
Received February 4, 2021, accepted February 19, 2021, date of publication February 24, 2021, date of current version March 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3061763

Hardware-Based Evaluation of Scalable and
Resilient Multicast With BIER in P4
DANIEL MERLING , STEFFEN LINDNER , AND MICHAEL MENTH , (Senior Member, IEEE)
Chair of Communication Networks, University of Tuebingen, 72076 Tübingen, Germany

Corresponding author: Daniel Merling (daniel.merling@uni-tuebingen.de)

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant ME2727/1-2. The authors alone are responsible for
the content of this paper.

ABSTRACT Traditional IP multicast (IPMC) maintains state per IPMC group in core devices to distribute
one-to-many traffic along tree-like structures through the network. This limits its scalability because
whenever subscribers of IPMC groups change, forwarding state in the core network needs to be updated.
Bit Index Explicit Replication (BIER) has been proposed by the IETF for efficient transport of IPMC traffic
without the need of IPMC-group-dependent state in core devices. However, legacy devices do not offer the
required features to implement BIER. P4 is a programming language which follows the software-defined
networking (SDN) paradigm. It provides a programmable data plane by programming the packet processing
pipeline of P4 devices. The contribution of this article is threefold. First, we provide a hardware-based
prototype of BIER and BIER fast reroute (BIER-FRR) which leverages packet recirculation. Our target
is the P4-programmable high-performance switching ASIC Tofino; the source code is publicly available.
Second, we perform an experimental evaluation, with regard to failover time and throughput, which shows
that up to 100 Gb/s throughput can be obtained and that failures affect BIER forwarding for less than 1 ms.
However, throughput can decrease if switch-internal packet loss occurs due to missing recirculation capacity.
As a remedy, we add more recirculation capacity by turning physical ports into loopback mode. To quantify
the problem, we derive a prediction model for reduced throughput whose results are in good accordance with
measured values. Third, we provide a provisioning rule for recirculation ports, that is applicable to general
P4 programs, to avoid switch-internal packet loss due to packet recirculation. In a case study we show that
BIER requires only a few such ports under realistic mixes of unicast and multicast traffic.

INDEX TERMS Software-defined networking, P4, bit index explicit replication, multicast, resilience,
scalability.

I. INTRODUCTION
IP multicast (IPMC) has been proposed to efficiently
distribute one-to-many traffic, e.g. for IPTV, multicast
VPN, commercial stock exchange, video services, public
surveillance data distribution, emergency services, teleme-
try, or content-delivery networks, by forwarding only one
packet per link. IPMC traffic is organized in IPMC groups
which are subscribed by hosts. Figure 1 shows the concept
of IPMC. IPMC traffic is forwarded on IPMC-group-specific
distribution trees from the source to all subscribed hosts.
To that end, core routers maintain forwarding state for each
IPMC group to determine the next-hops (NHs) of an IPMC
packet. Scalability issues are threefold. First, a significant

The associate editor coordinating the review of this manuscript and

approving it for publication was Martin Reisslein .

Figure 1. Two multicast distribution trees.

amount of storage is required to keep extensive forwarding
state. Second, when subscribers of an IPMC group change,
the distribution tree needs to be updated by signaling the
changes to core devices. Third, the distribution trees have to

34500 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1377-995X
https://orcid.org/0000-0002-5274-4621
https://orcid.org/0000-0002-3216-1015
https://orcid.org/0000-0003-1606-233X


D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

be updated when the topology changes or a failure is detected.
Therefore, traditional IPMC comes with significant manage-
ment and state overhead. As a result, traditional IPMC is
often avoided andmulticast is implemented on the application
layer. Thereby, one-to-many traffic is carried via network
layer unicast, which is not efficient.

The IETF proposed Bit Index Explicit Replication
(BIER) [1] for efficient transport of IPMC traffic. BIER intro-
duces a BIER domain where core routers do not need tomain-
tain IPMC-group-dependent state. Upon entering the BIER
domain, IPMC packets are equipped with a BIER header
which specifies all destinations of the packet within the
BIER domain. The BIER packets are forwarded through
the BIER domain towards their destinations on paths from
the Interior Gateway Protocol (IGP), which we call ’rout-
ing underlay’ in the following. Thereby, only one packet is
forwarded per link. When the BIER packets leave the BIER
domain, the BIER header is removed.

Unicast and BIER traffic may be affected by failures.
IP-Unicast traffic is often protected by fast reroute (FRR)
mechanisms for IP (IP-FRR). IP-FRR leverages precomputed
backup entries to quickly reroute a packet on a backup
path when the primary NH is unreachable. Tunnel-based
BIER-FRR [2] is used to protect BIER traffic by tunneling
BIER packets through the routing underlay. The tunnel may
be also affected by a failure, but FRR or timely updates of
the forwarding information base (FIB) in the routing underlay
quickly restore connectivity. However, BIER is not supported
by legacy devices and there is no dedicated BIER hardware
available. P4 [3] is a programming language that follows the
software-defined networking (SDN) paradigm for program-
ming protocol-independent packet processors. P4 allows
developers to write high-level programs to define the packet
processing pipeline of programmable network devices.
A target-specific compiler translates the P4 program for exe-
cution on a particular device.With the P4-programmable data
plane new protocols can be implemented and deployed in
short time.

In previous work [2], [4] we implemented BIER
and tunnel-based BIER-FRR for the P4 software switch
bmv2 [5]. However, the developers of the bmv2 clarify that
the ‘BMv2 is not meant to be a production-grade software
switch’ [5] and is, therefore, only a ‘tool for developing,
testing and debugging P4 data planes’ [5]. Thus, it remains
unclear whether BIER and BIER-FRR forwarding is simple
enough to be implemented also on P4-capable hardware
platforms which entail functional and runtime constraints to
achieve high-speed forwarding.

The contribution of this article is threefold. First, we pro-
vide a new prototype for BIER and BIER-FRR on the
P4-programmable switching ASIC Tofino [6] which is used
in the Edgecore Wedge 100BF-32X [7], a 32 100 Gb/s port
high-performance P4 switch, and make our code publicly
available.

Second, we conduct an experimental performance study
with regard to failover time and throughput. The evaluations

show that connectivity can be restored within less than 1 ms
and that a throughput of up to 100 Gb/s can be obtained.
However, we observe reduced throughput under certain con-
ditions and conjecture that this results from switch-internal
packet loss due to missing recirculation capacity. We add
more recirculation capacity by turning physical ports into
loopback mode to avoid switch-internal packet loss in case
of recirculation. To quantify the problem, we derive a predic-
tion model for BIER throughput whose results are in good
accordance with measured values.

Third, we propose a provisioning rule for recirculation
ports to avoid switch-internal packet loss due to packet recir-
culation. It is applicable to general P4 programs and helps
to avoid throughput reduction on outgoing links. Finally,
we utilize the provisioning model to show in a case study that
only a few ports in loopback mode suffice to avoid internal
packet loss with BIER under realistic mixes of unicast and
multicast traffic.

The paper is structured as follows. In Section II we describe
related work. Section III contains a primer on BIER and
tunnel-based BIER-FRR. Afterwards, we give an overview
on P4 in Section IV and explain important properties.
In Section V, we briefly describe the P4 implementation of
BIER and tunnel-based BIER-FRR for the Tofino. Section VI
contains our evaluation and the model for throughput predic-
tion of BIER. In Section VII we present a model to provision
recirculation ports. We conclude the paper in Section VIII.

II. RELATED WORK
First, we describe related work for SDN-based multicast in
general. Then, we review work for BIER-based multicast.
Finally, we present P4 projects that are based on packet
recirculation.

A. SDN-BASED MULTICAST
Elmo [8] increases scalability of traditional IPMC in data
center environments by leveraging characteristics of data
center networks, in particular symmetric topologies and short
paths. By encoding multicast group information in the packet
header, this information is no longer stored in forwarding
devices. This significantly reduces the dynamic state that
needs to be maintained by core nodes.

Two surveys [9], [10] provide a comprehensive overview
of SDN-based multicast. They review the development of
traditional multicast and different aspects of SDN-based mul-
ticast, e.g., building of distribution trees, group management,
and approaches to improve the efficiency of multicast. Most
of the papers in the surveys discuss multicast mechanisms
that are based on explicit IPMC-group-dependent state in core
devices. The downsides of those traditional IPMC approaches
have been discussed in Section I. We still discuss some
papers on IPMC due to their efforts to make traditional
IPMC more efficient. The papers often focus on intelligent
tree building mechanisms that reduce the state, or efficient
signaling techniques when IPMC groups or the topology
changes. The surveys also consider works that utilize SDN to

VOLUME 9, 2021 34501



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

improvemulticast. They are related as our approach also takes
an SDN approach. Therefore, we present some representative
examples from that area.

1) OPTIMIZATION OF MULTICAST TREES
Rückert et al. propose Software-Defined Multicast (SDM)
[11]. SDM is an OpenFlow-based platform that provides
well-managed multicast for over-the-top and overlay-based
live streaming services tailored for P2P-based video stream
delivery. The authors extend SDM in [12] with traffic engi-
neering capabilities. In [13] the authors propose address
translation from the multicast address to the unicast address
of receivers at the last multicast hop in OpenFlow switches.
This reduces the number of IPMC-group-dependent forward-
ing entries in some nodes.

Steiner trees are often used to build multicast distribution
trees [14]. Several papers modify the original Steiner-tree
problem to build distribution trees with minimal cost [15],
number of edges [16], number of branch nodes [17],
delay [18], or for optimal position of the multicast
source [19].

The authors of [20] implement a multicast platform in
OpenFlow with a reduced number of forwarding entries.
It is based on multiple shared trees between different IPMC
groups. The Avalanche Routing Algorithm (AvRA) [21] con-
siders properties of the topology of data center networks to
build trees with optimal utilization of network links. Dual-
StructureMulticast (DuSM) [22] leverages different forward-
ing structures for high-bandwidth and low-bandwidth flows.
This improves scalability and link utilization of SDN-based
data centers. Jia et al. [23] present a way to efficiently
organize forwarding entries based on prime numbers and the
Chinese remainder theorem. This reduces the required state
in forwarding devices and allows more efficient implemen-
tation. In [24] the authors propose a SDN-based multicast
switching system that leverages bloom filters to reduce the
number of TCAM-entries.

2) RESILIENCE FOR TRADITIONAL MULTICAST
Shen et al. [25] modify Steiner trees to include recovery
nodes in the multicast distribution tree. The recovery nodes
cache IPMC traffic temporarily and resend it after recon-
vergence when the destination notified the recovery point
because it did not get all packets due to a failure. The
authors of [26] evaluate several algorithms that generate
node-redundant multicast distribution trees. They analyse the
number of forwarding entries and the effect of node failures.
In [27] the authors propose to deploy primary and backup
multicast trees in SDN networks. The header of multicast
packets contains an ID that identifies the distribution tree on
which the packet is forwarded. When a failure is detected,
the controller reconfigures affected sources to send packets
along a working backup tree. Pfeiffenberger et al. [28] pro-
pose a similar method. Each node that is part of a distribu-
tion tree is the root of a backup tree that does not contain
the unreachable NH but all downstream destinations of the

primary distribution tree. When a node cannot forward a
packet, it reroutes the packet on a backup tree by switching
an VLAN tag in the packet header.

B. BIER-BASED MULTICAST
In this subsection we discuss work directly related to BIER.
First, we define our work in contrast to other implementa-
tions. Then, we describe evaluations and extensions for BIER.

1) IMPLEMENTATIONS
We started with an implementation of BIER for the software
switch bmv2 using P414. The protoype was documented
at high level in a 2-page demo paper [4]. We then devel-
oped BIER-FRR and implemented a prototype for BIER
and BIER-FRR on the software switch bmv2 using the
newer variant P416 in [2]. That work demonstrated that the
P4 language is expressive enough to implement also complex
forwarding mechanisms and introduced a hierarchical con-
troller hierarchy to quickly trigger FRR actions. The study
compared restoration times for various failure cases and pro-
tection schemes at light load conditions of a few packets
per second. Throughput measurements were not conducted
as the bmv2 software switch is only a ‘tool for developing,
testing and debugging P4 data planes’ [5] with low through-
put (900 Mb/s) [29] and not for application in real networks.
In contrast, this paper shows that BIER and BIER FRR can
be implemented also on high-performance P4-programmable
hardware, i.e., the switching ASIC Tofino, which entails
additional functional and runtime constraints for implementa-
tions to achieve high throughput. Experimental measurement
studies in a 100 Gb/s hardware testbed reveal performance
challenges due to recirculations. As this is a general problem
for some P4 programs, we derive recommendations to cope
with them and validate them in our hardware testbed.

We know only a single BIER implementation by other
authors which is based on OpenFlow and presented
in [30], [31]. Their approach suffers from two major short-
comings. First, the BIER bit string is encoded in a MPLS
header which is the only way to encode arbitrary bit strings
in OpenFlow. This limits the bit string length, and thus
the number of receivers, to 20 which is the length of an
MPLS label. Second, the implementation performs an exact
match on the bitstring. If a subscriber changes, thematch does
not work anymore and a local BIER agent that is not part of
the OpenFlow protocol needs to process the packet. There-
fore, we consider this project only as an early BIER-based
prototype for OpenFlow and not as a production-ready
BIER implementation.

2) EVALUATIONS AND EXTENSIONS OF BIER-BASED
MULTICAST
The authors of [32] perform a simulation-based evaluation
of BIER. They find that on metrics like delivery ratios and
retransmissions BIER performs as well as traditional IPMC
but has better link usage and no per-flow or per-group state
in core devices.

34502 VOLUME 9, 2021



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

Eckert et al. [33] propose an extension for BIER that
allows for traffic engineering (BIER-TE). In addition to the
egress nodes, the BIER header encodes the distribution tree
of a packet. In [34] the authors propose 1 + 1 protection
for BIER-TE. The traffic is transported on two disjoint dis-
tribution trees, which delivers the traffic even if one tree is
interrupted by a failure.

C. PACKET RECIRCULATION IN P4
Hauser et al. [35] show in their P4 survey that packet recircu-
lation is not used only in this BIER implementation but also in
other P4 projects. In [36] the authors implement a congestion
control mechanism in P4 and leverage packet recirculation
to create notification packets, update their header fields, and
send them to appropriate monitoring nodes. The authors
of [37] present a content-based publish/subscribe mechanism
in P4 where they introduce a new header stack that requires
packet recirculation for processing. Uddin et al. [38] imple-
ment multi-protocol edge switching for IoT based on P4.
Packet recirculation is used to process packets a second time
after they have been decrypted.

III. BIT INDEX EXPLICIT REPLICATION (BIER)
In this Section we explain BIER. First, we give an overview.
Then we describe the BIER forwarding table and how BIER
packets are processed. Afterwards, we show a forwarding
example. Finally, we review tunnel-based BIER-FRR.

A. BIER OVERVIEW
First, we introduce the BIER domain. Then, we present the
layered BIER architecture followed by the BIER header.
Finally, we describe BIER forwarding.

1) BIER DOMAIN
Figure 2 shows the concept of the BIER domain. When
bit-forwarding ingress routers (BFIRs) receive an IPMC
packet they push a BIER header onto it and forward the
packet into the BIER domain. The BIER header identifies
all destinations of the BIER packet within the BIER domain,
i.e., bit-forwarding egress routers (BFERs). Bit-forwarding
routers (BFRs) forward the BIER packets to all BFERs indi-
cated in its BIER header. Thereby, packets are replicated and

Figure 2. The concept of the BIER domain [39].

forwarded to multiple next-hops (NHs) but only one packet
is sent over any involved link. The paths towards the desti-
nations are provided by the Interior Gateway Protocol (IGP),
i.e., the routing underlay. Therefore, from a specific BFIR to
a specific BFER, the BIER packet follows the same path as
unicast traffic. Finally, BFERs remove the BIER header.

2) THE LAYERED BIER ARCHITECTURE
The BIER architecture consists of three components. The
IPMC layer, the BIER layer and the routing underlay.
Figure 3 shows the three layers, their composition, and inter-
action. The IPMC layer contains the sources and subscribers
of IPMC traffic. The BIER layer acts as a transport layer
for IPMC traffic. It consists of the BIER domain which is
connected to the IPMC layer at the BFIRs, and BFERs.
Therefore, the BIER layer acts as a point-to-multipoint tunnel
from an IPMC source to multiple subscribers. The routing
underlay refers to the IGP which provides the paths to all
destinations within the network.

Figure 3. IPMC packets are transmitted over a layered BIER architecture;
the paths are defined by the information from the routing underlay [39].

3) BIER HEADER
The BIER header contains a bit string to indicate the destina-
tions of a BIER packet. To that end, each BFER is assigned
an unique number that corresponds to a bit position in that
bit string, starting by 1 for the least-significant bit. If a BFER
should receive a copy of the IPMC packet, its bit is activated
in the bit string in the BIER header of the packet. To facilitate
readability we refer to the bit string in the BIER header of a
BIER packet with the term ’BitString’.

4) BIER FORWARDING
A BFR forwards a packet copy to any neighbor over which at
least one destination of the packet indicated by its BitString
is reached according to the paths from the routing underlay.
Before a packet is forwarded to a specific NH, the BFR
clears all bits that correspond to BFERs that are reached via
other NHs from the BitString of that packet. This prevents
duplicates at the BFERs.

VOLUME 9, 2021 34503



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

B. BIFT STRUCTURE
BFRs use the Bit Index Forwarding Table (BIFT) to deter-
mine the NHs of a BIER packet. Table 1 shows the BIFT
of BFR 1 from Figure 4. For each BFER there is one entry
in the BIFT. Entries of the BIFT consist of a NH, and a
so-called F-BM. The F-BM is a bit string similar to the
BitString. It records which BFERs have the same NH. In the
F-BM of an BIFT entry the bits of BFERs are activated which
are reached over the NH of that entry. Therefore, BFERs with
the same NH have the same F-BM. BFRs use the F-BM to
clear bits from the BitString of a packet before it is forwarded
to a NH.

Table 1. BIFT of BFR 1 in the example of Figure 4 [39].

Figure 4. Example of a BIER topology and BitStrings of forwarded BIER
packets [39].

C. BIER PACKET PROCESSING
When a BFR receives a BIER packet, it first stores the Bit-
String of the packet in a separate bit string to account to which
BFERs a packet has to be sent. In the following, we refer to
that bit string with the term ’remaining bits’. The following
procedure is repeated, until the remaining bits contain no
activated bits anymore [1].

The BFR determines the least-significant activated bit in
the remaining bits. The BFER that corresponds to that bit is
used for a lookup in the BIFT. If a matching entry is found,
it results in a NH nh and the F-BM fbm and the BFR creates
a copy of the BIER packet. The BFR uses fbm to clear bits
from the BitString of the packet copy. To that end, the BFR
performs a bitwise AND operation of fbm and the BitString
of the packet copy and writes the result into the BitString of
the packet copy. This procedure is called applying the F-BM.
It leaves only bits of BFERs in the BitString active that are
reached over nh. The packet copy is then forwarded to nh.
Afterwards, the bits of BFERs to which a packets has just
been sent are cleared from the remaining bits. To that end,
the BFR performs a bitwise AND operation of the bitwise
complement of fbmwith the remaining bits. The result is then
stored in the remaining bits.

D. BIER FORWARDING EXAMPLE
Figure 4 shows a topology with four BIER devices where
each is BFIR, BFR, and BFER. Table 1 shows the BIFT
of BFR 1.

BFR 1 receives an IPMC packet from IPMC host 1 which
should be distributed to all other IPMC hosts. Therefore,
BFIR 1 pushes a BIER header with the BitString 1110 to
the IPMC packet.

Then, BFR 1 determines the least-significant activated bit
in the BIER header which corresponds to BFER2. This BFER
is used for lookup in the BIFT, which results in the F-BM
1010 and the NH BFR 2. BFR 1 creates a packet copy and
applies the F-BM to its BitString. Then, the packet copy
with the BitString 1010 is forwarded to BFR 2. Finally,
the activated bits of the F-BM are cleared from the remaining
bits which leaves the bit string 0100.
This leaves only one bit active which identifies BFER 3.

After the F-BM 0100 is applied to the BitString of a packet
copy, it is forwarded to BFR 3 with the BitString 0100.
After clearing the bits of the F-BM from the remaining bits,
processing stops because no active bits remain.

E. TUNNEL-BASED BIER-FRR
Tunnel-based BIER-FRR is used to deliver BIER traffic even
when NHs are unreachable due to link or node failures. When
a BFR detects that a NH is unreachable, e.g., by loss-of-
carrier, loss-of-light, or a bidirectional forwarding detection
(BFD1) [40] for BIER [41], it becomes the point of local
repair (PLR) by tunneling the BIER packet through the rout-
ing underlay to nodes downstream in the BIER distribution
tree. The tunnel may be affected by the failure, too. However,
FRR mechanisms or timely updates of the FIB in the routing
underlay restore connectivity for unicast traffic faster than for
BIER traffic because recomputation of BIER entries can start
only after the FIB of the routing underlay has been updated.
Tunnel-based BIER-FRR can be configured either for link
protection or node protection. BIER-FRRwith link protection
tunnels the BIER packet to the NH where the tunnel header is
removed and the BIER header is processed again. BIER-FRR
with node protection tunnels copies of the BIER packets to all
next-next-hops (NNHs) in the distribution tree.

IV. INTRODUCTION TO P4
In this section we briefly review fundamentals of P4 [3]. First,
we give an short overview of the P4 processing pipeline.
Afterwards, we explain packet cloning and packet recircula-
tion and point out important properties.

A. P4 PIPELINE
In this subsection we review the P4 processing pipeline.
We explain its composition, transient and persistent mem-
ory, match + action tables, control blocks, packet cloning

1When a BFR is established between two nodes, they periodically
exchange notifications about their status.

34504 VOLUME 9, 2021



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

and packet recirculation. Figure 5 shows the concept of the
P4 processing pipeline.

Figure 5. P4 processing pipeline.

1) COMPOSITION
The P4 pipeline consists of an ingress pipeline and an egress
pipeline. They process packets in a similar fashion, i.e., both
contain a parser, a match + action pipeline, and a deparser.
When a packet arrives at the switch, it is first processed
by the ingress pipeline. The header fields of the packet are
parsed and carried along with the packet through the ingress
pipeline. The parser is followed by a match+ action pipeline
which consists of a sequence of conditional statements, table
matches, and primitive operations. Afterwards, the packet is
deparsed and sent to the egress pipeline for further process-
ing. Finally, the packet is sent through the specified egress
port which has to be set in the ingress pipeline and cannot be
changed in the egress pipeline.

The P4 program defines the parser and the deparser,
which allows the use of custom packet headers. In addition,
the P4 program describes the control flow of the match +
action pipeline in the ingress pipeline and egress pipeline,
respectively.

2) CONTROL BLOCKS
Both the ingress and egress pipeline can be divided into
so-called control blocks for structuring. Control blocks are
used to clearly separate functionality for different protocols
like IP, BIER, and Ethernet, i.e., the IP control block con-
tains Match + Action Tables (MATs) and operations that are
applied only to IP packets, etc. In this paper we focus only on
the BIER control block.

3) Match+Action TABLES (MATs)
MATs execute packet-dependent actions by matching packet
header fields against MAT entries. To that end, an entry
contains one or more match fields, and an action set. When
a packet is matched against a MAT, the match fields of
the entries are compared with specified header fields of
the packet. An action set consists of one or more actions,
e.g., reading or writing a header field, mathematical oper-
ations, setting the egress port of the packet, etc. It is not
possible to match a packet on the same MAT multiple
times.

B. PACKET CLONING
The operation clone-ingress-to-egress (CI2E) allows packet
replication in P4. It can be called only in the ingress pipeline.
At the end of the ingress pipeline, a copy of the packet is
created. However, the packet copy resembles the packet that
has been parsed in the beginning of the ingress pipeline,
i.e., the header changes performed during processing in the
ingress pipeline are reverted. This is illustrated in Figure 6.

Figure 6. An example of the clone-ingress-to-egress (CI2E) operation [39].

If an egress port has been provided as a parameter,
the egress port of the clone is set to that port. Both the original
and cloned packet are processed independently in the egress
pipeline. The cloned packet carries a flag to identify it as a
clone.

C. PACKET RECIRCULATION
In this subsectin we explain the packet recirculation opera-
tion. First, we explain its working. Afterwards, we introduce
the term recirculation capacity.

1) FUNCTIONALITY
P4 allows to recirculate a packet for processing it by the
pipeline a second time. We use this feature to implement
the iterative packet processing of BIER as described in
Section III-C as P4 offers no other possibility to implement
processing loops.

P4 leverages a switch-intern recirculation port for packet
recirculation.When a packet should be recirculated, its egress
port has to be set to the recirculation port during processing in
the ingress pipeline. The flow of a packet through the pipeline
when it is recirculated is shown in Figure 7. The packet is still
processed by the entire processing pipeline, i.e., the ingress
pipeline and egress pipeline. However, after the packet has
been deparsed, it is not sent through a regular physical egress
port but pushed back into the switch-intern recirculation port.
The packet is then processed as if it has been received on a
physical port. The recirculation port has the same capacity

Figure 7. A packet is recirculated to a recirculation port and traverses the
ingress and egress pipeline for a second time.

VOLUME 9, 2021 34505



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

as the physical ports. For example, when two physical ports
receive traffic at line rate and each packet is recirculated once,
the recirculation port receives recirculated packets at double
line rate, which causes packet loss.

2) RECIRCULATION CAPACITY
To discuss the effect of packet loss due to many recircula-
tions we introduce the term ’recirculation capacity’. It is the
available capacity to process recirculation traffic. Additional
recirculation capacity is provided by using physical ports
in loopback mode. When the forwarding device switches a
packet to an egress port that is configured as a loopback
port, the packet is immediately placed in the ingress of that
port, instead. The packet is then processed as if it has been
received on that port as usual, i.e., by the parser, the ingress
and egress pipeline, and the deparser. Only traffic that has
to be recirculated is switched to recirculation ports. In the
following the term ’recirculation port’ refers to a physical
port in loopback mode, or the switch-intern recirculation
port. When recirculation ports are required, the switch-intern
recircution port should be used first, before any physical
ports are configured as loopback ports. Only packets that
are recirculated require recirculation capacity, i.e., common
unicast traffic, e.g., as in regular IP unicast forwarding, is not
recirculated, and therefore, does not occupy any recirculation
capacity.

When multiple recirculation ports are deployed to increase
the recirculation capacity, packets that should be recirculated
need to be distributed over these ports. There are different
distribution strategies. We developed a round-robin-based
distribution approach for recirculation traffic to distribute
the load equally over all recirculation ports. We store in
a register which recirculation port receives the next packet
which should be recirculated. When a packet has to be sent
to a recirculation port, that register is accessed and updated
in one atomic operation. This prevents any race conditions
when traffic is distributed. Thus, this distribution strategy
has two advantages. First, if n recirculation ports are used,
the available recirculation capacity is increased to n · linerate.
Second, the equal distribution of recirculation traffic over all
recirculation ports guarantees the full utilization of available
recirculation capacities before packet loss occurs.

V. P4 IMPLEMENTATION OF BIER AND BIER-FRR FOR
TOFINO
In this section we give an overview of the P4 implementation
of BIER and tunnel-based BIER-FRR. First, we discuss the
implementation basis. Afterwards, we give an overview of the
processing of BIER packets, in particular we discuss packet
recirculation.

A. CODEBASE
In [2] we presented a software-based prototype of a P416
implementation of BIER and tunnel-based BIER-FRR for
the P4 software switch bmv2. We provided a very detailed
description of the P4 programs including MATs with match

fields and action parameters, control blocks, and applied
operations. The prototype and the controller are publicly
available on GitHub.2

In this paper we refrain from including a detailed technical
description of the implementation for the Tofino. However,
the source code3 can be accessed by anyone on GitHub.
In the following, we only explain important aspects of the
hardware-based implementation to facilitate the understand-
ing of the evaluation in Section VI and the model derivations
in Section VII.

B. BIER PROCESSING
First, we describe the implementation of regular BIER for-
warding on the Tofino. Afterwards, we explain operation of
tunnel-based BIER-FRR.

1) BIER FORWARDING
Figure 8 shows how a BIER packet is processed once in the
packet processing pipeline.

Figure 8. Paket flow of a BIER packet in the processing pipeline.

When the switch receives a BIER packet it is processed by
the BIER control block. First, the BitString of the packet is
matched against the BIFT which determines the egress port
and the F-BM. The F-BM is applied to the BitString of the
packet and cleared from the remaining bits. If the remaining
bits still contain activated bits, CI2E is called and the egress
port is set to a recirculation port so that the packet will be
processed again. After the ingress pipeline, the copy is created
and both packet instances enter the egress pipeline indepen-
dently of each other. The original packet is sent through an
egress port towards its NH. The packet clone is processed
by a second BIER control block in the egress pipeline which
sets the BitString of the packet copy to the remaining bits.
Since the egress port of the packet clone is a recirculation
port, the packet is recirculated, i.e., it is processed by the
ingress pipeline again.

BIER forwarding removes BIER headers from packets that
leave the BIER domain, and adds IP headers for tunneling
through the routing underlay by tunnel-based BIER-FRR.
Whenever a header is added or removed, the packet is recir-
culated for further processing.

When a BIER packet has more than one NH, two chal-
lenges appear. First, the BitString of a BIER packet has to be

2https://github.com/uni-tue-kn/p4-bier
3https://github.com/uni-tue-kn/p4-bier-tofino

34506 VOLUME 9, 2021



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

matched several times against the BIFT to determine all NHs.
However, matching a packet multiple times against the same
MAT is not possible in P4. Second, multiple packet copies
have to be created for forwarding. However, P4 does not allow
to dynamically generate more than one copy of a packet.
Therefore, we implemented a packet processing behavior
where in each pipeline iteration one packet is forwarded to
a NH and a copy of the packet is recirculated for further
processing. This is repeated until all NHs receive a packet
over which at least one destination of the BIER packet is
reached. Figure 9 shows the processing of a BIER packet
which has to be forwarded to three neighbors. In the first
and second pipeline iteration the original BIER packet is sent
through a physical egress port towards a NH and the copied
BIER packet is recirculated by sending the packet copy to a
recirculation port. In the last iteration when the remaining bits
contain no activated bits anymore, no further packet copy is
required and only the original BIER packet is sent through the
egress port. In total, the packet needs to be recirculated two
times to forward it to all three NHs. Therefore, in general,
a BIER packet with n NHs, has to be recirculated n− 1 times
and the first NH can be served without packet recirculation.

Figure 9. BIER processing over multiple pipeline iterations.

2) FORWARDING WITH TUNNEL-BASED BIER-FRR
The concept of tunnel-based BIER-FRR has been proposed
in [2]. We implement it for the Tofino as follows.

The switch monitors the status of its ports as described in
Section. When the match on the BIFT results in a NH which
is reached by a port that is currently down, the processing
of the BIER packet differs in the following way from the
BIER processing described above. An IP header is added to
the original BIER packet to tunnel the packet through the
routing underlay towards an appropriate node in the BIER
distribution tree. The egress port of the original packet is set
to a recirculation port to process the IP header in another
pipeline iteration, i.e., forward the IP packet to the right NH.

VI. PERFORMANCE EVALUATION OF THE P4-BASED
HARDWARE PROTOTYPE
In this section we perform experiments to evaluate the perfor-
mance of the P4-based hardware prototype for BIER regard-
ing Layer-2 throughput and failover time, i.e., the time until
BIER traffic is successfully delivered after a network failure.

A. FAILOVER TIME FOR BIER TRAFFIC
Here we evaluate the restoration time after a failure in three
scenarios and vary the protection properties of IP and BIER.
First, only the IP FIB and BIER FIB are updated by the
controller, respectively, and no FRR mechanisms are acti-
vated. This process is triggered by a device that detects a
failure. It notifies the controller which computes new for-
warding rules and updates the IP and BIER FIB of affected
devices. This scenario measures the time until the BIER FIB
is updated after a failure, which is our baseline restoration
time. The control plane, i.e., the controller, is directly con-
nected to the P4 switch, which keeps the delay to a minimum
in comparison to networks where the controller is several
hops away.

Second, only BIER-FRR is deployed. In this scenario
BIER is able to utilize tunnel-based BIER-FRR in case of
a failure. However, FRR for IP traffic remains deactivated.
Thus, IP traffic can be forwarded only after the IP FIB is
updated.

Third, both IP-FRR and BIER-FRR are deployed. This
scenario evaluates how quickly the P4 switch can react
to network failures and restore connectivity of BIER and
IP forwarding.

In the following, we first explain the setup and the metric.
Then, we present our results. Finally, we discuss the influence
of the setup on the results.

1) EXPERIMENT SETUP
Figure 10 shows the testbed. The Tofino [6],
a P4-programmable switching ASIC, is at the core of the
hardware testbed. We utilize a Tofino based Edgecore Wedge
100BF-32X [7] switch with 32 100 Gb/s ports. An EXFO
FTB-1 Pro [42] 100 Gb/s traffic generator is connected to the
Tofino to generate a data stream that is as precise as possible.
Furthermore, we deploy two bmv2s that act as BFRs and
BFERs. The traffic generator, the controller and two bmv2s
are connected to the Tofino. The traffic generator sends IPMC
traffic to the Tofino. The IPMC traffic has been subscribed
only by bmv2-1. As long as the link between the Tofino
and bmv2-1 works, the BIER packets are forwarded on the
primary path. When the Tofino detects a failure, it notifies the

Figure 10. Experimental setup for evaluation of restoration time.

VOLUME 9, 2021 34507



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

controller which computes new rules and updates forwarding
entries of affected devices. In the meantime, the Tofino uses
BIER-FRR to protect BIER traffic, and IP-FRR to protect IP
traffic if enabled. This causes the Tofino to forward traffic on
the backup path via bmv2-2 towards bmv2-1.

2) METRIC
We disable the link between the Tofino and bmv2-1 and
measure the time until bmv2-1 receives BIER traffic again.
We evaluate different combinations with and without IP-FRR
and with and without BIER-FRR. To avoid congestion on
the bmv2 and the VMs, the traffic generator sends only
with 100 Mb/s, which has no impact on the results.

Figure 11 shows the average restoration time for the dif-
ferent deployed protection scenarios based on 10 runs which
we discuss in the following. Confidence intervals are given
on the base of a confidence level of 95%.

Figure 11. Restoration time for BIER with different FRR strategies.

3) FAILOVER TIME W/O BIER-FRR AND W/O IP-FRR
When no FRR mechanism is activated, multicast traffic
arrives at the host only after the IP and BIER forwarding rules
have been updated, which takes about 76 ms. The controller
is directly connected to the Tofino. In a real deployment the
controller may be multiple hops away, which would increase
the restoration time significantly.

The same failover time is achieved without BIER-FRR but
with IP-FRR, for which we do not present separate results.
As BIER forwarding entries are updated only after IP for-
warding entries have been updated, the use of IP-FRR in the
network does not shorten the failover time for BIER traffic.

4) FAILOVER TIME W/BIER-FRR BUT W/O IP-FRR
When tunnel-based BIER-FRR but not IP-FRR is activated,
bmv2-1 receives multicast traffic after 36 ms. In case of
a failure, BIER-FRR tunnels the BIER traffic through the
routing underlay. As soon as IP forwarding rules are updated,
multicast traffic arrives at the host again. Since IP rules
are updated faster than BIER rules, BIER-FRR decreases
the restoration time for multicast traffic even if no IP-FRR
mechanism is deployed.

5) FAILOVER TIME W/BIER-FRR AND W/IP-FRR
In the fastest and most resilient deployment both BIER-FRR
and IP-FRR are activated. Then, multicast packets arrive at
the host with virtually no delay after only 0.6 ms. In contrast
to the previous scenario, unicast traffic is rerouted by IP-FRR
which immediately restores connectivity for IP traffic.

6) INFLUENCE OF EXPERIMENTAL SETUP
The experimental setup (see Figure 10) features two
BFERs on the base of bmv2 software switches with rather
low performance compared to the Tofino-based hardware
switch. However, we designed the experiment such that the
low performance of these BFERs has no impact on results.
bmv2 software switches can forward traffic with a rate up
to 900 Mb/s [29]. By limiting the generated traffic rate
to 100 Mb/s, the bmv2 switches forwarding and receiving
BIER traffic are not overloaded so that bmv2-1 is able to
measure correct restoration times. Furthermore, failure detec-
tion and protection switching are only carried out by the
Tofino-based switch in the setup.

We now consider the impact of the hardware hosting the
controller. When the controller is notified about a failure,
it recomputes entries for IP and BIER forwarding tables. The
computation time depends on the performance of the host
and the size of the network in terms of number of nodes.
Thus, the recomputation time may be significantly larger
in larger networks, which increases the restoration time for
BIER without any fast-reroute and for BIER with BIER-FRR
but without IP-FRR. In contrast, the restoration time for BIER
with BIER-FRR and IP-FRR is not impacted by the controller
hardware or network size.

We discuss the impact of the signalling delay between
the failure-detecting node and the controller. This delay was
very low in our setup while it may be significantly larger
in networks with large geographic extension or slow links.
Such signalling delay adds to the restoration time for BIER
without any fast-reroute and for BIER with BIER-FRR but
without IP-FRR. The restoration time for BIER with
BIER-FRR and IP-FRR is not impacted by that delay.

Finally, controller overload may occur when the controller
needs to process too many messages, e.g., in case of a failure.
This again has no impact on the restoration time for BIER
with BIER-FRR and IP-FRR while it has significant impact
on the restoration time for the other two settings.

B. THROUGHPUT FOR BIER TRAFFIC
The P4-based implementation of BIER described in
Section V-B requires recirculation and is limited by the
amount of recirculation capacity. The PSA defines a virtual
port for this purpose. In this section we show the impact
of insufficient recirculation capacity on throughput and the
effect when additional physical recirculation ports, i.e., ports
in loopback mode, are used for recirculation. We validate our
experimental results in Section VI-C based on a theoretical
model.

34508 VOLUME 9, 2021



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

1) EXPERIMENTAL SETUP
The experimental setup is illustrated in Figure 12. A source
node sends IPMC traffic to a BFIR. The BFIR encapsulates
that traffic and sends it to a BFR. The BFR forwards the traffic
to n BFERs which decapsulate the BIER traffic and send it as
normal IPMC traffic to connected subscribers.

Figure 12. Theoretical setup for evaluation of BIER throughput.

The goal of the experiment is to evaluate the forwarding
performance of the BFR depending on the number of NHs.
With nNHs, BIER packets have to be recirculated n−1 times,
and internal packet loss occurs if recirculation capacity does
not suffice. The objective of the experiment is to measure the
BIER throughput depending on the number of recirculation
ports for which only physical loopback ports are utilized in
the experiment. However, the n subscribers may see different
throughput. The first BFER does not see any packet loss while
the last BFER sees most packet loss. Therefore, we measure
the rate of IPMC traffic received on Layer 2 at the last
subscriber.

2) HARDWARE SETUP AND CONFIGURATION
Due to hardware restrictions in our lab, we utilize one
traffic generator, one P4-capable hardware switch, and one
server running multiple P4 software switches to build the
logical setup sketched above. The hardware setup is shown
in Figure 13. The traffic generator is the source of IPMC
traffic and sends traffic to the BFIR. The traffic generator is
also the subscriber of BFER n and measures the throughput
of received IPMC traffic on Layer 2. The hardware switch
acts as BFIR, BFR, and BFER n while BFERs 1 to n− 1 are
deployed as P4 software switches on the server. In addition,
we collapse the BFIR and the BFR in the hardware switch
so that packet forwarding from the BFIR to the BFR is not
needed. Therefore, the traffic generator is the last NH of the
BIER packet when it is processed by the BFR.

Packet recirculation is required after (1) encapsulation to
enable further BIER processing, (2) decapsulation to enable
further IP forwarding, and (3) BIER packet replication to
enable BIER forwarding to additional NHs. We set up the
hardware switch so that all recirculation operations in con-
nection with encapsulation and decapsulation are supported
by two dedicated ports in loopback mode and spend another
k ports in loopback mode to support packet recirculation after
packet replication. This models the competition for recircu-
lation ports on a mere BFR as in the theoretical model.

Figure 13. Hardware setup for evaluation of BIER throughput.

The P4 software switches are bmv2s that run alongside
our controller on VMs on a server with an Intel Xeon Scal-
able Gold 6134 (8x 3.2 GHz) and 4 x 32 GB RAM. The
P4 hardware switch is a Tofino [6] inside an EdgecoreWedge
100BF-32X [7] which is a 100 Gb/s P4-programmable switch
with 32 ports. The traffic generator is an EXFO FTB-1
Pro [42] which generates up to 100 Gb/s. All devices are con-
nected with QSFP28 cables which transmit up to 100 Gb/s.

3) INFLUENCE OF EXPERIMENTAL SETUP
The presented setup contains only a single Tofino-based
switch which is partitioned and utilized as a single BFIR/BFR
and a single BFER. All other BFERs in this setting are soft-
ware switches that support only significantly lower bit rates
(900 Mb/s [29]) than the Tofino-based switch (100 Gb/s).
However, this has no impact on results because we mea-
sure the rate received by the single BFER implemented on
the Tofino-based hardware. Furthermore, packet loss by the
low-performance software switches does not reduce the gen-
erated traffic rate as this is configured as a constant rate on
the generator.

4) BIER THROUGHPUT MEASUREMENTS DEPENDING ON
RECIRCULATION PORTS
The traffic generator sends IPMC traffic at a rate of 100 Gb/s
to the hardware switch, the hardware switch encapsulates
the IPMC traffic, forwards BIER traffic iteratively n-1 times
to bmv2s, recirculates the BIER packet to process the last
activated header bit, decapsulates the traffic as BFER n, and
returns it back to the traffic generator, which measures the
received IPMC rate on Layer-2. We start measuring only
after a 30 seconds initialization phase to avoid any influ-
ences from the startup phase. After 30 seconds, the traf-
fic generator measures for 60 seconds the traffic arriving
from the Tofino and reports the average Layer-2 throughput.
We repeated experiments 10 times and computed confidence
intervals with a confidence level of 95%. Their width was less
than 0.5% of the measured average and, therefore, invisible.

VOLUME 9, 2021 34509



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

Table 2. Model predictions T (i ) for BIER throughput and measured values M(i ) (Gb/s); the latter are the same values as presented in Figure 14.

Therefore, we omit them in future figures and tables for better
readability.

In our experiments, we consider 1, 2, 3, and 4 NHs
and utilize 1, 2, and 3 ports in loopback mode to support
recirculation for BIER forwarding. The results are compiled
in Figure 14.

Figure 14. Measured throughput of BIER and traditional IPMC on
the 100 Gb/s Tofino-based switch for different numbers of NHs and
recirculation ports.

The left-most bar shows that with a single recirculation
port, the last NH receives the full IPMC rate of 100 Gb/s if
1 NH is connected. The second bar from the left shows that
the last NH still receives the full IPMC rate of 100 Gb/s if
2 NHs are connected. For 3 or 4 NHs, i.e., the third and fourth
bar from the left, the IPMC traffic rate received by the last NH
is reduced to 43 and 19 Gb/s, respectively.

With 2 recirculation ports, the last NH does not perceive a
throughput degradation if at most 3 NHs, i.e., fifth to seventh
bar from the left, are connected. For 4 NHs, i.e., eighth bar
from the left, the IPMC traffic rate received by the last NH is
reduced to 50 Gb/s.

And with 3 recirculation ports, even up to 4 NHs, i.e., ninth
to twelfth bar from the left, can be supported without through-
put degradation for the last NH.

Thus our experiments confirm that when multicast traffic
arrives with 100 Gb/s at the Tofino, n-1 recirculation ports are
needed to forward BIER traffic to n NHs without packet loss.
This is different for a realistic multicast portion in the traffic
mix, i.e., a minor fraction instead of 100%.

The hardware switch also supports traditional multicast
in P4. With traditional multicast forwarding, all NHs receive
100 Gb/s regardless of the number of NHs. However, this

comes with all the disadvantages of traditional IPMCwe have
discussed earlier.

C. THROUGHPUT MODEL FOR BIER FORWARDING WITH
INSUFFICIENT RECIRCULATION CAPACITY
We model the throughput of BIER forwarding with insuffi-
cient recirculation capacity and validate the results with the
experimentally measured values.

To forward a BIER packet to nNHs, it has to be recirculated
n − 1 times (see Section V-B). Any time a packet is sent to
a recirculation, the packet is dropped with a certain proba-
bility if insufficient recirculation capacity is available. Due
to the implemented round robin approach (see Section IV-C),
the drop probability p is equal for all recirculation ports.
The drop probability p in a system can be determined
by comparing the available recirculation capacity and
the sustainable recirculation load. The latter results from
recirculations after BIER packet replication and takes
packet loss into account. It is shown in the following
formula.

C ·
n−1∑
m=1

(1− p)m = k · C (1)

The available recirculation capacity is k · C where k is the
number of recirculation ports and C is line capacity. The
sustainable recirculation load is the sum of the successfully
recirculated traffic rates after any number of recirculations.
The traffic amount that has been successfully recirculated
once isC ·(1−p). The traffic amount that has been recirculated
twice is C · (1 − p)2, and so on. Therefore, the total amount
is C ·

∑n−1
m=1(1− p)

m.
We calculate the BIER throughput at any NH, i.e., after any

number of recirculations. At the first NH, the throughput of
the BIER traffic is C because the BIER packet is forwarded
to the first NH before the packet is recirculated the first time.
At the second NH, the BIER throughput is C · (1− p), at the
third NH its C · (1 − p)2, and so on. Therefore, the BIER
throughput T (i) at NH 1 ≤ i ≤ n is:

T (i) = C · (1− p)i−1 (2)

Table 2 shows the throughput predictions T (i). We make
predictions for the same scenarios as we evaluated in the
performance evaluation in Section VI-B4 and compare them
to the measured valuesM (i).

The comparison shows that the model provides reasonable
predictions for the BIER throughput.

34510 VOLUME 9, 2021



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

VII. PROVISIONING RULE FOR RECIRCULATION PORTS
In this section we propose a provisioning rule for recircula-
tion ports. It may be used for general P4-based applications
requiring packet recirculation, not just for BIER forwarding.
We first point out the importance for sufficient recirculation
capacity. Then, we derive a general provisioning rule for
recirculation ports and illustrate how their number depends
on other factors. Finally, we apply that rule to provision the
number of loopback ports for BFRs in the presence of traffic
mixes.

A. IMPACT OF PACKET LOSS DUE TO MISSING
RECIRCULATION CAPACITY
In Section IV-C we briefly discussed projects that leverage
packet recirculation in P4. However, if recirculation capacity
does not suffice and packets need to be recirculated sev-
eral times, packet loss observed at the last stage may be
quite high. We first illustrate this effect. If the packet loss
probability due to missing recirculation capacity is p, then
the overall packet loss probability after n recirculations is
p(n) = 1−(1−p)n. We illustrate this connection in Figure 15,
which utilizes logarithmic scales to better view several orders
of magnitude in packet loss. With only one recirculation,
we obtain a diagonal for the overall packet loss. A fixed
number of recirculations shifts the entire curve upwards, and
with several recirculations like n = 6 or n = 10, the overall
loss probability p(6) or p(10) is an order of magnitude larger
than the packet loss probability p of a single recirculation
step. Therefore, avoiding packet loss due to recirculations
is important. Thus, sufficient recirculation capacity must be
provisioned but overprovisioning is also costly since this
means that entire ports at high speed cannot be utilized for
operational traffic. Therefore, well-informed provisioning of
recirculation ports is an important issue.

Figure 15. Loss probability after multiple recirculations.

B. DERIVATION OF A PROVISIONING RULE FOR
RECIRCULATION PORTS
Wefirst introduce the recirculation factorR and the utilization
ratio U . Then, we use them to derive a provisioning rule for
recirculation ports.

The recirculation factor R is the average number of recir-
culations per packet. Not all packets may be recirculated or
the number how often a packet is recirculated depends on the
particular packet.

The utilization ratio U describes the multiple by which a
recirculation port can be higher utilized than a normal port.
For example, if the average utilization of each normal port
is 10%, then each recirculation port may be operated with
a utilization of 40%, in particular if multiple of them are
utilized. This corresponds to a utilization ratio of U = 4.
We give some rationales for that idea. Normal ports at high
speed are often underutilized in practice because bandwidths
exist only in fixed granularities and usually link speeds are
heavily overprovisioned to avoid upgrades in the near future.
Furthermore, some links operate at lower utilization, others
at higher utilization. Recirculation ports can be utilized to a
higher degree. First, there is no need to keep the utilization of
recirculation ports low for reasons like missing appropriate
lower link speeds as it can be the case for normal ports.
Second, recirculation ports are shared for all recirculation
traffic of a switch so that resulting traffic fluctuations are
lower and the utilization of the ports can be higher than the
one of other ports.

If m incoming ports carry traffic with a recirculation fac-
tor R and a utilization ratio U can be used on the switch, then

m′ =
⌈
m · R
U

⌉
(3)

describes the number of required recirculation ports.

C. ILLUSTRATION OF REQUIRED RECIRCULATION PORTS
For illustration purposes, we consider a P4 switch with
32 physical (external) ports and one virtual (internal) port
in loopback mode for recirculations. If the capacity of that
single virtual recirculation port does not suffice for recircu-
lations, physical ports need to be turned into loopback mode
as well and be used for recirculation. All recirculation ports
are utilized in round-robin manner to ensure equal utilization
among them.

Thus, the number of normal ports m plus the number of
recirculation ports m′ must be at most 33, i.e., 32 physical
ports and 1 virtual port. Therefore, we find the smallest m′

according to Equation 3, so thatm+m′ ≤ 33 while maximiz-
ingm. The number of physical recirculation ports ism′−1 as
the virtual port can also be used for recirculations. Figure 16
shows the number of physical recirculation ports depending
on the recirculation factor R and the utilization ratio U .
Since U depends on the specific use case and traffic mix,
we present results for different values of U . Thereby, R and
U are fractional numbers. While the number of recirculations
for each packet is an integral number, the average number
of recirculations per packet R is fractional. The number of
physical recirculation ports increases with the recirculation
factor R. Due to the fact that both m and m′ are integers,
the number of physical recirculation ports (m − 1) is not
monotonously increasing because for some R and U the sum

VOLUME 9, 2021 34511



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

Figure 16. Number of physical ports in loopback mode.

m+m′ amounts to the maximum 33, and to lower values for
other R and U .

The various curves show that the number of required phys-
ical recirculation ports decreases with increasing utilization
ratio U . With a large recirculation factor R ≥ 3 and a low
utilization Ratio U ≤ 3, half of the ports of the 32 port
switch or even more need to be used for recirculation, which
is expensive. However, with small R < 1 and large U > 3
the number of required physical recirculation ports is low
because most of the traffic does not require packet recircula-
tion, and due to the large utilization ratio U , the recirculation
ports can cover significantly more traffic than normal ports. It
is even possible that no physical recirculation port is needed
if the recirculation capacity of the internal recirculation port
can cover the recirculation load.

D. APPLICATION OF THE PROVISIONING METHOD TO
TRAFFIC MIXES WITH BIER
In this section we make predictions for m′, the number of
recirculation ports, for traffic mixes with typical multicast
portions. We assume different portions of multicast traffic
a ∈ {0.01, 0.025, 0.05, 0.1} and different average numbers
of BIER NHs n ∈ {0, 2, 4, . . . , 16}, i.e., each BIER packet
is recirculated n − 1 times on average. Since unicast traf-
fic is normally processed without recirculation, it does not
need any recirculation capacity, i.e., its amount has no influ-
ence on the number of required recirculation ports and is,
therefore, not considered in this analysis. Then, we calculate
R = a · (n− 1), and assume U = 4. Again, we calculate the
smallestm′, i.e., like in Equation 3, so thatm+m′ ≤ 33 while
maximizingm. Figure 17 shows the number of physical recir-
culation ports depending on the average number of multicast
NHs n and the fraction of multicast traffic a. If the fraction of
multicast traffic is low like 1%, the capacity of the internal
port suffices to serve up to 13 NHs on average. Moderate
fractions of 2.5% multicast traffic require no physical recir-
culation port for up to 5 NHs, 1 physical recirculation port for

Figure 17. Physical ports in loopback mode for traffic mixes with realistic
multicast portions.

up to 11 NHs, and 2 physical recirculation ports for 12 and
more NHs. With 5% multicast traffic, the number of required
physical recirculation ports increases almost linearly from
zero to 5 with an increasing number of NHs. Large fractions
of multicast traffic, like 10%, require up to 8 recirculation
ports if the number of NHs is also large like 16. Under such
conditions, 25% of the physical ports cannot be used for
normal traffic forwarding as they are turned into loopback
mode. However, the assumptions seem rather unlikely as
multicast traffic typically makes up only a small proportion
of the traffic.

VIII. CONCLUSION
The scalability of traditional IPMC is limited because core
devices need to maintain IPMC group-dependent forwarding
state and process lots of control traffic whenever topology or
subscriptions change. Therefore, BIER has been introduced
by the IETF as an efficient transport mechanism for IPMC
traffic. State in BIER core devices does not depend on IPMC
groups, and control traffic is only sent to border nodes, which
increases scalability in comparison to traditional IPMC sig-
nificantly. In addition, there are fast-reroute (FRR) mecha-
nisms for BIER to minimize the effect of network failures.
However, BIER cannot be configured on legacy devices as
it implements a new protocol with a complex forwarding
behavior.

In this paper we demonstrated a P4-based implementation
of BIER with tunnel-based BIER-FRR, IP unicast with FRR,
IP multicast, and Ethernet forwarding. The target platform
is the P4-programmable switching ASIC Tofino which is
used in the Edgecore Wedge 100BF-32X, a 32 100 Gb/s port
high-performance P4 switch.

In an experimental study, we showed that BIER-FRR sig-
nificantly reduces the restoration time after a failure, and in
combination with IP-FRR, the restoration time is reduced
to less than 1 ms. We confirmed that the prototype is able
to forward traffic at a speed up to 100 Gb/s. However,

34512 VOLUME 9, 2021



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

under some conditions, less throughput is achieved when
switch-internal recirculation ports are overloaded. As a rem-
edy, we addedmore recirculation capacity by turning physical
ports into loopback mode. We modelled BIER forwarding,
predicted limited throughput due to missing recirculation
capacity, and validated the results by measured values. Fur-
thermore, we proposed a simple method for provisioning of
physical recirculation ports. The approach was motivated by
BIER, but holds for general P4 programs requiring recircu-
lations. In a case study, we applied it to BIER with differ-
ent mixes of unicast and multicast traffic and showed that
only a few physical recirculation ports suffice under realistic
conditions.

REFERENCES
[1] I. Wijnands. (Nov. 2017). RFC 8279: Multicast Using Bit Index

Explicit Replication (BIER). [Online]. Available: https://datatracker.ietf.
org/doc/rfc8279/

[2] D.Merling, S. Lindner, andM.Menth, ‘‘P4-based implementation of BIER
and BIER-FRR for scalable and resilient multicast,’’ J. Netw. Comput.
Appl., vol. 169, Nov. 2020, Art. no. 102764.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, and
J. Rexford, ‘‘P4: Programming protocol-independent packet processors,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[4] W. Braun, J. Hartmann, and M. Menth, ‘‘Scalable and reliable software-
defined multicast with BIER and P4,’’ in Proc. IFIP/IEEE Symp. Integr.
Netw. Service Manage. (IM), May 2017, pp. 905–906.

[5] P4lang. (2021). behavioral-Model. Accessed: Jan. 28, 2021. [Online].
Available: https://github.com/p4lang/behavioral-model

[6] Edge-Core Networks. (2017). The World’s Fastest & Most Pro-
grammable Networks. [Online]. Available: https://barefootnetworks.com/
resources/worlds-fastest-most-programmable-networks/

[7] Edge-Core Networks. (2019). Wedge100BF-32X/65X Switch. [Online].
Available: https://www.edge-core.com/_upload/images/Wedge100BF-
32X_65X_DS_R05_2019%1210.pdf

[8] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, ‘‘Elmo: Source routed multicast for public clouds,’’ in Proc. ACM
Special Interest Group Data Commun., 2019, pp. 458–471.

[9] S. Islam, N. Muslim, and J. W. Atwood, ‘‘A survey on multicasting in
software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 355–387, 1st Quart., 2018.

[10] Z. AlSaeed, I. Ahmad, and I. Hussain, ‘‘Multicasting in software defined
networks: A comprehensive survey,’’ J. Netw. Comput. Appl., vol. 104,
pp. 61–77, Feb. 2018.

[11] J. Ráckert, J. Blendin, and D. Hausheer, ‘‘Software-defined multicast for
over-the-top and overlay-based live streaming in ISP networks,’’ J. Netw.
Syst. Manage., vol. 23, no. 2, pp. 280–308, Apr. 2015.

[12] J. Ruckert, J. Blendin, R. Hark, and D. Hausheer, ‘‘Flexible, efficient,
and scalable software-defined over-the-top multicast for ISP environments
with DynSdm,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 4,
pp. 754–767, Dec. 2016.

[13] T. Humernbrum, B. Hagedorn, and S. Gorlatch, ‘‘Towards efficient
multicast communication in software-defined networks,’’ in Proc. IEEE
36th Int. Conf. Distrib. Comput. Syst. Workshops (ICDCSW), Jun. 2016,
pp. 106–113.

[14] C. A. S. Oliveira, ‘‘Steiner trees and multicast,’’ Math. Aspects Netw.
Routing Optim., vol. 53, pp. 29–45, Dec. 2011.

[15] L.-H. Huang, H.-J. Hung, C.-C. Lin, and D.-N. Yang, ‘‘Scalable and
bandwidth-efficient multicast for software-defined networks,’’ in Proc.
IEEE Global Commun. Conf., Dec. 2014, pp. 1890–1896.

[16] Z. Hu, D. Guo, J. Xie, and B. Ren, ‘‘Multicast routing with uncertain
sources in software-defined network,’’ in Proc. IEEE/ACM 24th Int. Symp.
Qual. Service (IWQoS), Jun. 2016, pp. 1–6.

[17] S. Zhou, H.Wang, S. Yi, and F. Zhu, ‘‘Cost-efficient and scalable multicast
tree in software defined networking,’’ in Proc. Conf. Algorithms Archit.
Parallel Process., 2015, pp. 562–605.

[18] J.-R. Jiang and S.-Y. Chen, ‘‘Constructing multiple Steiner trees for
software-defined networking multicast,’’ in Proc. 11th Int. Conf. Future
Internet Technol., Jun. 2016, pp. 1–6.

[19] B. Ren, D. Guo, J. Xie, W. Li, B. Yuan, and Y. Liu, ‘‘The packing problem
of uncertain multicasts,’’ Concurrency Comput., Pract. Exper., vol. 29,
no. 16, p. e3985, Aug. 2017.

[20] Y.-D. Lin, Y.-C. Lai, H.-Y. Teng, C.-C. Liao, and Y.-C. Kao, ‘‘Scalable
multicasting with multiple shared trees in software defined networking,’’
J. Netw. Comput. Appl., vol. 78, pp. 125–133, Jan. 2017.

[21] A. Iyer, P. Kumar, and V. Mann, ‘‘Avalanche: Data center multicast using
software defined networking,’’ in Proc. 6th Int. Conf. Commun. Syst. Netw.
(COMSNETS), Jan. 2014, pp. 1–8.

[22] W. Cui and C. Qian, ‘‘Scalable and load-balanced data center multi-
cast,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2014,
pp. 1–6.

[23] W.-K. Jia and L.-C. Wang, ‘‘A unified unicast and multicast rout-
ing and forwarding algorithm for software-defined datacenter net-
works,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 12, pp. 2646–2657,
Dec. 2013.

[24] M. J. Reed, M. Al-Naday, N. Thomos, D. Trossen, and G. Petropoulos,
‘‘Stateless multicast switching in software defined networks,’’ in Proc.
IEEE Int. Conf. Commun., May 2016, pp. 1–7.

[25] S.-H. Shen, L.-H. Huang, D.-N. Yang, andW.-T. Chen, ‘‘Reliable multicast
routing for software-defined networks,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 181–189.

[26] M. Popovic, R. Khalili, and J.-Y. Le Boudec, ‘‘Performance comparison
of node-redundant multicast distribution trees in SDN networks,’’ in Proc.
Int. Conf. Networked Syst. (NetSys), Mar. 2017, pp. 1–8.

[27] D. Kotani, K. Suzuki, and H. Shimonishi, ‘‘A multicast tree management
method supporting fast failure recovery and dynamic group member-
ship changes in OpenFlow networks,’’ J. Inf. Process., vol. 24, no. 2,
pp. 395–406, 2016.

[28] T. Pfeiffenberger, J. L. Du, P. B. Arruda, and A. Anzaloni, ‘‘Reliable and
flexible communications for power systems: Fault-tolerant multicast with
SDN/OpenFlow,’’ in Proc. 7th Int. Conf. New Technol., Mobility Secur.
(NTMS), Jul. 2015, pp. 1–6.

[29] A. Bas. (Jan. 2018). BMv2 Throughput. [Online]. Available: https://github.
com/p4lang/behavioral-model/issues/537#issuecomment-360537441

[30] A. Giorgetti, A. Sgambelluri, F. Paolucci, P. Castoldi, and F. Cugini,
‘‘First demonstration of SDN-based bit index explicit replication (BIER)
multicasting,’’ in Proc. Eur. Conf. Netw. Commun. (EuCNC), Jun. 2017,
pp. 1–6.

[31] A. Giorgetti, A. Sgambelluri, F. Paolucci, N. Sambo, P. Castoldi, and
F. Cugini, ‘‘Bit index explicit replication (BIER) multicasting in transport
networks,’’ in Proc. Int. Conf. Opt. Netw. Design Modeling (ONDM),
May 2017, pp. 1–5.

[32] Y. Desmouceaux and T. Clausen, ‘‘Reliable multicast with BIER,’’
J. Commun. Netw., vol. 20, pp. 182–197, May 2018.

[33] T. Eckert. (Nov. 2017). Traffic Engineering for Bit Index Explicit Replica-
tion BIER-TE. [Online]. Available: http://tools.ietf.org/html/draft-eckert-
bier-te-arch

[34] W. Braun, M. Albert, T. Eckert, and M. Menth, ‘‘Performance compar-
ison of resilience mechanisms for stateless multicast using BIER,’’ in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 230–238.

[35] F. Hauser, M. Haeberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, ‘‘A survey on data plane programming with P4:
Fundamentals, advances, and applied research,’’ 2021, arXiv:2101.10632.
[Online]. Available: https://arxiv.org/abs/2101.10632

[36] J. Geng, J. Yan, and Y. Zhang, ‘‘P4QCN: Congestion control using
P4-capable device in data center networks,’’ Electronics, vol. 8, p. 280,
Mar. 2019.

[37] C. Wernecke, H. Parzyjegla, G. Muhl, P. Danielis, and D. Timmermann,
‘‘Realizing content-based publish/subscribe with P4,’’ in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2018, pp. 1–7.

[38] M. Uddin, S. Mukherjee, H. Chang, and T. V. Lakshman, ‘‘SDN-based
multi-protocol edge switching for IoT service automation,’’ IEEE J. Sel.
Areas Commun., vol. 36, no. 12, pp. 2775–2786, Dec. 2018.

[39] Reprinted from Journal of Network and Computer Applications, vol. 169,
Daniel Merling, Steffen Lindner, Michael Menth, P4-Based Implementa-
tion of BIER and BIER-FRR for Scalable and Resilient Multicast, Elsevier,
Amsterdam, The Netherlands, 2020.

VOLUME 9, 2021 34513



D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

[40] D. Katz. (Jul. 2004). Bidirectional Forwarding Detection (BFD). [Online].
Available: https://datatracker.ietf.org/doc/rfc5880/

[41] Q. Xiong. (Oct. 2017). BIER BFD. [Online]. Available: https://
datatracker.ietf.org/doc/draft-hu-bier-bfd/

[42] EXFO. (2019). FTB-1v2/FTB-1 Pro Platform. [Online]. Available:
https://www.exfo.com/umbraco/surface/file/download/?ni=10900&cn=en-
US&pi=5404

DANIEL MERLING received the master’s degree
from the Chair of Communication Networks of
Prof. Dr. habil. Michael Menth, Eberhard Karls
University, Tübingen, Germany, in 2017, where
he is currently pursuing the Ph.D. degree. His
research interests include software-defined net-
working, scalability, P4, routing and resilience
issues, multicast, and congestion management.

STEFFEN LINDNER received the bachelor’s and
master’s degrees from the Chair of Communica-
tion Networks of Prof. Dr. habil. Michael Menth.
He is currently pursuing the Ph.D. degree with
the Communication Networks Research Group,
Eberhard Karls University, Tübingen, Germany.
His research interests include software-defined
networking, P4, and congestion management.

MICHAEL MENTH (Senior Member, IEEE)
received the Diploma degree from The University
of Texas at Austin, in 1998, the Ph.D. degree
from the University of Ulm, Germany, in 2004,
and the Habilitation degree from the University of
Wuerzburg, Germany, in 2010. He is currently a
Professor with the Department of Computer Sci-
ence, University of Tuebingen, Germany, since
2010, and the Chair Holder of communication net-
works. His research interests include performance

analysis and optimization of communication networks, resilience and routing
issues, resource and congestion management, industrial networking and the
Internet of Things, software-defined networking, and the Internet protocols.

34514 VOLUME 9, 2021


