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ABSTRACT Cloud applications are becoming more containerized in nature. Developing a cloud application
based on a microservice architecture imposes different challenges including scalability at the container level.
What adds to the challenge is that cloud applications impose quality of service (QoS) requirements and have
various resource demands requiring a customized scaling approach. For example, real-time applications
require near real time response time as a QoS. Existing autoscaling technologies such as Kubernetes offer
some customization to a set of threshold values for autoscaling. The challenge is identifying the right
values for the different autoscaling parameters that will guarantee QoS in a changing dynamic environment.
Advancements in machine learning and reinforcement learning (RL) provides a means for autoscaling
in cloud applications with no domain knowledge. In this article, we introduce an intelligent autonomous
autoscaling system for microservices autoscaling in the cloud with QoS constraints. The system consists
of two modules. The first module identifies the microservice resource demand via a generic autoscal-
ing algorithm deployed on the Google Kubernetes Engine (GKE). Our algorithm adapts the Kubernetes
autoscaling paradigm based on the application resource requirements. The secondmodule uses reinforcement
learning agents to learn and identify the autoscaling threshold values based on the resource demand and
QoS. Experimental results show an enhancement in the microservice response time up to 20% compared to
the default autoscaling paradigm. In addition, the RL agents can identify the autoscaling threshold values
while maintaining a response time below the QoS constraint. Our proposed work provides a customized
autoscaling solution formicroservices in cloud applicationswhile adhering toQoS constraints withminimum
user interaction.

INDEX TERMS Autonomous autoscaling, Kubernetes, microservices autoscaling, real-time cloud applica-
tions, reinforcement learning.

I. INTRODUCTION
Microservices are the new norm for cloud applications for
dynamic, scalable, and reliable solutions. Microservice archi-
tecture application consists of several fine-grained services
that are independently scalable and deployable [26]. This
provides benefits over a monolithic architecture in areas of
agility, reliability, scalability, and domain specific develop-
ment [2]. Many companies such as Twitter, Netflix, and oth-
ers adopted thismodel. A primary challenge for a cloud-based
microservice system is scaling the microservices under heavy
load and various resource requests and consumptions. A scal-
able service should be able to handle increases in load with-
out noticeable degradation in the system performance [10].
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While many tools can scale the microservices such as Kuber-
netes, there are still many scaling parameters at both the
container and the auto scaler level that need to be adjusted.
Those parameters require a very good understanding of the
application domain and its behavior to be set up accordingly.
The fact that most of the cloud applications need to adhere to
some service level agreements under QoS constraints adds
to the challenge [9]. Real time systems, for example, use
response time as a QoSmetric. Scalability is a crucial require-
ment for real-time systems including disaster management
systems [1]. Although the available autoscaling methods
might be useful for some basic types of cloud applications,
their performance and resource utilization drop when various
CPU, memory, and network intensive time-critical applica-
tions need to be used [3]. Research shows how log messages
from containers are important for accurate monitoring of
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compliance with service level agreement (SLA) requirements
and can be adopted in the auto scaler to make decisions [4].
Motivated by the fact that microservices cloud log data can
be used to infer such knowledge [20], [21], we aim to uti-
lize machine learning techniques to better understand the
behavior of the microservices and identify the auto scaling
parameters to guarantee QoS.

Microservices autoscaling in cloud applications using
machine learning research focuses on the use of machine
learning algorithms, enhancing some existing algorithms,
and working on supervised trained models based on sim-
ulation experiments and existing training data. In contrast
to our work, these studies’ limitations are that they only
consider hardware level SLA instead of application-level
requirements. They also work on the granularity of machines
or VM not on microservices and docker containers. Few
studies investigate how to use application metrics to meet
SLA requirements. Research shows a dramatic decrease in
SLA violation and resource efficiency as application-level
metrics are incorporated into autoscaling algorithms [4].
We build on this model by identifying and incorpo-
rating the application-level metrics in the autoscaling
algorithm.

In autoscaling, threshold values such as resource utiliza-
tion and a maximum number of pods need to be iden-
tified. Threshold-based autoscaling is a widely available
research area. Current approaches define observable metrics
such as the application response time. Determining appro-
priate thresholds requires expert domain and application
knowledge and must be updated based on the application
workload changes, which might not give the optimal strategy.
The advantage of RL approach is how it adapts to suit the
environment based on its own experiences. Our work fills
this gap by utilizing RL agents to be trained to identify the
autoscaling threshold values within the required QoS time
frame.

Our proposed work will auto scale microservices in the
cloud based on their demands and QoS using machine learn-
ing techniques. The proposed module can be deployed as
an extension to Kubernetes HPA to automatically auto scale
the workload with minimum user interaction based on the
workload log data. We will use Twitter Analytics for disaster
management as our problem domain [2], but we believe that
the system design is flexible and can be further adapted for
other types of data.

The major contributions of this article can be summarized
as follows:
• Propose a generic autoscaling algorithm to identify the
microservice resource demand in cloud applications.

• Developing and implementing an intelligent autoscaling
module that identifies the threshold values for autoscal-
ing the microservice based on the resource demand and
QoS constraint.

• Testing and evaluating our proposed module using
RL agents onmicroservices log data for real time system
with response time as a QoS metric.

The remaining structure of the paper is as follows:
section II describes the related work in microservices
autoscaling and the motivation for our study, section III
provides the system model and architecture. The experiment
setup is described in section IV followed by results analysis
and evaluation in section V. The last section VI is for the
conclusion and future work.

II. RELATED WORK AND MOTIVATION
In this section, we will look at the related work in research in
autoscaling microservices in the cloud, QoS metrics and the
use of machine learning. We will also look at the areas where
our study is unique and different. We will address microser-
vices autoscaling, existing research in machine learning for
microservices autoscaling, and the need for new smart solu-
tions to adapt based on QoS of real-time cloud systems such
as disaster management.

A. MICROSERVICES AUTOSCALING AND QoS
Previous approaches investigated autoscalingmetrics onCPU
intensive and I/O intensive microservices. They found that
CPU utilization might not be the best metric for non-CPU
intensive ones. However, in those studies, response time was
not measured as a performance metric or the application’s
nature was considered [11], [12].

Kho Lin et al. [11] showed that in order to produce a
reliable autoscaling system, it is important to understand
the target application. The authors presented Kubernetes
autoscaling capabilities on a live defense system and sug-
gested that auto scaling cannot meet the user performance
demands by simply relying on CPU utilization and memory
usage metrics alone. However, they did not investigate the
effect of other metrics on a microservice under heavy load.
Gotin et al. [12] investigated a set of performance metrics
in a threshold-based rules autoscaling for scaling a SaaS
cloud application based on message queue state. The authors
concluded that CPU utilization is a suitable metric if the
microservice exhibits constant characteristics, but it causes
low performance and is considered unreliable for I/O inten-
sive microservice as its characteristics change under various
loads. They concluded that message queue metrics are much
more resistant to changes in microservices characteristics.
Casalicchio and Perciballi [13] investigated the effect of
absolute versus relative metrics in microservices autoscaling.
They suggested that for CPU intensive workloads, absolute
metrics such as CPU utilization enable more accurate deci-
sions than the relative metrics used by the default Kubernetes
autoscaling algorithm. The focus of their work was on CPU
intensive applications, and they did not investigate the effect
of the metrics on a microservice with other requirements.

To overcome the limitations of existing methods, we adapt
the Kubernetes autoscaling method based on the microser-
vice requirements. We test the effect of other metrics on the
response time of non-CPU intensive microservices.

Gandhi et al. [15] explained the challenges of autoscaling
cloud applications where it requires expert knowledge of the
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dynamics of the application including SLA and sophisticated
modeling expertise to determine when and how to scale the
deployment. They propose an automated cloud service that
proactively and dynamically scales the application deploy-
ment based on user-specified performance requirements.
It leverages resource-level and application-level statistics to
infer the underlying system parameters and determines the
required scaling actions to meet the performance goals in a
cost-effective manner. They used response time as the metric
for SLA. Their work was more focused on cost-effective
measures with minimum user interaction. Our work is differ-
ent where we work on autoscaling at the microservice level
autonomously, on real log data, and on minimizing response
time for cloud applications with real-time QoS constraints.

In more recent work, Salman et al. introduced a new
dynamic multi-level auto-scaling method with dynami-
cally changing thresholds that uses both infrastructure and
application-level monitoring data [3]. They focus on adapting
the threshold values based on the microservices behavior
under different loads and maintaining the overall cluster uti-
lization. Our work is different where we use machine learn-
ing techniques to identify the autoscaling threshold values
dynamically. This will better serve the application based on
its changing behavior and characteristics with minimum user
interaction.

B. MACHINE LEARNING FOR MICROSERVICES
AUTOSCALING
Microservices autoscaling in cloud applications using
machine learning research focuses on the use of machine
learning algorithms, enhancing some existing algorithms, and
working on supervised trained models based on simulation
experiments and existing training data. In our work, we are
not aiming at creating new machine learning algorithms, but
we aim at utilizing existing machine learning techniques
including RL to identify the right threshold values to auto
scale a cloud based microservice system adhering to QoS
constraint. In AWS, Azure and Google, the user can set
the threshold values for horizontal autoscaling. However,
setting those values is challenging to allocate resources while
maintaining the required SLA upon application of behavioral
changes. Threshold-based autoscaling is a widely available
research area. Current approaches define observable metrics
such as the application response time. Determining appro-
priate thresholds requires expert domain and application
knowledge and must be updated based on the application
workload changes which might not give the optimal strategy.

It is widely accepted that reinforcement learning (RL)
is an excellent adaptive and robust solution for autoscaling
problems where it ensures a stable system utilization under
dynamic workload conditions [8], [14]. We are motivated
in our work by the advantages of RL approach and how it
adapts to suit the environment based on its own experiences.
In RL, policies are transparent where they are not dependent
on human intervention or deep domain knowledge but rather
learned through interaction with the environment. They are

dynamic as they determine the best adequate action based on
the current state of the environment and the application. And
policies are adaptable, where they can adapt to the dynamic
changes that occur in the cloud environment [27]. This suits
the nature of cloud applications for scalability. Our work fills
this gap by utilizing RL agents to be trained to identify the
autoscaling threshold values within the required QoS time
frame.

Related works in microservices autoscaling and machine
learning are focused on using q-theory [17], predicting time
series, the use of machine learning to predict load and
resource allocation [16], [18], and the use of fuzzy time
series and genetic algorithms [4]. Some of those studies
only consider hardware level SLA instead of application-
level requirements. They also work on the granularity of
machines or VM not on microservices and Docker contain-
ers. We utilize RL agents to auto scale microservices which
is different from autoscaling VM. Few studies investigate
how to use application metrics to meet SLA requirements.
Zheng et al. [4] show a dramatic decrease in SLA violation
and resource efficiency as application-level metrics are incor-
porated into autoscaling algorithms. The authors looked at
how log messages from containers are important for accu-
rate monitoring of compliance with SLA requirements. Our
research builds on this where we use microservices log data
along with machine learning and reinforcement techniques
to auto scale the cloud microservices while abiding with
QoS constraints.

Research shows a need for more high-level approaches
to address proper application scalability in a cloud context.
Sukhpal and Chana [19] described how QoS is an important
constraint for autonomous cloud computing systems where
the system services will be able to execute, adapt and scale
with minimum user interaction. More research is needed in
autonomic cloud computing based on various QoS parame-
ters. Optimized data mining or machine learning techniques
can be used to improve immediate decision making and help
the services to adapt to dynamic unpredicted conditions.
To that end, our work is filling this gap to introduce an
autonomous, intelligent way for autoscaling workloads in the
cloud.

Rossi [22] and Rossi et al. [23] described that a
threshold-based scaling policy like the default Kubernetes
HPA is not well suited to satisfy QoS requirements of latency
sensitive applications which requires identifying the rela-
tionship between a system metric such as utilization and
application metric such as response time as well as to know
the application bottlenecks. The author runs a comparison on
the default threshold-scaling policy of Kubernetes against a
model-free and model-based RL polices. Their work focuses
on CPU utilization, in contrast to our work, we provide a
generic learning module that can dynamically determine the
resource metric of the application such as CPU, memory, traf-
fic load, etc. In their solution, they are changing the Kuber-
netes autoscaling algorithm to do the scaling in or out based
on RL decision, observed metrics and on the setup of upper
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and lower bounds for the number of pods. This is different
from our work, where we build an intelligent module that can
identify the right threshold values for resource metrics based
on the application behavior and the ultimate number of pods
which will satisfy the QoSmetric such as response time. They
proposed RL solutions for controlling the horizontal and ver-
tical elasticity of container-based applications with the goal
to increase the flexibility to cope with varying workloads.
They show how RL may suffer from a possible long learning
phase especially when nothing is known about the system
a-priori. Their proposed solutions exploit different degrees
of knowledge about the system dynamics using q-learning,
Dyna-q and model-based on simulation and prototype-based
experiments.

Jamshidi et al. [24] show how it is hard to accu-
rately identify the optimal set of scaling rules and reliance
on users for defining cloud controllers is not optimal as
users do not have enough knowledge about the workloads,
infrastructure, or performance modeling. The authors used
fuzzy logic and developed an online learning mechanism
to adjust and improve autoscaling policies at run time
by combining fuzzy control and fuzzy q-learning. They
incorporated SLA, cost, and response time in their reward
function.

A recent study from Google on workload autoscal-
ing describes the system Autopilot which is the primary
auto-scaler that Google uses on its internal cloud as it pro-
vides both horizontal and vertical autoscaling [25]. The paper
focuses on Autopilot vertical autoscaling of memory as it
is less commonly reported. They use two main algorithms
for vertical autoscaling one that relies on the exponentially
smoothed sliding window over historical usage and the other
uses RL by running many variants of the algorithm and
choosing the one resulting in the best performance for each
job. Serving jobs with strict performance guarantees on query
response time for SLA are the primary driver of Google
infrastructure capacity. The study emphasizes how autoscal-
ing is crucial for cloud efficiency, reliability and toil reduction
and how manually setting the resource limits not only wastes
resources but also leads to frequent limit violations. Our
work builds on that area of research for autoscaling microser-
vices with SLA adherence effectively, autonomously, and
dynamically.

Table 1 provides a comparison of existingwork in autoscal-
ing microservices in cloud applications, the metric used,
the ML technique and the application scope.

III. SYSTEM MODEL AND ARCHITECTURE
At the very top level of our problem design, we look at
our system as a black box optimization problem. Black box
optimization algorithms can be used to find the best oper-
ating parameters for any system whose performance can be
measured as a function of adjustable parameters [28]. For
an objective function f : X → R the overall goal is for the
system to generate a sequence of x that approaches the global
optimum as rapidly as possible.

TABLE 1. A comparison of related work in cloud applications autoscaling.

We can model the system as follows:
For a given microservice (pod) ms we have the following

parameters:

ms = [r, rs, u]

where r is the response time, rs is the resource in demand, u
is the current resource utilization.

For the pod auto scaler, we have the following parameters:

scale = [min, max, target, curU , curP]

where min is the minimum number of pods which is
typically 1, max is the maximum number of pods to scale,
target is the required target utilization for the resource rs of
pods, curU is the current average resource utilization for the
pods, curP is the current number of pods.

Our objective function will tune the input parameters to
generate the threshold values needed to auto scale that will
give an average response time less than or equal QoS response
time. The function can be represented as follows:

f (ms, scale) = S (1)

where S = {min,max,rs,target} that will satisfy the constraint:

Avg(r) <= QoS

From there, the threshold values will be given to the auto
scaler to scale.

Since the problem space is vast with many log data for
many runningmicroservices, wewill utilizemachine learning
and RL techniques to fine tune and learn the parameters that
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will yield the right threshold values for autoscaling while
maintaining performance below or equal QoS. Fig. 1 illus-
trates the model.

FIGURE 1. Autoscaling RL model illustrating input and output parameters.

We can define our problem as follows:
Application Domain: Disaster management.
Case Study: Twitter analytics for disaster phase discovery

and disaster knowledge.
QoS Metric: Response time.
System Architecture: Cloud-based microservice architec-

ture.
Goal: Autonomous autoscaling module at the application

microservices container level satisfying the QoS constraint.
Methodology: Utilizing machine learning techniques to

build an intelligent plug-in module on Kubernetes HPA using
microservices log data.

Now we will describe the main areas of our system includ-
ing the generic autoscaling model, the autonomous autoscal-
ing model, and the machine learning autoscaling model.

A. GENERIC AUTOSCALING MODEL
We now present our microservices autoscaling model based
on the Kubernetes HPA [5]. The architecture as illustrated
in Fig. 2 is generic in nature, where we adapt the Kubernetes

FIGURE 2. Agnostic autoscaling controller system.

HPA based on the specific requirements of the microservice
and the application QoS requirements. The system has a
deployable controller module that will follow a customized
algorithm to acquire the pod QoS metrics such as response
time in addition to the resource requirements obtained from a
log service such as Google Stack driver [6]. We will use the
terms pod, microservice, and process interchangeably to refer
to a small, identified task in the overall system.

The controller agnostic algorithm is based on the
Kubernetes HPA. The algorithm which is presented
in Fig. 3 starts by identifying the QoS metric and set
of resource requirements for the microservice at the con-
tainer level. The container will be deployed in one pod on

FIGURE 3. Generic autoscaling Algorithm.
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Kubernetes Cluster. The pod usage will be obtained from
the pod logs. The pod resource with the highest demand
will be identified and used in adjusting Kubernetes HPA
scaling. The threshold values for the resource, minimum, and
a maximum number of pods will be identified through an
optimization technique. The algorithmmonitors the resources
and dynamically adjusts the threshold parameters as the pods
are deployed. Our algorithm scalability can be looked at
based on the number of microservices to be deployed along
with the number of instances per microservice to be scaled.
The two numbers are finite, as we do not anticipate them to
grow to be very large numbers. Assuming n is the maximum
number of microservices deployed, and m is the maximum
number of replicas per a microservice, then the scalability of
our algorithm performance isO(n∗m). Our focus is on testing
the algorithm scalability at the container level.

B. AUTONOMOUS INTELLIGENT AUTOSCALING MODEL
Our focus in this work is to further improve the autoscaling
algorithmwith the use of machine learning and reinforcement
learning to identify the microservices resource requirements
and scalability thresholds satisfying the QoS agreements.
As there are different parameters that need to be adjusted
to guarantee the QSA, manually adjusting those values is
tedious work that requires a good understanding of the appli-
cation characteristics.

Fig. 4 provides the general architecture of the intelligent
autoscaling Module. The general module workflow steps are
described below:

FIGURE 4. Intelligent autoscaling module system architecture.

1. The system is hosted in the Google cloud cluster.
2. The autonomous autoscaling module is the driver

of the microservices autoscaling workflow, where it starts
with the microservices to be deployed and auto scaled along
with the QoS such as response time.

3. The microservice Docker container is pulled from the
container registry to be deployed as pod.

4. The Kubernetes pod vertical autoscaling is run to get the
recommended resource settings for running the microservice
including CPU and memory.

5. The yaml file for the pod is set up based on the resource
requests.

6. The pod is deployed on the Google cloud cluster, and it
is exposed as a service.

7. Log data at the pod level is collected through Stackdriver
to get the pod response time dynamically. The data is stored,

cleaned, and prepared through DataPrep.
8. Cluster level log data showing the cluster resource con-

sumption for CPU and memory at the pod level is collected
and sent to Big Query dynamically.

9. All log data will be stored, processed, cleaned in the Log
data module.

10. The log data will be fed into the intelligent autoscaling
module that will identify through machine learning models
the right threshold values for autoscaling the pods, includ-
ing target resource, target utilization, the minimum and
maximum number of pods satisfying QoS requirement for
response time.

11. The threshold values are entered into Kubernetes HPA
to auto scale the pod.

12. The cycle repeats from step 7 as more log data will be
analyzed and the threshold values will be adjusted accord-
ingly based on the intelligent module to scale the pods up or
down to satisfy the QoS response time.

C. MACHINE LEARNING FOR MICROSERVICES
AUTOSCALING
Fig. 5 describes the autoscaling model. The autoscaling is
based on two machine learning modules deployed in the
Google cloud cluster. As the system is dynamic in nature,
we include a loop preserving the dynamic nature of microser-
vices and how they can change their resource demand during
deployment. We followed RL design principles where the
system model is separated into sub models. This design will
also help in providing a model where we can simulate the
environment and get a model-based learning that expedites
the learning process for exploitation instead of total explo-
ration once the model is deployed in the real environment.

The firstmodule, vertical resource demand learner (VRDL)
identifies the resource demand for an incoming pod based on
the accumulated log data of the cloud cluster and container.
Our microservices are deployed as Docker containers on
Google Kubernetes Engine (GKE). We send the log data
to Big Query to be worked on. We run a query that looks
at trends of resource request versus consumption. The sec-
ond module, the horizontal reinforcement learning mod-
ule (HRL) is where the dynamic learning is achieved using
reinforcement learning based on trained agents deployed in
the environment to learn the best threshold values for the
HPA parameters. This hybrid approach in machine learning
combines both historical trends and dynamic RL to better
design the system to handle both vertical and horizontal
autoscaling as the microservices can change their dynamics
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FIGURE 5. Machine learning autoscaling modules.

and resource demand as the system is running. Here is a
description of the loop steps:

1. A microservice (pod) first comes in where its resource
requirements need to be determined.

2. Run vertical scaling on the pod in GKE to get the initial
recommended settings for the pod CPU and memory request.

3. Deploy the pod on the cluster, feed the GKE cluster logs
into Big Query.

4. Run a query over log time-series (e.g. 1 hour) in Big
Query to identify the pod trend consumption for resources
and the ratio of consumed versus requested resources. This
step can benefit from historical machine learning for an
incoming pod based on its trend in resource usage or con-
sumption and a new pod will be identified for resource type
scaling. Also, this step will help in vertical autoscaling to
adjust the resource request if needed.

4. Based on the result of step 4, identify the resource
demand for the pod (e.g. CPU or memory).

5. Run the HPA based on identified resource from 4.
6. Collect pods and HPA logs from Stackdriver and run

the horizontal RL agent to identify threshold values for the
maximum number of pods and resource utilization that will
minimize response time.

7. Continue from step 1 as long as the pods are deployed.
Here is the algorithm used in the step function of the

RL agent Environment:
The algorithm represents the autoscaling environment

where the RL agent will get the observation to perform the
needed action. The algorithm starts by getting the current
action from the agent along with the current system state
for the minimum number of pods, the maximum number of
pods, current resource utilization and current pods response
time. We then repeat the autoscaling of pods until one of two
conditions is met, either the current number of pods exceeds
the maximum, or we achieve the target resource utilization.
The algorithm calculates the new number of pods based
on the Kubernetes HPA formula (2):

newPods = ceil (curPods ∗ (curUtil/tgtUtil)) (2)

Input: Current Environment class (Env), current Agent Action
(Act)
Output: Observation (Obs), reward (r), isDone
1: Get current agent action (Act).
2: Get minPods, maxPods, curPods, curutil, curRsp from
current Env.
3: Apply current action Act, maxPods = maxPods + Act
4: done = true
5: While (done)
6: curPods = ceil(curPods ∗ (curUtil / Env.target))
7: if(curPods > maxPods)
8: done = false
9: obs = [minPods,maxPods,curPods,curUtil,curRsp]
10: else
11: collect Pods data for curUtil and curRsp
12: if(curUtil < Env.target)
13: done = false
14: obs=[minPods,maxPods,curPods,curUtil,curRsp]
15: EndIf
16: EndIf
17: EndWhile
18: IsDone = abs(maxPods) > Env.PodsThreshold
19: if isDone = false
20: if curRsp <= Env.SLA
21: Apply set reward r
22: Else
23: if curRsp > Env.SLA
24: Apply set penalty
25: EndIf
26: Else
27: No state change
28: EndIf

where newPods is the new number of pods to deploy for the
autoscaling, curPods is the current number of pods deployed,
curUtil is the current resource utilization value for the pods,
and tgtUtil is the target resource utilization value for the pods.
The scaled pods are deployed, and their resource utiliza-

tion and response time are collected and averaged. We keep
deploying and scaling the new pods for a set maximum
threshold value for the maximum number of pods. The
RL agent will receive a reward based on the current pods’
response time aiming at maximizing the reward as long as
the response time is less than or equal the QoS value.
Here is a description of the action and observation space

for the RL agent:
Observation Space (S):

S = {Pmin,Pmax ,Pcur ,Ucur ,Tcur }

where Pmin is the minimum number of pods, Pmax is the
maximum number of pods, Pcur is the current number of
pods, Ucur is the current resource utilization, Tcur is the
current average response time.
Action Space (A):

A = {Aup,Adown,Ano−change}
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where Aup is the action of increasing the number of pods by a
given factor, Adown is the action of decreasing the number of
pods and Ano−change is taking no action for no state change.

Reward Function (R) is resembled as a constrained opti-
mization function R to maximize the reward:

maxcur,QoS R(Tcur ,TQoS )

Subject to Dif (Tcur ,TQoS ) >= 0

Dif (Tcur ,TQoS ) = TQoS − Tcur (3)

where Tcur is the current average response time, TQoS is the
target QoS response time.

R(Tcur ,TQoS ) = (Tcur <= TQoS ) ? Rreward : Rpenalty

where Rreward is the set reward value and Rpenalty is the set
penalty value.

The complexity of the algorithm can be measured based
on the number of deployed pods (x) where the algorithm
will find the average resource utilization and response time
of the pods. The algorithm loop will stop when we reach
the threshold value max for a maximum number of pods or
achieved the required utilization. This can be represented as
O(n ∗ x) where n is the maximum threshold value for pods.
As for the scalability, our algorithm focuses on scaling the

pods horizontally, meaning adding more replicas for the pod
under heavy load with the goal of keeping the resource uti-
lization close to a target and the average response time below
or equal to a target QoS value. The algorithm is scalable,
where it will scale up the number of replicas per pod based
on those two conditions. Furthermore, as this is a training
phase, the pods cannot go indefinitely, their number and their
replicas are both finite numbers. There is a set maximum
threshold value for the number of pods that can be changed
based on the system demand and available resources. Adding
to the fact that the agent will be deployed on a cloud cluster
where scalability can be achieved at the computing resource
level.

IV. EXPERIMENTAL SETUP
In this section, we briefly describe the experiments performed
for the proposed modules. We based our experiment on a
Twitter analytics disaster management system where disaster
data is extracted from tweets in real time [2], [7]. With
incoming tweets ranging on average 6000 tweets per second,
processing such a huge amount of data to extract useful infor-
mation during a disaster becomes a challenge. The system
consists of multiple microservices as illustrated in fig. 6.
We implemented the microservices as Docker containers in
Python and deployed them as pods on GKE cluster [5]. When
the pod is deployed on GKE, the pods will share the cluster
resources including CPU, memory, and disk. The job of the
HPA is to replicate the pods up or down based on their average
resource utilization.
We measured the average response time for the pods from

the time it received the tweets information to the time it has
processed it. We will use the average response time as the

FIGURE 6. Twitter analytics disaster management system based on the
microservices approach.

metric in our evaluation as wemeasure the performance of the
autoscaling modules. We tested three different microservices
each with different resource demand; tweets preprocessing
which is high on input traffic as it gets the tweets in real time,
and the disaster classification which is high on memory as it
classifies the tweets for relevance. As our microservices are
not high on CPU, we tested the model on a CPU-intensive
microservice that performs heavy mathematical calculations.
We ran multiple experiments on two types of clusters for
over two hours of time. A standard cluster of 3 nodes, 1vcpu
and 3.75G of memory each and another one of 3 nodes,
2vcpu and 3.75Gmemory each were used in the experiments.
Fig. 7 shows the disaster classification pod resource con-
sumption as it was deployed on GKE. We can see that the
pod is high on memory demand compared to CPU.

We tested the microservices under both normal load and
heavy load with 110 maximum pods per node. We enabled
Stackdriver monitoring, GKE usage and consumption logs in
Big Query to send the GKE cluster log data.

For the RL agents, we developed a custom environment to
simulate HPA in Matlab where the data for resource utiliza-
tion and response time was taken from two pods log data for
CPU intensive and memory intensive workloads. As we are
simulating the HPA environment, we added a random factor
on the resource usage and response time to increase the data
set size and to allow the RL more exploration through the
training process. The idea is to create a model locally based
RL agent to allow for faster convergence instead of total open
exploration in a real environment. Once we create model
based RL agents, we will deploy them on real environment
in GKE.

We have created and trained and validated multiple RL
agents in Matlab on our simulated environment for com-
parison and evaluation purposes. We use the average pods
response time as the metric for evaluation to validate the
agents. The average response time value should be below or

VOLUME 9, 2021 35471



A. Abdel Khaleq, I. Ra: Intelligent Autoscaling of Microservices in the Cloud for Real-Time Applications

FIGURE 7. GKE deployment for disaster classification microservice showing the pod is high on memory consumption compared to CPU.

equal to the set QoS one. We chose the agents as our learning
observation space is continuous, and our action space is dis-
crete. We observe different values for the minimum number
of pods, the maximum number of pods, the current number
of pods, current resource utilization, and the current average
response time. The action is increasing or decreasing the
number of pods to achieve the autoscaling. Since our system
has a continuous observation space, storing the observations
and actions in lookup tables is impractical [29]. Based on that
we represented the actor and critic in the agents using deep
neural networks corresponding to the observation and action
space dimensions of five and two, respectively.

Table 2 lists the RL agents used in the experiment.

V. RESULTS AND ANALYSIS
In this section, we present the results of our experiments on
the different modules along with the analysis of the tests.

A. GENERIC AUTOSCALING MODULE
Our goal is to show that autoscaling based on the pod resource
demand enhances the overall response time compared to the
default CPU-based autoscaling. The three different microser-
vices of Tweets preprocessing which is high on traffic I/O,
disaster classification, which is high on memory, and the
CPU intensive mathematical one, were all deployed on GKE
and auto scaled. Running a query to identify the resource
consumption to request ratio on the log data collected in Big
Query over an hour of time shows that the disaster classifi-
cation pod is high on memory usage compared to CPU usage
by a factor of 60%.

For the CPU intensive pod which runs a mathematical cal-
culation that is CPU intensive, running the same experiment
under the same controlled constraints shows that the pod is
high on CPU usage compared tomemory usage by about 48%
factor. Fig. 8 shows our results. This confirms that we can
identify the pod high resource demand in Big Query to be

TABLE 2. RL agents used in Matlab training along with their policy type.

FIGURE 8. Generic pod resource demand identification shows CPU versus
memory intensive pod resource consumption.

used in training our RL agent in the next step of the algorithm.
This module can also be extended and worked on to provide
a mean for vertical autoscaling at the container level, where
once we identify the trends for resource utilization versus
request, we can adjust the container resource request. Since
the scope of this work is focused on horizontal autoscaling
which is the most common and less costly where the number
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of replicas is increasing or decreasing, we defer the vertical
container autoscaling to future work.

After the resource demand is identified, we ran the generic
autoscaling module by customizing the Kubernetes HPA
based on the demand. Our preliminary results of implement-
ing the algorithm on a disaster management system show that
autoscaling a microservice based on its resource demand out-
performs the default Kubernetes CPU-based autoscaling by a
factor of 20% [7]. Table 3 presents the results of the exper-
iment on the three different microservices with three differ-
ent resource demands. Twitter disaster preprocessing which
is high on the number of messages in the queue, disaster
classification which is high on memory and a CPU-intensive
generic microservice. We can see that the autoscaling tailored
based on the microservice resource demand provides better
response time compared to the default CPU-based autoscal-
ing in Kubernetes.

TABLE 3. Average response time from the generic module for different
resource-based microservices compared to default Kubernetes HPA.

B. RL AGENTS AUTOSCALING MODULE
We trained the Matlab RL agents for 1000 max episodes
with 1000 maximum steps and an average reward of 480.
After training the agents, we validated them on the simulated
environment by changing some of the default values with
100 max steps and some revalidated with 1000 steps and
we recorded the lowest response time we got as we noticed
that after a certain time, the response time stabilizes. We will
present our results on both a CPU-intensive microservice and
the memory-intensive one for comparison on autoscaling on
the different resources.We chose those two resources are they
are the most common resources for autoscaling.

1) CPU-INTENSIVE RL AGENT AUTOSCALING
Table 4 provides the results for training the agents on the CPU
intensive pod data. We can see from the results that the agents
were able to minimize the response time below the QoS target
while maintaining a target CPU utilization. The results can
also give us the values for the other autoscaling parameters.

For example, the QValue agent was able to achieve a
response time around 0.045 and a CPU utilization of 2.472 at
385 pods. This response time is below the default QoS set
value of 0.3. These values can be used as parameters for the
Kubernetes HPA.

Table 5 provides the results of validating the agents on
the simulated environment where the default response time is
changed to 0.199. We can see for example, that the Qvalue

TABLE 4. RL agents training on CPU- intensive simulated HPA
environment.

TABLE 5. RL agents validating results for CPU-intensive HPA environment.

agent gave a response time during validation that is close
to the trained one with a value of 0.07 at 494 pods where
the default response time is 0.199 with a standard deviation
of 0.01.

We have compared the CPU utilization and the response
time of the trained agent versus the validation environment.

As for CPU utilization, we can see from Fig. 9 that almost
all the agents when validated got a CPU utilization value that
is less or very close to the training one, and all of them got a
utilization below the default one value of 3.1. Fig. 10 shows
that validating the trained agent gave a response time average
that is lower or close to the training one. Both the trained
and validated agents gave a response time that is less than the
default one of 0.199 with a standard deviation of 0.04.We can
confirm that our RL agents in the simulated environment
can achieve a better CPU utilization and can minimize the
response time below a given set threshold value. In addition,
the maximum number of pods required to get to that response
time is identified.

2) MEMORY-INTENSIVE RL AGENT AUTOSCALING
For the memory intensive microservice, we deployed the
disaster-classification pod, on GKE, which we showed in
our previous work is memory intensive. We increased the
traffic on the service and collected both the memory request
utilization and the response time from Big Query and the
service logs. We have trained the RL agents under the same
constraints as we did for the CPU intensive service using
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FIGURE 9. RL agents achieved pods CPU utilization for CPU intensive
container.

FIGURE 10. RL agents achieved average response time for CPU intensive
container lower than the default.

the retrieved data for the simulated environment. We did
the training on 100 steps then 1000 steps with the reward
function to minimize the response time with a default QoS
value of 1.5, while autoscaling based on memory utilization.
Table 6 shows the results of the training with the average
response time achieved, the memory request utilization and
the HPA threshold values for current pods and the maximum
number of pods. We can see that all the agents achieved a
response time on average that is below the default one with
0.269 standard deviation.

We have then validated the agents on varying default values
of response time,memory utilization, and the number of pods.
We repeated the validation, and we recorded the response
time as it was most stabilized with the current pods and

TABLE 6. RL agents autoscaling training results on memory-intensive
service.

memory utilization. Table 7 Shows the results of the valida-
tion with a standard deviation of 0.296.

TABLE 7. Validation results on RL agents for memory-intensive
autoscaling.

We then made a comparison on the training and validation
results for both the response time and the memory request
utilization as illustrated in Fig. 11 and Fig. 12. We can see
from Fig. 11 that all agents got training and validation results
that are very close confirming that they can be trained to
auto-scale based on memory utilization. As a result, they
achieved a memory utilization that is slightly above the
default target one, which is explained by the fact that our
reward function was based on minimizing the response time
as a main goal. Fig. 12 shows that the response time we got
out of training and validation is maintained to be below the
default QoS one, which is the main goal of this experiment.

The results of this experiment confirm that we can train the
RL agent to auto-scale the pods based on memory utilization
to reduce the response time to be less than or equal the QoS
default set value. In comparison to manually setting those
threshold values in the Kubernetes HPA, the value of the
RL agents is apparent in identifying the autoscaling values
autonomously and in an intelligent way. As an example,
in this experiment, when the QoS response time was 1.5,
we can see that we can train any of the agents to give a
response time less than the default one and we can get the
threshold values of autoscaling for the maximum number of
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FIGURE 11. RL agents achieved pods’ memory utilization for memory
intensive container.

FIGURE 12. RL agents achieved average response time for memory
intensive container below the default one.

pods and memory request utilization that will abide by the
QoS set value.

The tests performed in the experiment are for training the
agents and providing a model based RL training. The tests
are not comprehensive and once we deploy the trained policy
on the real GKE environment, we will gather more data and
perform training in a more comprehensive manner. Initial
outcomes from our experiment show promising results on
being able to identify the scaling values while maintaining
QoS. This satisfies the goal of our algorithm to be able
to deliver those values in an intelligent and autonomous
way.

VI. CONCLUSION AND FUTURE WORK
In this article, we presented a study on autoscaling microser-
vices in the cloud for real-time applications where response
time is the main QoS to be maintained. We first intro-
duced a generic autoscaling model that will identify the
highest resource demand for the microservice to be scaled.
We showed that this generic model could lower the
response time by a factor of 20% compared to the default
Kubernetes HPA. We then presented our intelligent model
based on RL agents to enhance identifying the threshold
values of the autoscaling.

We utilized reinforcement learning for training and validat-
ing agents to auto-scale microservices horizontally based on
resource consumption demand. As the microservices vary in
their resource demand and utilization, their autoscaling needs
to be performed in a smart way with a good understanding of
their behavior.

In this study, we presented our findings on a disaster
management application based on Twitter analytics with
microservices that are memory intensive and others that are
CPU intensive deployed on Google KE. Our findings on a
simulated environment with real log data support the idea of
training and validating RL agents to identify the threshold
values for autoscaling with satisfying the QoS of response
time. Our future work will focus on deploying the RL agents
in the Google cloud and further evaluating and testing at
a larger scale. As the focus of this work is on horizontal
autoscaling, we will also be working on vertical scaling at the
container level, which is more costly, but it is worth inves-
tigating the effect of vertical autoscaling versus horizontal
autoscaling on the QoS such as response time.

Green computing is another important research area where
reducing energy consumption is a main QoS constraint. Our
focus in this study is on response time for real-time sys-
tems performance. As our autoscaling algorithm is generic
in nature, different QoS constraints can be studied includ-
ing workloads energy consumption. That can be another
future research application for our proposed algorithm. More
research can also be done on what resources to deploy on the
cloud edge and how that can affect the system performance.
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