. Most of the recent lit-
erature that introduced to solve the WSC problem using
the preference-based approach where they deal with the

multi-objective of theQoS criteria by converting these criteria
into a single objective criterion [1], [2].

The literature shows that the representation of theWSC can
be using two main models which are workflow based model
(WM) [5], [6] and input-output dependency-based model [5],
more details about the features of each model can be found
in [8].

In this paper, we address the problem of WSC using
preference-based approach and the WM for the problem rep-
resentation. In addition, we introduce efficient solutions for
the FACO problem that aim to reduce the execution time and
enhance the solution quality by:

(1) Restricting the flying process so that it occurs only if
there is an improvement on solutions to decrease the execu-
tion time while neighboring selection.

(2) Introducing an efficient neighboring selection process
to effectively balance between exploration and exploitation
mechanisms.

(3) Applying a more efficient multi-pheromone distribu-
tion method where the multi-pheromone distribution allows
ants to follow the weight of the QoS attributes to construct
solutions.

The proposed algorithm is named Enhanced Flying Ant
Colony Optimization (EFACO). We conducted multiple
experiments to evaluate the effectiveness of the proposed
algorithm. The experiments show that the restrictive flying
ant process with the new neighboring selection process are
decreased the time required to find better solutions, while the
multi-pheromone improves solution quality.

This paper is organized as follows. Section 2 reviews the
problem and related work involving ACO. Section 3 then
describes the proposed algorithm. In section 4, we present
an analysis of experimental results. Finally, we conclude our
research in section 5.

II. PROBLEM DEFINITION AND RELATED WORK
Typically, a workflow contains many tasks that represent user
requirements and each task is an abstract representation of
a user requirements. Let n equal the number of tasks and
m equal the number of WSs that can be used to achieve a
given task. In fact, the value of m varies but for simplicity
in this study the variable is fixed for each dataset i.e., in the
experiment each dataset contains a special workflow with a
fixed value form. Figure 1 shows a hypothetical workflow of
tasks with corresponding WSs [7], [9], [10]. The challenge
of finding the best combination of WSs is a combinatorial
optimization problem. A solution represents a complete path
that contains the best combination of WSs for the tasks in the
workflow. The available combinations (potential solutions)
for this problem are mn, thus, the problem is an NP-hard
problem [6].

WSs are selected based on their QoS attributes. These
attributes may include cost, response time, availability, and
reliability, etc. [4]. In this study, we consider four QoS
attributes which are the non-functional constraints for the
WSs [4]. These four constraints are the cost that represents

VOLUME 9, 2021 34099

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

FIGURE 1. Workflow simulation [7].

the fees of the services utilization, response time which rep-
resents the delay of using the services, availability which
represents the invocation rate, and reliability which represents
the message error rate. Therefore, the values of these QoS
attributes are calculated to evaluate the fitness of a potential
solution. Table 1 lists the formulas used to calculate these
attribute values [11]. In Table 1, n denotes the task number
and j represent the web service selected for task i. The selec-
tion process adds an additional challenge for the problem
that can be represented as a multi-objective combinatorial
optimization problem.

TABLE 1. The formulas for calculating the QoS attributes.

The workflow can be divided based on the representation
patterns of the user requirements into complex and sim-
plex workflows. Representation patterns show if the require-
ments can be executed concurrently or must be executed
sequentially. Loops indicate that someWSs must be executed
several times [11], [12]. Figure 2 shows each of the four
workflow patterns. A complex workflow contains all four
representation patterns, while a simplex contains only the
sequential pattern. Figure 3(a) shows a complex workflow,
while Figure 3(b) shows a decomposition of the complex
workflow into simplex workflows [11], [12]. These simplex
workflows are perceived as individual problems; therefore,
their decomposition has been neglected. Potential solutions
are then compared based on the fitness values of the simplex
workflows.

A. ANT COLONY OPTIMIZATION (ACO)
ACO is a meta-heuristic algorithm that inspires the behavior
of the ants while searching for food. It aims to find the shortest
possible path to a food source within the least amount of
time using a swarm of ants that share information. In fact,
real ants forage randomly and while moving they deposit a
chemical with an evaporation feature called a pheromone.
This pheromone helps other ants to track and follow each
other. The best ants that find better food resources will return
to the nest. In this case the amount of pheromones will
be stronger for the best ants than for others, and they can
recruit more ants to follow them. While searching for food,
this mechanism is a tradeoff between two techniques called
exploration and exploitation. Exploration represents the ran-
dom search for food resources while exploitation represents
information sharing [8], [13], [14].

As shown in Figure 4, [15], [16] the ACO algorithm simu-
lates the behavior of real ants. At the beginning, all ants have
a consistent amount of pheromones and will search randomly
for better solutions and return to their nest. At this stage,
the ants have knowledge of the search space and can share
information with other ants. Next, the ACO uses a tradeoff
formula for ants to construct new solutions based on the
distance τ representing exploration, and last knowledge η
(pheromone) represents exploitation. To achieve this, the ants
use the following transition formula:

Pkij =

[
τij
]α [

ηij
]β∑

l∈N k
i
[τil]α [ηil]β

ifj ∈ N k
i (1)

where α and β represent the coefficient parameters that deter-
mine the importance of local distance and pheromone. N k

i
denotes the unvisited food sources for ant k . The pheromone
deposition is also simulated. The ants deposit pheromones
while moving to invite other ants to follow them, and this
pheromone evaporates. The process of deposition and evapo-
ration is called the local pheromone update, and is represented
by Eq. (2):

τij = (1− ρ)τij + ρτ0 (2)

where τ0 represents the pheromone value at the initialization
stage and ρ denotes the evaporation rate.

During the last stage, the ACO algorithm compares the
solution of all ants and memorizes the best ant solution. This
ant then deposits pheromone on its path (global update) to
attract other ants in future iterations as represented below.

τij = (1− ρ)τij + ρ1τ ij (t) (3)

In which:

1τ ij =

{
1/
Lgb if arc (i, j) ∈ the best tour

τij otherwise,
(4)

where Lgb represents the length of the best solution found so
far.

The ACO algorithm has many applications. However,
the ants accumulate pheromones as more paths are visited

34100 VOLUME 9, 2021

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

FIGURE 2. The available workflow patterns [7].

FIGURE 3. Complex workflow composition/decomposition example.

FIGURE 4. The ACO flowchart.

while searching for solutions, and this causes the stagnation
problem [17]. Therefore, the ACO can become stuck in local
minima.

The FACO algorithm is proposed as a balancing mecha-
nism to avoid the stagnation problem, however, this mech-
anism is time consuming where the ants in each iteration
have to search each service’ neighboring in the solution
path. The flying process is repeated for each ant in each
iteration and for each service in the solution path which is

time-consuming. Therefore, the process time complicity is
O(Ants∗Maxiteration∗n∗m) where Ants represents the popula-
tion number, Maxiteration represents the iterations number, n
represents the number of tasks, and m represents the number
of WSs that can be used to achieve a given task. In this
study, we continue improving FACO to overcome the time
problem and to ensure that the solution remains based upon
the restriction, neighboring selection, and multi-pheromone
mechanisms.

B. FLYING ANT COLONY OPTIMIZATION (FACO)
FACO [7] modifies the ACO algorithm to better balance
exploration and exploitation operations based on neighbor-
hood relations. This creates a tradeoff between exploration
and exploitation that is necessary to find a better food source
and to avoid the stagnation problem. Also, the FACO algo-
rithm was generalized to solve the traveling salesperson
problem [18].

The ants use transition formula (Eq. (5) to seek superior
service combination of WSC problem, where they select the
next WSs non-deterministically. The equation calculates the
probability of moving to task t+1 and web service s′ from
task t. Then, it uses the roulette wheel selection algorithm to
select one web service based on the probability of each.

The roulette-wheel is a widely adopted algorithm used
alongside meta-heuristic algorithms to select solutions based
on their fitness probability [19]. This algorithm assumes that
the probability of each solution is proportional to its fitness
for that solution.

Pk(t,s)(t+1,s′)

=

[
τ(t,s)(t+1,s′)

]α [
η(t,s)(t+1,s′)

]β∑
l∈N k

t

[
τ(t,s)(t+1,l)

]α [
η(t,s)(t+1,l)

]β if x′ ∈ N k
t+1 (5)

In Eq. (5). α and β represent the parameters that determine
the weight of the local heuristic η and pheromone τ . N k

t+1
denotes the list of unvisited WSs from task t+1 for ant k.

The ants deposit pheromones on their path while moving
to invite other ants to follow these paths in future iterations
using the following local pheromone update formula:

τ(t,s)(t+1,s′) = (1− ρ) τ(t,s)(t+1,s′) + ρτ0, (6)

where τ(t,s)(t+1,s′) represents the edge’s pheromone between
web service s (task t) andweb service s′ (task t+1). τ0 denotes
the initialization value of the pheromone, while ρ represents
the evaporation rate.

Finally, the ant that finds the best solution deposits
pheromones along its path to increase the chances that the

VOLUME 9, 2021 34101

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

WSs will also determine the solution to be selected by other
ants. This is achieved using the following global pheromone
update formulas:

τ(t,s)(t+1,s′) = (1− ρ)τ(t,s)(t+1,s′) + ρ1τ (t,s)(t+1,s′) (7)

in which the quantity of pheromone laid on path
1τ (t,s)(t+1,s′) is:

1τ (t,s)(t+1,s′)=

{
1/
Lgb if arc (t, s)

(
t+1, s′

)
∈ the best tour

0 otherwise,

(8)

where Lgb represents the length of the global best solutions.
After generating the global pheromone update, the best ant
behaves as a flying ant and injects pheromones on neighbor-
ing nodes. It determines the neighbors of each web service
and increases their pheromone values where the number of
increments each neighbor gets, is inversely proportional to the
distance between itself and the actual node (WS), in determin-
ing the best solution. The distance betweenWSs is calculated
using Eq. (9)

d(s,y)=
√
(Cs−Cy)2+(RTs−RTy)2+(As−Ay)2+(Rs−Ry)2,

(9)

where C , RT, A, and R represent QoS attributes. s is the web
service from best path in task t+1. y is a web service for the
task t+1, and s 6= y.
A flying ant selects Ns nearest WSs to increase their

pheromone values, where the number of increments is
inversely proportional to the distance. Eq. (10) shows the
formula for modifying the pheromone value of a neighboring
web services.

τ(t+1,s′)(t+1,l)

= τ(t+1,s′)(t,l)+

(
τ(t+1,s)(t,s′)/

(
1+

√
d′
(
η(t+1,s′)(t+1,l)

)))
,

(10)

where τ(t,s)(t+1,s′) represents the pheromone trails from the
global pheromone update. d ′

(
η(t,s′)(t,l)

)
denotes the normal-

ization for distance between a web service in task t+1 and
its neighboring web service l in the same task, and l ∈ Ns.
d ′
(
η(t+1,s′)(t+1,l)

)
is calculated using the following equation:

d′
(
η(t+1,s′)(t+1,l)

)
=

η(t+1,s′)(t+1,l)
Ns∑
q=1

η(t+1,s′)(t+1,q)

(11)

Recall that the FACO algorithm is proposed to enhance the
performance of the ACO algorithm and avoid the stagnation
problem using the flying process. However, the flying process
is time consuming. In this work, we propose three different
enhancements to avoid the FACO time problem.

C. RELATED ACO-BASED METHODS
The QoS-aware WSC problem has gained much attention in
recent years, thus, many studies have investigated solving it
using different ACO-based methods.

The ACO algorithm is used for WSC to find the best pos-
sible solution that satisfies user requirements. This solution
is created using ACO by moving through each task in a
workflow and selecting one web service with the best QoS
attributes for the solution.

Xia et al. [20] added multi-pheromones to the standard
ACO to deal with the problem. This algorithm searches
for near optimal solutions on a composition graph. Qiqing
et al. [21] introduced a Multi-Objective Ant Colony Opti-
mization (MOACO). MOACO deals with the problem as a
multi-objective optimization problem, based on the modeling
of QoS attributes. Li et al. [22] introduced a Multi-Objective
Chaos Ant Colony Optimization (MOCACO), which used a
chaos operator to enhance the convergence speed ofMOACO.
Wang et al. [23], [24] analyzed the effect of using different
parameters on the performance of the ACO algorithm. Shan-
shan et al. [25] introduced an enhancement for ACO. The new
enhancement aims to get a Pareto optimality based on avoid-
ance of the stagnation problem. It includes a random variable
added to the ACO algorithm. Zhang et al. [26] introduced a
workflow decomposition method and used a multi-objective
ACO for searching for solutions. Zheng et al. [27] introduced
a graph based method to represent the problem workflow.
Then, they used ACO to find the solution path in parallel
execution. Alayed et al. [16] introduced an enhancement for
ACO based on the swapping method. The swapping method
aimed to maintain a good balancing between exploration and
exploitation. An inverted ACO is proposed in [28] where
the repulsion effect is introduced as instead of the regu-
lar pheromone effect. The WSC has been used to facili-
tate the manufacturing service composition problem. A grey
wolf (GW) and genetic algorithms are proposed in [29] where
the genetic strategies is used to help GW to avoid the stagna-
tion problem. The GW also used in [30] where three different
enhancements were introduced.

Yang et al. [31] introduced a hybrid of a genetic algo-
rithm and ACO. Dhore and Kharat [32] used mobile agents
to enhance the performance of ACO. Wang et al. [33]
introduced an enhancement for ACO called Adaptive Ant
Colony Optimization (AACO). This new algorithm selects
the WSs for a workflow based on the degree of trust and
QoS parameters. Zhang et al. [34] introduced a new algo-
rithm called Clustering Ant Colony Selection (CACS). This
algorithm uses a skyline query to decrease the candidates’
services for each task and CACS to search for solutions
efficiently. Le et al. [35] introduced a new algorithm based
on the Max-Min Ant System (MMAS) and heuristic informa-
tion to search for an efficient solution. Shen and Yuan [36]
introduced an ACO algorithm that searches for a solution
based on peers. These peers collect QoS attribute informa-
tion. Other researchers [34]–[40] have proposed algorithms
to search for solutions efficiently. An adaptive genotype is

34102 VOLUME 9, 2021

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

proposed by Jatoth et al. [44] where it evaluated the solu-
tion quality using discrete uniform service rank distribu-
tion. Chattopadhyay and Banerjee [45] proposed a search
space pruning method using clustering. The biogeography-
based optimization is introduced in [46]. Asghari et al. [47]
introduced a hybrid shuffled frog leaping and genetic algo-
rithm. Wakrime et al. [48] proposed a workflow composition
method using the minimally unsatisfiable algorithm and pro-
posed genetic based algorithm for searching better solutions.

The aim of the majority of the researches mentioned in
the literature is to improve ACO’s exploitation behavior [49],
with the exception of the FACO algorithm. FACO aims
to introduce an enhancement for ACO’s exploration and
exploitation behaviors. In ACO, the aim of the exploration
behavior is to help ants to find local solutions while the aim
of exploitation is to help the ants to determine the global
optima [50] This research also aims to enhance the mecha-
nism of exploration and exploitation behaviors of ACO. This
enhancement improves ACO by avoiding the premature stag-
nation problem whilst simultaneously reducing the execution
time of FACO.

III. ENHANCED FLYING ANT COLONY
OPTIMIZATION (EFACO)
FACO is primarily proposed for solving the QoS-awareWSC
problem [7]. This algorithm outperforms the standard ACO in
terms of the quality of the solution. However, it is slower than
ACO due to the flying process. The flying process in FACO
requires searching for neighboring WSs for each web service
in determining the best solution which is time consuming [7].

In this study, we propose EFACO (Figure 5 shows the
EFACO flowchart) to overcome the execution time problem
and to enhance the quality of solution. EFACO is different
from FACO in different ways. First, the flying ant process is
restricted, such that it occurs only if there is an improvement
in the solution obtained thus far. This improves the execu-
tion time but may reduce the quality of solution. Second, a
new neighboring selection method is proposed, such that the
proposed method only selects randomly SN neighboringWSs
to inject pheromone on them and increase their chance to be
selected in future iterations and adaptively select one web ser-
vice from these neighboring WSs to replace the web services
in the best path. This also improves the execution time but
may reduce the quality of solution. Third, to compensate for
this loss, we use a multi-pheromone method where each QoS
attribute has its own pheromone value. This creates an oppor-
tunity for each ant to visit more solutions (i.e., the exploration
process is increased) [16]. The following subsections explain
these differences in details.

A. RESTRICTION ON FLYING ANTS
The flying process in the FACO is repeated continuously in
each iteration to search nearest neighbors. This process is
time consuming, so in this work we introduced an adaptive
flag that manages the execution of the flying process. This
flag tracks the solutions’ enhancement and operates the flying

FIGURE 5. Flowchart of EFACO algorithm.

process if the new solution is better than all pervious solution
found so far.

B. NEIGHBORING SELECTION
The flying process in the FACO scans all neighboring WSs
of the best solution to select a set of nearest neighboring to
inject pheromones on them and increase their chance to be
selected in future iterations.

In this work we replaced the flying process with a
new neighboring selection method (shown in Figure6) that
inspired from [9] and [16]. The aim of this new method
is to seek only SN random numbers of neighboring WSs.
These WSs are sorted based on the distance to a random
selected web service WSi,x that belongs to the best solution
found so far. Meanwhile, all these WSs should be in the same
task ti ofWSi,x . The pheromone injection on SN neighboring
WSs is similar to injection formula in FACO using Eq. (11).
The new neighboring selection method proposed an adap-
tive balancing method between exploration and exploitation.
It replaces theWSi,x with one of the SN neighboringWSs in a
way that guarantees exploration in early iterations by select-
ing randomly from farthest neighbors and exploitation in
later iterations by selecting randomly from nearest neighbors.

VOLUME 9, 2021 34103

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

FIGURE 6. Neighboring selection process.

The adaptive balancing method is as follow:

y =
(
R
j

)
∗ SN (12)

where R is a random number ∈]0, 1], j is the iteration number,
SN is the numbers of neighboring WSs.

C. MULTI-PHEROMONE MECHANISM
In the FACO algorithm, the pheromone value was repre-
sented as a single value while in EFACO we represent it as
multi-value based on the number of QoS attributes. There-
fore, all equations, which are used in the standard ACO and
FACO, were modified in EFACO accordingly.

The transition process (Eq. (5)) is responsible for selecting
the next web service for an ant to move to and to create a
solution based on the local heuristic (distance) η parameter
of the problem and the amount of pheromone value τ param-
eter. These two parameters are calculated based on EFACO
multi-pheromone mechanism as follows:

τ(t,s)(t+1,s′) = (τA(t,s)(t+1,s′) + τ
R
(t,s)(t+1,s′))

+ (τ c(t,s)(t+1,s′) + τ
RT
(t,s)(t+1,s′)). (13)

η(t,s)(t+1,s′) = (ηA(t,s)(t+1,s′) + η
R
(t,s)(t+1,s′))

− (ηc(t,s)(t+1,s′) + η
RT
(t,s)(t+1,s′)). (14)

where C , RT, A, and R are the QoS attributes values.
The calculation formulas of the pheromone and the local

heuristic are modified from FACO to carry out the difference
between the QoS attributes.
The local (Eq. (6)) and global (Eq. (7) and Eq. (8))

pheromone update formulas are updated the pheromone
trail for each QoS attributes because in EFACO the ants
should consider the value of each attribute to find a
solution.
In the EFACO, the preference-based method [51] manages

the multi-objective problem as a single-objective maximiza-
tion/minimization problem. Recall that the preference-based

method aims to aggregate all objectives into one fitness
objective function. Eq. (15) [7] shows the fitness calculation
formula for the EFACO algorithm.

argmaxk∈Ants(f)

=

(
Wa

∏n−1
t=1 Ak

(t,s)(t+1,s′)+Wr
∏n−1

t=1 Rk
(t,s)(t+1,s′)

)
(
Wc

∑n−1
t=1 Ck

(t,s)(t+1,s′)+Wrt
∑n−1

t=1 RTk
(t,s)(t+1,s′)

) , (15)

where Wc, Wrt , Wa, and Wr denote the user selection weight
the QoS attributes. n represents the task number. SN repre-
sents to the k th ant, and 1≤ k ≤ Ants where Ants is the
population size.

D. COMPLEXITY ANALYSIS
The EFACO algorithm has five processes. These processes
should be used for analyzing the time complexity of EFACO.
The processes consist of initialization of ants at the beginning
of the algorithm, ants’ transmission, local pheromone update,
solution quality calculation, and the proposed enhancement
process.

During initialization, all ants search randomly which
means that each ant will select one web service from each
task to construct its solution. Thus, the initialization time
complexity is proportional to the population number (A) and
the task number (N) which equal A∗N.

Next, each ant will search for a new solution by calculating
the distance between its WSs in task 1 with all WSs in task 2
based on the QoS attributes. This process repeats until it
reaches the exit condition. Therefore, the ant’s transmission
is proportional to the population number, the task number,
service number (M) in each task, repetition number (I), and
QoS attributes (Q) which equal A∗N∗M ∗I∗Q.

The ants move from task to task while searching and
depositing pheromones on the fly. Thus, the deposition time
complexity is N∗Q.

34104 VOLUME 9, 2021

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

Additionally, the ants calculate the quality of the solution
based on the fitness function, Therefore, the solution quality
calculation for time complexity is N∗Q.
The best ant searches for its neighbors to share pheromones

with them. Therefore, the worst case time complexity of the
proposed enhancement is proportional to I∗SN∗N∗M where
SN represents the number of neighbors.
Finally, we can calculate the EFACO time complex-

ity based on the last process as A∗N + I(A∗N ∗M
∗Q+N∗Q+N∗Q) + I∗SN∗N∗M which generates the algo-
rithm O(I∗A∗M∗N∗Q).

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTS SETTINGS
To evaluate the performance and effectiveness of the EFACO
we conducted several experiments. This was achieved by
comparing it with 6 different algorithms which are the stan-
dard ACO [8], FACO [7], Alayed et al. algorithm [16] (SACO
for short), Xia et al. algorithm [20] (MACO for short),
Qiqing et al. algorithm [21] (MOACO for short), and
Li et al. algorithm [22] (MOCACO for short). All experi-
ments were carried out on an Intel R©i7-3770 (CPU 3.44 GHz,
8 GB RAM) running on Windows 8. All algorithms were
implemented in MATLAB R2016a.

The control parameters for all algorithms are the same
as those used in [7], to standardize experiences among all
algorithms, which were determined empirically. Table 2 lists
these parameter values. For each dataset, 30 experiments
were performed.

TABLE 2. All algorithms’ control parameters.

B. EXPERIMENTS DATASETS
Following [7], all algorithms were compared using two
datasets (Dataset1 and Dataset2) with four QoS attribute
values (cost, response time, availability, and reliability) that
had been used in FACO as listed in Table 3.

TABLE 3. Workflow representation on each dataset.

For clarity, we conducted more extensive experiments
using real dataset named Quality of Web Service (QWS)
version 2.0 [52]. The QWS [52] includes real measurements
of QoS properties for 2,507 web services using a web service
broker in 2008. Each service was measured using nine QoS
properties (response time, availability, throughput, success-
ability, reliability, compliance, best practices, latency, and
documentation).

These new datasets are grouped into two scenarios: the first
scenario comprises of a fixed number of tasks (10 tasks) and a
different number ofWSs for each task, in the range [100, 200,
300,.., 1000]. This scenario includes 10 datasets and these
datasets are sequentially named as Dataset3, Dataset4,..,
Dataset12. The second scenario comprises of a fixed number
ofWSs (100WSs) and a different number of tasks in the range
[10, 20, 30,. . . , 100] for each dataset. This scenario includes
10 datasets more and these datasets are sequentially named
as Dataset13, Dataset14,.., Dataset22. Therefore, the total
number of datasets is 22 datasets.

Since we considered the QoS attributes as in FACO experi-
ments, we used the same attributes that used in FACO and we
expanded the QWS dataset with extra attribute that represents
the cost attribute in the interval [45], [55].

C. EXPERIMENTS DISCUSSION
Several sets of experiments were conducted to evaluate the
performance and effectiveness of the EFACO with competi-
tors as described below.

In the first set of experiments, we compared EFACO
including the restriction on flying ants and neighboring selec-
tion without multi-pheromones with ACO, FACO, SACO,
MACO, MOACO and MOCACO. This experiment aims
to show the effectiveness of the restriction technique and
neighboring selection on FACO in terms of execution time.
Figure 7 and Figure 8 show the results of this experiment.
Figure 8 shows that EFACO outperforms FACO, SACO,
MACO and MOCACO in terms of execution time by 1.15s,
0.68s, 0.18s, and 0.48s respectively, while Figure 7 shows
that SACO is better in terms of solution quality compared
to other algorithms while FACO exhibits better performance
than EFACO. Figure 8 also shows that ACO and MOACO is
better than EFACO in terms of execution time by 0.26s and
0.2s respectively.

As shown in the figures, EFACO with the restriction tech-
nique and neighboring selection enhance the execution time
of FACO, but the solution quality decreases. In Thus, we con-
ducted the second experiment.

The second experiment is shown in Figure 9 and
Figure 10, this contains the comparison between EFACO,
including the restriction technique, neighboring selection,
and multi-pheromone with ACO, FACO, SACO, MACO,
MOACO and MOCACO using the same datasets in Table 3.
This experiment studies the effectiveness and performance
of adding the multi-pheromone to the proposed algorithm.
The experiments show that the solution quality improved for
EFACO when compared with ACO, FACO, SACO, MACO,

VOLUME 9, 2021 34105

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

FIGURE 7. Results of ACO, FACO, SACO, MACO, MOACO, MOCACO and EFACO without multi-pheromone in
terms of quality of solution.

FIGURE 8. Results of ACO, FACO, SACO, MACO, MOACO, MOCACO, and EFACO without multi-pheromone in
terms of execution time.

MOACO and MOCACO. Meanwhile, the execution time for
EFACO is faster than FACO, SACO, MACO and MOCACO
by 1.32s, 0.85s, 0.35s, and 0.65s respectively but it is slower
than ACO andMOACO by only 0.09s and 0.03s respectively.
Figure 11 and Figure 12 show the results in terms

of quality of solution and execution time, respectively.
Figure 11 shows that EFACO ACO, FACO, SACO, MACO,
MOACO and MOCACO algorithms consistently in terms of
solution quality. Figure 12 shows that EFACO needs less
execution time compared to FACO, SACO,MACO,MOACO
and MOCACO but it is very close to ACO.
Figure 13 and Figure 14 show the experimental results

for the second scenario of datasets in terms of quality of the
performance for all algorithms, and execution time, respec-
tively. Figure 13 shows that EFACO also outperforms ACO,
FACO, SACO,MACO,MOACO andMOCACO consistently
in terms of solution quality. Furthermore, the performance

gap between EFACO and other algorithms grows in favor
of EFACO as the number of tasks increase. The figure also
shows that the solution improves as the number of tasks
increase in EFACO. This is because the number of tasks does
not affect the performance of EFACO. Figure 14 shows that
EFACO also requires less execution time compared to FACO,
SACO, MACO, MOACO, MOCACO, and is close to the
execution time of ACO.

The experiments show that EFACO is more robust when
compared to other algorithms, with different dataset distribu-
tions. The multi-pheromone helps EFACO to discover better
solutions regardless of dataset variants. For execution time,
the proposed enhancements bring EFACO closer to ACO,
making it faster than FACO, SACO, MACO, MOACO and
MOCACO because the restriction, and neighboring selection
mechanisms prevent time wasting if there are no better solu-
tions found thus far.

34106 VOLUME 9, 2021

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

FIGURE 9. Results of ACO, FACO, SACO, MACO, MOACO, MOCACO, and EFACO with multi-pheromone in terms
of quality of solution.

FIGURE 10. Results of ACO, FACO, SACO, MACO, MOACO, MOCACO, and EFACO with multi-pheromone terms of
execution time.

FIGURE 11. The solutions quality of all algorithms on first scenario.

Figure 15 presents the convergence speed onDataset22 of
all Algorithms. Recall that Dataset22 consists of 100 tasks
and each sub task has 100 WSs. AS clearly seen from the

figure, the EFACO has very fast convergence speed where
it converges to the optimal value after 33 iterations. In con-
trast, the convergence speed of ACO, FACO, SACO, MACO,

VOLUME 9, 2021 34107

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

FIGURE 12. The execution time of all algorithms on first scenario.

FIGURE 13. The solutions quality of all algorithms on second scenario.

FIGURE 14. The execution time of all algorithms on second scenario.

MOACO, and MOCACO are in iterations 41, 67, 57, 54,
51, and 47 respectively. These results reflect the superiority
of EFACO where the convergence speed that obtained by

EFACO is obviously faster than other algorithms.Meanwhile,
the EFACO obtained better value in terms of solution quality
which is obviously larger than the values obtained by other

34108 VOLUME 9, 2021

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

FIGURE 15. Convergence Curve on Dataset22 of all Algorithms.

algorithms, this is because these algorithms have fallen into
the local optimum. The convergence speed of EFACO sup-
ports the claim of this work where the proposed improve-
ments adjust the performance of the FACO and ACO to get
better solutions and avoiding the time problem.

Now, we have a set of independent measurements for each
dataset from the EFCAO and the six other algorithms. These
measurements represent the mean of 30 independent runs on
each dataset. We noticed that there are differences between
the mean of EFACO compared to all other algorithms so
we need to measure these differences based on the null
hypothesis (P>5%). This hypothesis is true if themean across
all algorithms is equal otherwise, it is false if instead this
differs. Statistically significant terms indicate that the false
hypothesis has been found. To achieve this, we used the
ANOVA test on the 22 datasets, which is a robust statistical
method for measuring the null hypothesis.

The results of ANOVA test show that EFACO is statisti-
cally significant for 13 datasets out of 22. This demonstrates
that the value of the mean for 13 datasets is significant (false
hypothesis) and for remaining 9 datasets the value of themean
is not significant.

V. CONCLUSION
FACO modifies ACO to solve the QoS-aware WSC prob-
lem. In comparison it produces positive solutions; however,
one disadvantage is that it requires more execution time
than the original ACO. In this paper, we introduced the
EFACO algorithm which differs from FACO in three main
ways. First, to avoid the execution time problem, EFACO
restricts the flying process to only occur when there are
improvements in solution quality. Although this improves
on execution time, it decreases the solution quality. Sec-
ond, we applied a neighboring selection method to avoid
scanning all the neighboring nodes which also decreases the
solution quality. Thus, we introduced the third modification,

which transformed the algorithm into a multi-pheromone
algorithm. This enhancement overcomes the drawback of the
first, and second developments. Multiple experiments were
then conducted to evaluate the effectiveness of the proposed
solution. The experiments show that the restrictive flying
process and neighboring selection decrease execution time,
while the multi-pheromone improves solution quality. The
results demonstrate that EFACO outperforms ACO, FACO,
SACO, MACO,MOACO andMOCACO in terms of solution
quality. Finally, EFACO requires less execution time than
other algorithms with comparable execution time to ACO.

REFERENCES
[1] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-

Oriented Computing Series From Thomas Erl). Upper Saddle River, NJ,
USA: Prentice-Hall, 2007.

[2] M. Papazoglou, Web Services: Principles and Technology. London, U.K.:
Pearson, 2008.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services: Concepts,
Architectures and Applications. Berlin, Germany: Springer, 2004.

[4] D. A. Menasce, ‘‘Composing Web services: A QoS view,’’ IEEE Internet
Comput., vol. 8, no. 6, pp. 88–90, Nov. 2004.

[5] Y. Liu, A. H. Ngu, and L. Z. Zeng, ‘‘QoS computation and policing in
dynamic Web service selection,’’ in Proc. 13th Int. World Wide Web Conf.
Alternate Track Papers Posters (WWW), 2004, pp. 66–73.

[6] N. Ben Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and
V. Issarny, ‘‘QoS-aware service composition in dynamic service oriented
environments,’’ in Proc. ACM/IFIP/USENIX Int. Conf. Distrib. Syst. Plat-
forms Open Distrib. Process., 2009, pp. 123–142.

[7] F. Dahan, K. El Hindi, and A. Ghoneim, ‘‘An adapted ant-inspired algo-
rithm for enhancing Web service composition,’’ Int. J. Semant. Web Inf.
Syst., vol. 13, no. 4, pp. 181–197, 2017.

[8] M. Dorigo and L. M. Gambardella, ‘‘Ant colony system: A cooperative
learning approach to the traveling salesman problem,’’ IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[9] F. Dahan, K. El Hindi, and A. Ghoneim, ‘‘Enhanced artificial bee colony
algorithm for QoS-aware Web service selection problem,’’ Computing,
vol. 99, no. 5, pp. 507–517, May 2017.

[10] F. Dahan, H. Mathkour, and M. Arafah, ‘‘Two-step artificial bee colony
algorithm enhancement for QoS-aware Web service selection problem,’’
IEEE Access, vol. 7, pp. 21787–21794, 2019.

[11] T. Yu and K.-J. Lin, ‘‘Service selection algorithms for Web services with
end-to-end QoS constraints,’’ Inf. Syst. e-Bus. Manage., vol. 3, no. 2,
pp. 103–126, Jul. 2005.

VOLUME 9, 2021 34109

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

[12] T. Yu, Y. Zhang, and K.-J. Lin, ‘‘Efficient algorithms for Web services
selection with end-to-end QoS constraints,’’ ACM Trans. Web, vol. 1, no. 1,
p. 6, May 2007.

[13] M. Dorigo and L. M. Gambardella, ‘‘Ant colonies for the travelling sales-
man problem,’’ Biosystems, vol. 43, no. 2, pp. 73–81, Jul. 1997.

[14] L. M. Gambardella and M. Dorigo, ‘‘Solving symmetric and asymmetric
TSPs by ant colonies,’’ in Proc. IEEE Int. Conf. Evol. Comput., May 1996,
pp. 622–627.

[15] O. Deepa and A. Senthilkumar, ‘‘Swarm intelligence from natural to
artificial systems: Ant colony optimization,’’ Netw. (Graph-Hoc), vol. 8,
no. 1, pp. 9–17, 2016.

[16] H. Alayed, F. Dahan, T. Alfakih, H. Mathkour, and M. Arafah, ‘‘Enhance-
ment of ant colony optimization for QoS-aware Web service selection,’’
IEEE Access, vol. 7, pp. 97041–97051, 2019.

[17] A. Aljanaby, ‘‘An experimental study of the search stagnation in ants
algorithms,’’ Int. J. Comput. Appl., vol. 148, no. 14, pp. 1–4, Aug. 2016.

[18] F. Dahan, K. El Hindi, H. Mathkour, H. AlSalman, ‘‘Dynamic flying ant
colony optimization (DFACO) for solving the traveling salesman prob-
lem,’’ Sensors, vol. 19, no. 8, p. 1837, Apr. 2019.

[19] A. Lipowski and D. Lipowska, ‘‘Roulette-wheel selection via stochastic
acceptance,’’ Phys. A, Stat. Mech. Appl., vol. 391, no. 6, pp. 2193–2196,
Mar. 2012.

[20] Y.-M. Xia, J.-L. Chen, and X.-W.Meng, ‘‘On the dynamic ant colony algo-
rithm optimization based on multi-pheromones,’’ in Proc. 7th IEEE/ACIS
Int. Conf. Comput. Inf. Sci. (ICIS), May 2008, pp. 630–635.

[21] F. Qiqing, P. Xiaoming, L. Qinghua, and H. Yahui, ‘‘A global QoS optimiz-
ing Web services selection algorithm based on MOACO for dynamic Web
service composition,’’ in Proc. Int. Forum Inf. Technol. Appl., May 2009,
pp. 37–42.

[22] W. Li and H. Yan-Xiang, ‘‘A Web service composition algorithm based on
global QoS optimizing with MOCACO,’’ in Proc. Int. Conf. Algorithms
Archit. Parallel Process., 2010, pp. 218–224.

[23] R. Wang, L. Ma, and Y. Chen, ‘‘The application of ant colony algorithm
in Web service selection,’’ in Proc. Int. Conf. Comput. Intell. Softw. Eng.,
Dec. 2010, pp. 1–4.

[24] R. Wang, L. Ma, and Y. Chen, ‘‘The research of Web service selection
based on the ant colony algorithm,’’ inProc. Int. Conf. Artif. Intell. Comput.
Intell., Oct. 2010, pp. 551–555.

[25] Z. Shanshan, W. Lei, M. Lin, and W. Zepeng, ‘‘An improved ant colony
optimization algorithm for QoS-aware dynamic Web service compo-
sition,’’ in Proc. Int. Conf. Ind. Control Electron. Eng., Aug. 2012,
pp. 1998–2001.

[26] W. Zhang, C. K. Chang, T. Feng, and H.-Y. Jiang, ‘‘QoS-based dynamic
Web service composition with ant colony optimization,’’ in Proc. IEEE
34th Annu. Comput. Softw. Appl. Conf., Jul. 2010, pp. 493–502.

[27] X. Zheng, J.-Z. Luo, and A.-B. Song, ‘‘Ant colony system based algorithm
for QoS-aware Web service selection,’’ in Proc. 4th Int. Conf. Grid Service
Eng. Manage. (GSEM), 2007, pp. 39–50.

[28] S. Asghari and N. J. Navimipour, ‘‘Cloud service composition using an
inverted ant colony optimisation algorithm,’’ Int. J. Bio-Inspired Comput.,
vol. 13, no. 4, pp. 257–268, 2019.

[29] H. Bouzary and F. F. Chen, ‘‘A hybrid grey wolf optimizer algorithm with
evolutionary operators for optimal QoS-aware service composition and
optimal selection in cloud manufacturing,’’ Int. J. Adv. Manuf. Technol.,
vol. 101, nos. 9–12, pp. 2771–2784, Apr. 2019.

[30] Y. Yang, B. Yang, S. Wang, T. Jin, and S. Li, ‘‘An enhanced multi-objective
grey wolf optimizer for service composition in cloud manufacturing,’’
Appl. Soft Comput., vol. 87, Feb. 2020, Art. no. 106003.

[31] Z. Yang, C. Shang, Q. Liu, and C. Zhao, ‘‘A dynamic Web services
composition algorithm based on the combination of ant colony algorithm
and genetic algorithm,’’ J. Comput. Inf. Syst., vol. 6, no. 8, pp. 2617–2622,
2010.

[32] S. R. Dhore and M. U. Kharat, ‘‘QoS based Web services composition
using ant colony optimization: Mobile agent approach,’’ Int. J. Adv. Res.
Comput. Commun. Eng., vol. 1, no. 7, pp. 519–527, 2012.

[33] D. Wang, H. Huang, and C. Xie, ‘‘A novel adaptive Web service selection
algorithm based on ant colony optimization for dynamic Web service
composition,’’ in Proc. Int. Conf. Algorithms Archit. Parallel Process.,
2014, pp. 391–399.

[34] C. Zhang, H. Yin, and B. Zhang, ‘‘A novel ant colony optimization algo-
rithm for large scale QoS-based service selection problem,’’ Discrete Dyn.
Nature Soc., vol. 2013, pp. 1–9, Jul. 2013.

[35] D.-N. Le and G. N. Nguyen, ‘‘A new ant-based approach for optimal
service selection with E2E QoS constraints,’’ in Proc. Int. Conf. Soft
Comput., Intell. Syst., Inf. Technol., 2015, pp. 98–109.

[36] J. Shen and S. Yuan, ‘‘Qos-aware peer services selection using ant colony
optimisation,’’ in Proc. Int. Conf. Bus. Inf. Syst., 2009, pp. 362–374.

[37] T. Ghafarian andM. Kahani, ‘‘SemanticWeb service composition based on
ant colony optimization method,’’ in Proc. 1st Int. Conf. Networked Digit.
Technol., Jul. 2009, pp. 171–176.

[38] V. R. Chifu, C. B. Pop, I. Salomie, M. Dinsoreanu, T. David, and
V. Acretoaie, ‘‘Ant-based methods for semanticWeb service discovery and
composition,’’Ubiquitous Comput. Commun. J., vol. 6, no. 1, pp. 631–641,
2011.

[39] V. R. Chifu, C. B. Pop, I. Salomie, M. Dinsoreanu, V. Acretoaie, and
T. David, ‘‘An ant-inspired approach for semanticWeb service clustering,’’
in Proc. 9th RoEduNet IEEE Int. Conf., Jun. 2010, pp. 145–150.

[40] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David, and
V. Acretoaie, ‘‘Ant-inspired technique for automaticWeb service composi-
tion and selection,’’ in Proc. 12th Int. Symp. Symbolic Numeric Algorithms
Sci. Comput., Sep. 2010, pp. 449–455.

[41] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David, and
V. Acretoaie, ‘‘Ant-inspired framework for automatic Web service com-
position,’’ Scalable Comput. Pract. Express, vol. 12, no. 1, pp. 137–152,
2011.

[42] K. Yan, G. Xue, and S.-W. Yao, ‘‘An optimization ant colony algorithm
for composition of semantic Web services,’’ in Proc. Asia–Pacific Conf.
Comput. Intell. Ind. Appl. (PACIIA), vol. 2, Nov. 2009, pp. 262–265.

[43] Y. Xia, C. Liu, Z. Yang, and J. Xiu, ‘‘The ant colony optimization algorithm
for Web services composition on preference ontology,’’ in Proc. Int. Conf.
Adv. Intell. Awareness Internet (AIAI), Oct. 2011, pp. 193–198.

[44] C. Jatoth, G. R. Gangadharan, and R. Buyya, ‘‘Optimal fitness aware cloud
service composition using an adaptive genotypes evolution based genetic
algorithm,’’ Future Gener. Comput. Syst., vol. 94, pp. 185–198, May 2019.

[45] S. Chattopadhyay and A. Banerjee, ‘‘QoS-aware automatic Web service
composition with multiple objectives,’’ ACM Trans. Web, vol. 14, no. 3,
pp. 1–38, Jul. 2020.

[46] A. K. Sangaiah, G.-B. Bian, S. M. Bozorgi, M. Y. Suraki,
A. A. R. Hosseinabadi, and M. B. Shareh, ‘‘A novel quality-of-service-
aware Web services composition using biogeography-based optimization
algorithm,’’ Soft Comput., vol. 24, pp. 8125–8137, 2020.

[47] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, ‘‘Privacy-aware
cloud service composition based on QoS optimization in Internet of
Things,’’ J. Ambient Intell. Hum. Comput., 2020, doi: 10.1007/s12652-
020-01723-7.

[48] A. Ait Wakrime, M. Rekik, and S. Jabbour, ‘‘Cloud service composition
using minimal unsatisfiability and genetic algorithm,’’ Concurrency Com-
put. Pract. Exper., vol. 32, no. 15, p. e5282, Aug. 2020.

[49] T. Stützle and H. H. Hoos, ‘‘MAX–MIN ant system,’’ Futur. Gener. Com-
put. Syst., vol. 16, no. 8, pp. 889–914, 2000.

[50] P. Civicioglu and E. Besdok, ‘‘A conceptual comparison of the Cuckoo-
search, particle swarm optimization, differential evolution and artificial bee
colony algorithms,’’ Artif. Intell. Rev., vol. 39, no. 4, pp. 315–346, 2013.

[51] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
vol. 16. Hoboken, NJ, USA: Wiley, 2001.

[52] E. Al-Masri and Q. H. Mahmoud, ‘‘QoS-based discovery and ranking of
Web services,’’ in Proc. 16th Int. Conf. Comput. Commun. Netw., 2007,
pp. 529–534.

FADL DAHAN received the B.Sc. degree from
Thamar University, Yemen, the M.Sc. degree from
King Saud University, and the Ph.D. degree from
the Department of Computer Science, King Saud
University. He is currently an Assistant Profes-
sor with the Department of Information System,
College of Computer Engineering and Sciences,
Prince SattamBinAbdulaziz University, Al-Kharj,
Saudi Arabia. He is also a Faculty Member with
the Department of Computer Science, Faculty of

Computer Science, Taiz University, Taiz, Yemen. His research interests
include optimization and swarm intelligence.

34110 VOLUME 9, 2021

http://dx.doi.org/10.1007/s12652-020-01723-7
http://dx.doi.org/10.1007/s12652-020-01723-7

F. Dahan et al.: Enhanced Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web Service Composition

KHALIL EL HINDI received the B.Sc. degree
from Yarmouk University, Jordan, and the M.Sc.
and Ph.D. degrees from the University of Exeter,
U.K. He is currently a Professor with the Depart-
ment of Computer Science, King Saud University.
His research interests include deep learning meth-
ods, Bayesian classifiers, similarity metrics for
instance-based learning, and swarm intelligence.

AHMED GHONEIM (Member, IEEE) received
the M.Sc. degree in software modeling from
the University of Menoufia, Egypt, in 1999,
and the Ph.D. degree in software engineering
from the University of Magdeburg, Germany,
in 2007. He is currently an Associate Professor
with the Department of Software Engineering,
College of Computer and Information Sciences,
King Saud University, Riyadh, Saudi Arabia. His
research interests include address software evo-

lution, service-oriented engineering, software development methodologies,
net-centric computing, and human–computer interaction.

HUSSAIN ALSALMAN received the B.Sc. and
M.Sc. degrees in computer science from King
Saud University (KSU), Riyadh, Saudi Arabia,
and the Ph.D. degree in artificial intelligence from
U.K. He worked for several years as a Consul-
tant for a number of companies in private sector
and institutes in government sector, Saudi Ara-
bia. From 2009 to 2014, he chaired the Computer
Science Department, College of Computer and
Information Sciences, KSU. He is currently a Staff

Member with the Computer Science Department, KSU. He was a member
of review board of Saudi Computer Journal from 2004 to 2014.

VOLUME 9, 2021 34111

