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ABSTRACT This paper presents a method to restore 3D models created from range sensors. The approach
recovers the 3D information that is lost during the scanning process, usually due to inaccessible zones on
the object (occluded areas and crevices). The raw and incomplete 3D data are first projected onto a grid
to identify the zones to be repaired. Our algorithm calculates a suitable projection plane for each lost area
defined and restores the 2D projected image. Finally, the inverse 2D to 3D transformation is carried out, and
the new 3D data are merged with the initial mesh model, providing the completely restored surface. The
approach has been tested on a database containing a wide variety of models, yielding excellent results. The
experimental section shows that our method works for a large diversity of non-sensed and difficult-to-access
zones and provides precise restorations.

INDEX TERMS Range sensors, polygonal models, mesh repair.

I. INTRODUCTION
The techniques for 3D range data acquisition were first devel-
oped in the early 1970s [1]. Technological advances have
produced more precise systems, with a higher resolution and
greater velocity, in addition to gradually reducing their cost.
This has led to the use of 3D scanners in an increasing number
of applications [2]–[5].

There are several ways in which to classify range sensors,
one of which depends on the distance between the sensor and
the objects to be sensed. In this case, sensors can be classified
as short, medium or long-range. Range is also related to
the size of the objects to be scanned. Short-range sensors
can digitize small and medium-sized objects (in the order of
several tens of centimeters). The most used technologies for
this type of sensors are either structured light [6], [7] or laser
scanners [8]. Medium and long distances are scanned using
phase shift and time of flight laser scanners, which permit the
scanning of large objects and spaces [9].

The two most common types of data representation pro-
vided by these sensors are polygonal meshes and point
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clouds. The main difference between them is that in meshes,
the neighborhood relationships between the points are
known, in addition to the list of the 3D points coordinates.
Usually, these relationships define triangles, which provide a
model of the surface of the object. Although both representa-
tions can be used for the data originated from short, medium
or long-range sensors, the native format for the data provided
by short-range sensors is usually the polygonal mesh, while
the point cloud is the native output format for medium and
long-range sensors.

The information supplied by polygonal meshes is much
richer than that given by point clouds, since they provide
an explicit representation of the surface of the objects. This
has implications in the treatment of meshes that do not
exist in the case of point clouds. Thus, while registration is
a common problem in the two representations that can be
solved by using very similar algorithms such as the classic
‘‘iterative closest point’’ [10], ICP, or some of its variants
[11], the generation of complete and well-defined surfaces is
a question of the polygonal meshes themselves. In this paper,
we propose a fast, robust and efficient method that allows a
complete representation by means of a polygonal mesh of the
surface of an object sensed with a range sensor. The solution
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to this problem may be especially relevant in some areas of
application, such as 3D printing in which a complete closed
model of the object is required.

There are two main reasons why a mesh may lack surface
information. The first is that there has been a loss or an
incorrect redefinition of the mesh, such as the definition of
a missing triangle, during the registration and/or integration
process. This is not a serious problem and the hole is directly
filled regardless of the geometrical information around the
missing zone. The second is lack of geometrical information
owing to occlusions or shadows on objects. In this case, some
holes that are usually larger than in the previous case may
appear, and a more complex technique is required to repair
the mesh.

Moreover, when working with free-form objects in some
detail, there may be holes located on complex surfaces (with,
for example, large variations of curvature), and this makes the
reparation process difficult. It is for this reason that despite
many authors’ attempts to find a solution to this problem,
there is still no general procedure for all possible situations
that may arise. User intervention is usually required to assess
the problem, and there is no automatic algorithm that can
provide a solution. Within the 3D reconstruction process,
mesh repairing processes are currently rather an open topic,
in which the human factor is decisive and which has aroused
great interest from a research point of view.

Therefore, what we propose in this document is a
robust algorithm for repairing holes in 3D models, that is,
a hole-filling algorithm that is valid for any possible config-
uration of the problem: different types of objects and holes,
resolution of the meshes or sizes of holes (A good collection
of criteria to define a robust filling algorithm is proposed in
[12]). To this end, we used a Field of Experts (FoE) model
which is a robust, well-tested procedure that has already
been used in image restoration algorithms with excellent
results [13], [14]. As mentioned, the FoE was developed to be
applied to images, so this work also presents a procedure that
automatically determines the best point of view fromwhich to
project the 3D mesh to generate a depth image to be restored.
A new transformation from 2D to 3D will then be carried out
to obtain the restored mesh. In summary, the pipeline that
is followed, and which will be explained in more detail in
section III, is:

1) 3D to 2D transformation to obtain a depth image.
2) Application of the FoE.
3) 2D to 3D transformation.

As can be deduced from the previous scheme, the depth
image generation procedure (item 1) and the 2D to 3D trans-
formation procedure (item 3), are independent of the image
restoration algorithms that can be used (item 2). Therefore,
the method presented in this work is easily adaptable for
future work in which it is decided to use a pipeline such as
the one proposed.

A preliminary study that showed that the FoE algo-
rithm could be used for filling holes was presented in [15].

However, the procedure of the study was not really functional
since it was not possible to use it in complete 3Dmeshes with
holes, but only in partial views with holes, so the projection
points of view were not determined nor was it possible to fill
complex gaps such as those described in this paper. The 2D
to 3D transformation procedure has also been redone.

The rest of the document is organized as follows: SectionII
reviews previous work in this area. Our method is described
in general terms, listing its various stages, in Section III.
Sections IV to IX provide the details of each of these stages.
Experimentation and results are presented in Section X and,
finally, our conclusions are given in Section XI.

II. RELATED WORKS
A great variety of repairing methods or hole-filling algo-
rithms for 3Dmeshes can be found in the literature. An exten-
sive survey and a comparison is proposed in [16]. In addition,
other interesting reviews are available in the works of [17],
[18] and [19].

There are algorithms in which the input data are the set
of 3D coordinates of the surface points of the object with
no topological information associated. These data enable the
creation of a new representation (mesh, Bezier, implicit func-
tions . . . ) which, by definition, has no holes. For example,
in [20] and [21] the original data are interpolated using alpha
shapes. Similarly, in [22] and [23], crusts are used and in
[24] spheres are utilized in the interpolation. As a drawback,
it must be mentioned that using continuous shapes to inter-
polate causes increased error when the input data is noisy.
To resolve this issue, in [24], the radio of spheres that fill the
holes is also iteratively incremented, smoothing and merging
processes in iteration are applied so as to avoid gaps between
such spheres.

Sets of radial basis functions (RBF) are fitted to point
clouds in [25] and [26]. Basically, they carry out a weighted
sum of RBFs to obtain a new global function, which generates
the whole surface. Another work that also applies RBFs is
[27], where after segmenting the data into 3D uniform grids,
they reconstruct the implicit surface bymeans of a continuous
deformation of an initial surface, following the Partial Differ-
ential Equation (PDE)-based diffusion model. The evolution
of this deformation is driven both by the curvature and the
distance (computed using RBF) from the data set.

The approach in [28] performs the reconstruction of the
surface by applying a B-Spline surface fitting on the point
cloud, using the triangular mesh structure to obtain a good
data parametrization.

In contrast to the aforementioned methods, there are stud-
ies in which mesh repair is independent of the 3D modeling
process, thus allowing more flexible working procedures. For
example, in [29] the authors carry out an unfolding process
of the mesh using an energy minimization process and per-
form the filling in 2D. Mingqiang et al., in [30], propose
an algorithm that is run in three steps. The first step is a
hole triangulation by means of a function that optimizes the
triangulation angle. In the second, a subdivision is iteratively
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applied to make the size of the faces equal to those of the
environment of the hole. Finally, a Laplacian filter is applied
to smooth the surface. Another example is the study in [31],
where after triangulating the hole with the authors’ frontal
advance technique, the new vertices are positioned by the
resolution of Poisson equations (which are based on the
appropriate normals and the hole’s boundary).

The proposal in [32] introduces a method that synthesizes
the missing geometry by using the information from similar
parts of the rest of the mesh. It uses a multi-scale representa-
tion of the mesh, coarse-to-fine, to identify every patch with
a signature. Then, an iterative refination is applied to the
target surface to minimize coherence error. Basically, authors
find the most similar patch and then adjust it to the specific
circumstances of the holes.

In some approaches, some initial specifications are
imposed onto the input, such as those in [33] and [34]. In the
former, the focus is on filling digitized CAD models’ holes.
This method relies on a prior knowledge of the numerical
model, which the authors call nominal mesh, before digi-
tization. Then, the holes are identified and the differences
between the nominal mesh and the digitized point cloud are
calculated. Finally, a deformation is applied to the nomi-
nal mesh by a minimization of deformation energy, so that
the holes are filled. The latter proposal [34] only works on
meshes with strong geometric variations. It handles meshes
with relief patterns (near-regular patterns, irregular patterns
and stochastic patterns). A multiresolution approach is used
to decompose the model into a coarse mesh and a relief mesh.
By applying texture synthesis techniques in [35], the relief is
transferred to the smoothly filled hole of the coarse mesh.

A popular and widely-adopted method for filling holes in
triangular meshes is that presented in [36], which extends the
dynamic programming technique of [37] in order to handle
3D polygons with irregular shapes by adopting a dihedral-
angle-based weighting scheme. Another work that also fol-
lows the programming technique is [38], in which the authors
offer MeshWorks software to carry out various operations
with meshes. Its tools include a hole-filling technique, which
is based on [39]. This technique focuses on filling the holes
with non-trivial boundaries. They apply a geometric hashing
technique to detect and bridge boundary parts with a similar
shape. First, they use a partial curve matching technique in
order to identify matching boundary portions. Then, they
choose and stitch together a consistent set of matched candi-
dates. After this, they initiate the process with the remaining
holes, until the mesh is completely closed. A similar tech-
nique is also used in [40].

Apart from these two types of hole-filling techniques, there
is a great variety of methods which can be considered as a mix
of both types, that is, methods in which the input data is a tri-
angular mesh and where volumetric divisions of point clouds
are computed to obtain the points that make up the filled hole
which is ultimately to be triangulated. Other methods also use
volumetric information to detect meaningful parts that can be
used to repair the mesh.

A valuable example within this type of technique is [41],
which applies the idea of disjointed internal and external
volumes computing an octree grid. The method is divided
into four stages: detection of boundary cycle, patching of
boundary cycle, generation of sign in octree nodes, and recon-
struction of surfaces by contouring. The result is a closed
model where the sharp features are kept from the original
geometry. Authors developed the free software Polymender,
which is useful for repairing polygonal meshes.

Other works that also compute a volumetric division are
those in [42], [43] and [44]. Argudo et al. [42] applies the con-
cept of bi-harmonic fields in order to approximate the signed
distance field on a voxel grid in each hole’s neighborhood.
Conversely, in the proposal in [43], authors copy a smooth
patch from suitably selected valid regions of a surface. They
segment the point cloud with an octree and build a local
implicit approximation of the shape of an octree cell, which
is used as a signature. After selecting the most suitable cell
to fill a hole, they copy part of the surface and apply an
iterative closest point procedure. An extension of this work is
presented in [44], where authors analyze similarities in both
shape and appearance using the information from curvature
and color of the surface patches.

A proposal that uses an implicit function from the
well-known Poisson Reconstruction method ([45]) can be
found in [46]. This interpolation method computes a ‘‘surface
oracle’’ that guides a restricted Delaunay tessellation of the
hole patches.

Finally, in [47], the authors present an algorithm that
re-samples a low-quality digitized polygonal mesh and con-
verts it into a watertight and manifold mesh. Then, it itera-
tively removes growing neighborhoods of undesired portions
and patches the holes, until the mesh is totally fixed.

Our proposal fits in with the second type of procedure
mentioned above, that is, with the mesh repairing process
independent of the 3D modeling process.

III. SKETCH OF THE MESH REPAIR PROPOSAL
Our method begins with the creation of a list containing all
the zones to be repaired. The restoration algorithm is then
applied to one zone at a time. In each of the iterations of the
method, we focus on one of the badly acquired zones or holes,
whose boundaries will be used as the starting seeds to extract
a meaningful portion of mesh to generate a 2D image range.
The suitability of the size of this mesh portion is determined
by both the characteristics of the mesh and the input limita-
tions of the image algorithm. A detailed explanation of these
processes is provided in Section V.

A 3D to 2D transformation is then carried out to obtain the
range image. To do so, it is necessary to choose a reference
plane on which the mesh portion will be projected, and some
specific parameters of that reference planemust be computed,
as described in Section VI.

The range image on which to apply the restoration algo-
rithm is now available, but it must first be corrected to
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FIGURE 1. Main steps of the method. Mh is the initial mesh with holes. The first stage is the image range generation, Ih corresponding to Mh.
In the second stage, an image restoration algorithm is applied to Ih and image If is obtained. Finally, a conversion from 2D to 3D representation is
performed to generate the mesh Mf (shown in red) which is merged with Mh, resulting in M′ .

eliminate any lack of data resulting from the irregularity of
the mesh. This is explained in Section VI-D.

After applying an image restoration algorithm, the inverse
transformation is carried out and the resulting point cloud is
triangulated, as shown in Section VII.
The newly generated mesh portion is ultimately integrated

with the whole mesh, as described in Section IX.
Fig. 1 shows a sketch of the repair method in which the

different steps outlined above are applied to a lion head mesh.

IV. IDENTIFICATION OF BADLY SENSED AREAS
As has been stated previously, to begin the repairing process
it is first necessary to identify the zones to be repaired or
holes, and then determine the boundaries of these holes.
We consider that input meshes in our algorithm are meshes
where every edge is composed of two vertices and is shared
by only two triangles (2-manifold), except for those that are in
the contour of a hole. Taking into account this consideration,
we obtain the boundary of a hole as:

Bρ = {< v1, v2 >, . . . , < vk , vk+1 >, . . . ,

< vP−1, vP >,< vP, v1 >} (1)

The various Bρ are used to define the set of boundaries of
defective areas as Bm = ∪iBρ . Once defined, we proceed to
repair them, one at a time and in an iterative manner. Fig. 2
shows an example of the identification of four defective areas
in a mesh.

V. EXTRACTION OF THE ZONE OF INTEREST
As mentioned above, the input to the restoration algorithm is
a range image containing the zone with the missing data. The

FIGURE 2. Initial identification stage of the hθ (θ = 1, . . . ,m) holes in the
total mesh MT .

algorithm uses the information surrounding the badly sensed
area to infer the information which does not exist. The size of
the area to be projected must be large enough to provide the
necessary information. Its extension is defined by the number
of concentric rings of faces starting from the hole’s boundary,
which we have called the neighborhood degree, υ.

The suitable value of υ was empirically computed after
carrying out experiments on a set of meshes at different reso-
lutions. Fig. 3 depicts one of the meshes used during experi-
mentation, along with the different values of υ. We sought to
find the approximate relationship between the degree of the
neighborhood, the resolution and the area of the portion gen-
erated. The expression obtained, which proved to be useful
with regard to automating our algorithm, is as follows:

υ ≈
Ai

dm (0.106 · κ · Ai + 18)
(2)

where Ai represents the projected area of the i − th hole on
the projection plane, κ is the ratio between the hole size and
the size of valid data in the image (number of pixels 6= 0),
which the restoration algorithm requires to produce adequate
results, and, finally, dm is the average length of the edges of
themesh. The value of κ cannot be computed accurately since
it is determined by the quality of the result obtained with the
restoration algorithm.

FIGURE 3. Neighborhood grade (υ) required to cover a similar area in the
holes of Object 1, Hi (1), depending on the average length of the edges,
dm: (a) H1(1): υ = 8 – dm = 0.3406 mm, (b) H1(1): υ = 11 –
dm = 0.2335 mm, (c) H1(1): υ = 18 – dm = 0.1566 mm, (d) H1(1):
υ = 27 – dm = 0.1043 mm.
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FIGURE 4. Two range images on which the same hole is projected:
(a) Image of 257× 300 pixels, which captures and represents a greater
amount of the surface. The hole represents approximately 4% of pixels
with information, (b) range image of 120× 173 for a smaller mesh,
equivalent to the area marked in red in (a). The hole covers
approximately 12% of pixels in relation to the pixels with information.

FIGURE 5. Selection of mesh portions for each of the holes appearing
in Fig. 2: (a) Zone 1; (b) Zone 2; (c) Zone 3; (d) Zone 4. Different values of
υ were chosen in each situation: υ = 27; υ = 21; υ = 34; υ = 26,
respectively.

As an example, Fig. 4 illustrates the fact that different
extensions of the mesh portion give different rates between
the area of the mesh and the hole projected onto the corre-
sponding range image. In the case of Fig. 4a, the rate between
the number of pixels occupied by the hole and those occupied
by the surface is specifically 4 %, whereas in the second
figure, Fig. 4b, this value increases to 12 %. The value of κ
is conditioned by the performance and quality of the result of
the image restoration algorithm. Since a myriad of possible
situations can arise, the only way to set a specific value of κ
is by means of experiments. We realized that values which
generally provide good results are around κ ≈ 0.15 − 0.20,
and so we decided to set this value at 0.15. Fig. 5 depicts
the portions of meshes extracted for each of the holes shown
in Fig. 2.

At this point, it is worth noting that there may be sur-
face topologies in the vicinity of the hole that can poten-
tially lead to errors in the range image generation, as shown
in Fig. 6.

Upon observing the figures, it is clearly seen that in all
problematic cases the curvature of the surface changes dra-
matically in some zones near the hole boundary. This curva-
ture can be measured in terms of the normals to the faces in
the hole’s neighborhood. Substantial changes in the evolution
of such normals should be detected and avoided.

We introduced this restriction into the selection process for
the zone of interest by developing an algorithm that follows

FIGURE 6. (a), (b), (c) and (d) Influence of topology of the hole’s
surroundings on the error generation in the projection of the mesh
portion. In (a) and (b), the projection line of each node does not intersect
with the mesh itself, but in (c) and (d) it does, and this must be avoided;
(e), (f) and (g) Other similar topologies of the environment of the hole
that may give rise to the same error, (h) Topology with a hole located on a
sharp change in the surface normals.

the steps described below. Let us consider a mesh composed
of a list of vertices V , a list of edgesA, a list of faces T , a list
of normals N , and the hole Bk .

• We start with the boundary of the hole Bk , from which g
nodes that are part of it are extracted:

Bk = {< v1, v2 >,< v2, v3 >, . . . ,

< vg−1, vg >,< vg, v1 >}

(3)
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where vBk = {v1, v2, v3, . . . , vg} is the list of vertices of
the hole Bk .

• The list of normals N ′ defined is, at first, identical to
the list of normals N associated with each vertex of the
mesh. This list is either defined along with the mesh or
is calculated before starting the filling process. We shall
use the N ′ list since it will be dynamically modified
during the execution of the algorithm.

• The list of normals corresponding to the hole boundary
is obtained, N

(
vBk
)
.

• The triangle subset TC , which contains one or two ver-
tices of vBk , is extracted from vBk and T . These triangles
are candidates for inclusion in the mesh portion. The
vertices we shall continue working with (in this case,
the vertices vBk ) are called ’search vertices’.

• The normals of the vertices of each triangle ti ∈ TC
are then analyzed. Each ti is, therefore, composed of
three vertices

{
vBi , p1, p2

}
, one of them being logically

a search vertex (belonging to the hole boundary) and the
other two being candidates. We compare the normals of
the candidate vertices −→np1 and −→np2 with the normal of
the search vertex −→nvBi . This is done by measuring the
angle between these vectors and verifying whether it
exceeds a certain threshold value γ . This condition can
be formulated using the following expression:

−̂→npj
−→nvBi = arctan


∣∣∣−→npj ×−→nvBi ∣∣∣∣∣∣−→npj · −→nvBi ∣∣∣

 > γ (4)

where j = {1,2}.
It is necessary to point out here that a triangle can
be composed of two search vertices and one candidate
vertex. In this situation, two comparisons will be made
between the normal of the candidate vertex and the
normals of the search vertices.

• If the condition is met for any of the candidate vertices,
this triangle is discarded to join the mesh portion. If the
condition is not met, the list of normals N ′ will be
updated by associating a weighted average of its current
normal and the normal of the search vertex with each
point of the accepted triangle. That is, if pj is accepted,
its new normal is:

−→npj
′
=

−→npj + α · υi ·
−→nvBi

2
(5)

where α is a coefficient that provides the search vertex
normal with the greatest weight in the average and υi
is the degree of the neighborhood at that time, that is,
the number of iterations of the process. It is initially 1.
After starting from the boundary of the hole, υi will,
make its normal −→nvBi exert a greater influence on the
search process close to the boundary of the hole, and
it will also ensure that this influence is reduced farther
from the boundary. This means that a great variation
in the surface curvature in the vicinity of the hole will
be not allowed, and the permittivity will increase as we

move away from the boundary of the hole. Therefore,
considering the equation 5, the process is said to be a
diffusion of the boundary normals of the hole.

• After going through the whole TC list, a new mesh por-
tion is obtained by integrating new triangles into that list.
We then detect the boundary of this new portion, Be1,
which will consist wholly or partly of the new search
vertices vbk .

• We continue with the procedure described above with
the new search vertices, repeating it as many times as
indicated by the degree of neighborhood υ.

This procedure of mesh portion extraction differs from the
one which does not consider the normal evolution since,
in this case, a set of triangles will be integrated into the mesh
portion in each search step, and this set does not always form
a ring since there will be areas which do not grow. It is,
therefore, also possible to state that the final mesh portion
will have fewer triangles (less area) than when the initial
procedure was used.

With regard to the coefficients defined for this algorithm,
it has been experimentally proven to work correctly for the
values γ = 75 and α = 3 for the kind of free form
objects used during experimentation. These could be adjusted
if the user finds it more convenient to work with other values
when using other kinds of objects or holes. Fig. 7 shows
various examples of the application of this algorithm during
the extraction of mesh portions. Note the difference between
the application or non-application of the curvature restriction
when extracting the mesh portion. It is worth highlighting the
case shown in Fig. 6d in which the hole itself has a very abrupt
change of curvature. Although it might be assumed that the
algorithm in this situation would limit the expansion of the
mesh portion, the results show that, due to radial diffusion of
the normal, the growth occurs properly.

A particular situation that may occur is shown in
Fig. 7e and 7f, in which a hole appears inside the handle of
the pot. As depicted in Fig. 7f, the normal diffusion algorithm
limits the growth of the mesh along with the handle itself.
However, the mesh portion extends in order to surround the
handle. The result is a final portion which has a hole over
the area in which growth has been limited, as illustrated
in Fig. 7g. This hole will also be represented in the range
image. In this situation, this unexpected hole is interpolated,
as explained in Section VI-B.

At the end of this stage, a surface portion is available
surrounding the hole. This surface provides sufficient infor-
mation to successfully repair the zone. The next step of
our algorithm consists of obtaining the range image of this
extracted portion.

VI. GENERATION OF THE RANGE IMAGE
As is known, a range image is a representation method for
surfaces on which the height information of the 3D points
relative to a point of view or reference plane is coded with a
gray level image. The reference plane is chosen in such a way
that the area of the zone of interest is maximum (Fig. 8).
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FIGURE 7. (a), (b), (c) y (d) Mesh portions obtained by the normal
diffusion algorithm for situations that arise in Fig. 6a, 6c, 6e, 6f and 6h;
(e) Object with a hole inside a handle; (f) Mesh portion after applying the
algorithm to the hole shown in Fig. 7e, and representation of the new
hole, generated after limiting the extension of the mesh portion towards
certain areas.

FIGURE 8. Computation of the orientation of S′ linked to the reference
plane that maximizes the area of Pk , Ak .

The size of the range image defines the rectangular area to
be divided into a grid, whose cells correspond to the pixels in
image Ihi .

The number of cells in the projection grid sets the reso-
lution and the discretization of the projection of Mυi . Thus,
if we choose the width of the grid, denoted as q (mm/pixels),
the image resolution is 1/q(pixels/mm). The value of q will

determine the resolution of the mesh that will be created to
fill or restore the areas with holes. For the resolution of the
mesh before and after applying the hole-filling algorithm to
be similar, we shall define the value of q as:

q = β · dm (6)

where 0 < β ≤ 1 is a proportionality factor and dm is the
mean value of the length of the edges of the mesh before
it is repaired. Experimentally it has been determined that,
β = 0.87 provides good results.

A. TRANSLATION AND SCALING OF RANGE IMAGE
Although the range image can be generated for any value of
the distance between the partial view and the projection plane,
the restoration algorithm used in our proposal is sensitive to
that value. In other words, it is sensitive to the range of values
stored in the image that it has to process. If the distance is
long, the values stored in the range image are high, and more
iterations are needed to restore the image. It is, therefore,
of interest to move the partial view as close as possible to
the reference plane. This can be achieved by performing
two consecutive operations on the mesh: a translation and a
scaling. These operations are applied only in the Z coordinate
of the nodes of the mesh since this is the only coordinate that
affects the relative position of themesh portionwith respect to
the reference plane. It is thus simpler to apply the operations
to the range image, Ih, in such a way that the final range
image, I ′h, will be:

I ′h = (Ih − di) · fesc (7)

where di signifies a translation in min(zi) units or, which is
the same, in min(Ih) units, and, fesc is a scale factor which
normalizes the values of Ih to 1, that is:

fesc =
1

max (Ih −min (Ih))
(8)

These two operationsmust be taken into consideration after
the application of the image inpainting algorithm, at the 2D
to 3D transformation step described in Section VII.

B. INTERPOLATION IN THE RANGE IMAGE
Most of the meshes are not completely uniform in triangle
size, so obtaining a range image with losses is inevitable.
To reduce the effect of this lack of information that the range
image provides the restoration algorithm with, we apply an
interpolation process to the range image, I ′h.

This interpolation of small areas with no data is carried out
with an inward diffusion mechanism, using average values of
the pixels that are in the vicinity of the hole. The interpolation
takes place iteratively, that is, once an area is filled, this
new generated image will be used to fill the next zone. The
criterion employed to undertake the interpolation of all the
areas is the number of pixels they are composed of. We start
by filling those areas containing fewest pixels and finish with
those with the greatest number of pixels. Fig. 9a shows an
example of a range image with some losses or additional
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FIGURE 9. Interpolation of small zones in the range image: (a) Range image with some losses or additional small holes; (b) Detection of
zone to be restored (green); (c) Detection of holes in the range image that may affect the restoration process (blue); (d) Interpolation of
these holes and final range image to which the repair algorithm is applied.

small holes. In Fig. 9b, the external area of the projection of
the mesh portion is colored in red and the hole to be filled is
colored in green, while in Fig. 9c, the holes to be interpolated
are colored in blue. Finally, Fig. 9d shows the range image
after the interpolation process.

A more detailed explanation of this process is as follows:

• Empty areas, λi, are detected in the range image. One
of these areas corresponds to the zone to be repaired,
λh. There may also be another zone, λo, corresponding
to the outside of the mesh portion, which does not have
to be interpolated, signifying that only the areas to be
interpolated are considered: λ′i = λi − {λh, λo}.

• λ′i areas are ordered according to their number of pixels,
in increasing order.

• We now interpolate the list of zones created in the pre-
vious step.

• For a given area λ′k , the pixels to be filled are ordered
according to the number of filled neighbors, in decreas-
ing order. If two of them have an equal number of filled
neighbors, the order will be established according to the
row and column that these pixels occupy in the image.
Theywill thus be ordered in increasing order of rows and
columns. The pixels can, therefore, be denominated as
follows: ρk (ri, ci)ηi , where k is the area containing this
pixel; r and c are the row and column occupied by this
pixel, respectively, and η is the number of filled neigh-
bors. Two consecutive pixels in the list, ρk (rm, cm)ηm

and ρk (rn, cn)ηn , which have the same number of filled
neighbors, will therefore meet this condition:

rm 6 rn
cm 6 cn (9)

with ηm = ηn and m < n.
• We then interpolate the list of pixels created in the
previous step, taking into account that the value to be
assigned to a pixel is given by the following expression:

ρk (ri, ci)ηn = 6
ρneighbor (rj, cj)

ηn
(10)

where ρneighbor 6⊂ λ′k .

FIGURE 10. Representation of two types of holes, depending on the
projection of their boundary on the reference plane: (a) Simple hole: its
projection does not have self-intersections; (b) Complex hole: its
projection results in a polygon with self-intersections.

C. SIMPLE AND COMPLEX HOLES
Two possible circumstances may occur as a result of the
projection of the hole’s boundary on the reference plane. The
first situation is that in which the boundary of the zone to
be repaired becomes a polygon on the plane without any
self-intersection. In this case, the hole is said to be simple.
The second situation is that in which the projection generates
a polygon with self-intersections, whereupon the hole is said
to be complex. Both situations are depicted in Fig. 10.
The occurrence of a simple or complex hole may condition
the continuation of the filling process. More specifically,
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FIGURE 11. (a), (b) y (c) Different views of an elongated hole with a boundary which is complex, (d) Projection of boundary of hole after computing
its orientation.

FIGURE 12. (a) Polygon obtained after the projection of the hole shown in Fig. 11. Two self-intersections are
computed; (b) Intersection points divide the polygon into three subpolygons. Areas are computed and the maximum
is sought; (c) The new boundary will be the subpolygon with maximum area, but is closed by linking the two
subpolygon vertices prior to the intersection point; (d) Obtaining the projection of the boundary of the new hole after
applying the orientation criteria.

if the hole is complex it will be necessary to modify the
general filling process. This modification consists essentially
in dividing the complex hole-filling process into multiple
branches, as many as the number of self-intersections. The
procedure can be schematized in the following steps, which
will be illustrated using Figs. 11, 12 and 13 as an example:
• We have the boundary of a hole, BH , which is projected
onto the chosen reference plane, leading to the polygon
PH . Fig. 11 shows an example of a mesh with an elon-
gated hole. This hole is visible from both sides, right
and left, and from the rear. This is an indication that the
projection onto a plane will be a complex hole.

• The intersections of the edges of the polygon are
checked to discover whether PH has self-intersections.

If not, the filling process continues normally. Otherwise,
if p intersections are detected, the polygon PH is divided
into p+1 subpolygons, PIf , whose joints are the p points
of intersection. Fig. 12a shows the resulting polygon
projection that has two self-intersections.

• The areas of the subpolygons are calculated and the
polygon with the largest area, PSk , is sought. In the case
of the hole in our example, one of the subpolygons has a
considerably larger area than the other two subpolygons,
as shown in Fig. 12b.

• We take all the vertices of PSk except the intersection
points. The polygon is now open in one or two parts;
it is closed directly by joining the open ends. Fig. 12c
represents the zoomed area in which self-intersections
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FIGURE 13. (a), (b) and (c) Some views of the partial filling of the hole
in Fig. 11, after computing the boundary of the new hole in Fig. 12d;
(d) Projection of the boundary of the newly generated hole; (e) Filling of
the boundary of the new hole, which completes the filling of the entire
initial hole.

appear. Note that the boundary of the new hole is closed
using the points of the subpolygon with the greatest area,
which are located before the point of intersection.

• We take the vertices of BH for the polygon that has
just been built, and generate a new boundary BH1 with
which to continue the repairing process. Before proceed-
ing, we must recalculate the orientation plane. Fig. 12d
shows the new projection of the new hole, which has no
self-intersections.

This operation ensures that at the end of the process we
partly fill the hole for BH (see the result for our example
in Fig. 13a, 13b and 13c).We therefore subsequently continue
to fill the remaining part of the hole. The orientation of
the projection plane must be recalculated for this new hole.
After computing this plane, if the hole remains complex,
the procedure is the same as in the previous case, that is,
the hole is subdivided. Otherwise, we continuewith the filling

FIGURE 14. Obtaining the selection mask: (a) Partial view with holes to
be filled selected; (b) range image; (c) selection of areas to fill in the
range image; (d) selection mask.

process as we would do for a simple hole. Fig. 13d shows the
resulting polygon after the projection of the boundary of the
new hole. The final result after filling the entire hole can be
observed in Fig. 13e.

D. APPLICATION OF RESTORATION ALGORITHMS
At this stage, the image inpainting algorithm is applied to
the image Ihi obtained in the step explained in section VI
(Fig. 14). Specifically, we used the Roth and Black [13]
algorithm. This algorithm exploits the idea of image coding
in order to learn the parameters of Markov Random Fields
(MRF). The method employed is FoE and models the proba-
bility of an image in terms of a random field of overlapping
patches whose potential functions are represented as a Prod-
uct of Experts (PoE) [48].

The objective of the PoE is to model the probability of
high-dimensional distribution (image patches) through the
product of several expert distributions, in which each expert
is working on a low dimensional subspace that is easier
to model. The application of a linear filter to an image
patch results in a one-dimensional subspace to be modeled.
The probability density of an image patch can, therefore,
be defined as the product of the distributions produced by the
linear filters.

In general, these algorithms do not automatically select
the pixels on which the filling process should be executed.
The application of the algorithm to the range image, Ihi ,
is therefore limited by a selection mask, Qh. This mask is a
binary image that has the same size as the range image, (n,m)
pixels, and in which the pixels that we intend to fill are active,
as shown in Fig. 14d.

Once the image inpainting algorithm, � : <2 → <2, has
been applied, a restored range image is available:

IR = �(Ihi ,Qh) (11)
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FIGURE 15. Representation of range images taken from the mesh
portions M(υi ) (left) and the range image obtained after application of
the restoration algorithm to holes 1, 2 and 3 in (a), (b) y (c), respectively.

As a result, the initially empty zones corresponding to the
holes in the generated image now store new values, as can be
observed in Fig. 15. It is possible to extract them applying the
aforementioned mask. Their expression is, therefore:

I ′R = Qh ◦ IR (12)

where the operator ◦ represents the element-wise multiplica-
tion between matrices.

VII. 2D TO 3D TRANSFORMATION
In order to achieve the fully repaired mesh, it is necessary to
transform the 2D data obtained from the previous stage into
3D data. It will be necessary only to apply a transformation
to new data that have been generated after the execution of
the restoration algorithm, i.e. to I ′R.
The 2D to 3D transformation results in the 3D coordinates

corresponding to the filled pixels. Concerning the process of
creating the range image, that the value stored in each pixel
corresponds to the distance from the 3D point and whose
orthogonal projection onto the projection plane falls on that
cell or pixel. Consequently, the value that each pixel stores
determines the distance from the 3D point to the image plane.
With respect to the reference system 6′, this corresponds
to the coordinate z′. Coordinates x ′ and y′ will be defined
by the position of that pixel on the image plane. Thus,
if the range image represents values between (xmin, ymin) and
(xmax , ymax), and a resolution of q pixels per millimeter is
chosen, given a pixel (f , k) that stores the value r , the 3D

FIGURE 16. Example of the triangulation of filling points in an image
range: (a) range image; (b) points corresponding to pixels; (c), (d) and
(e) different triangulations between points, taking into account the
neighborhood relations; (f) translating the triangulation to the equivalent
point cloud.

coordinate corresponding to that pixel will be:

(x ′, y′, z′) = (xmin + k · q, ymax − f · q,
r
fesc
+ di) (13)

where fesc is the scale factor applied in equation (7). Note
that in the above equation it has been considered that the
coordinates of the pixels are defined by the row and column
f and k , occupied in the image matrix. It is for this reason
that the coordinate x depends on the second coordinate of the
image plane, k , and coordinate y depends on the first, f .

After calculating all the coordinates, we obtain a
3D point cloud, L ′i , corresponding to the hole that has
been filled. This point cloud is expressed in the coordi-
nate system 6′, attached to the reference plane, and an
inverse transformation T−1 must, therefore, be applied in
order to obtain its representation in the initial reference
system 6i, Li.
The filled surfaces must now be defined by triangulating

this point cloud. Points forming part of hole boundaries,
Bh, will be added to these nodes in order to calculate
the triangulation. Although these points belong to the ini-
tial mesh, MT , they will serve as a joint or sewing line
between the initial mesh with holes, MT , and the filling
mesh, Hc.
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FIGURE 17. Integration of portion meshes that were filled by applying the
restoration algorithm to the whole mesh MT depicted in Fig. 2. Zones 1, 2,
3 and 4 in (a), (b), (c) and (d ), respectively.

VIII. TRIANGULATION
The triangulation process is divided in two: T1, which is
the triangulation of the point cloud Li, and T2 which is
the triangulation between points on the mesh boundary Hi,
denominated as B1i , and those of the boundary of hole hi,
denominated as BHi (which belong toMT ).
It is possible to generate triangulation T1 easily by tak-

ing into account the origin of each Li point. Since these
points were obtained after a 2D to 3D transformation from
the restored pixels in the image, this triangulation can be
built by establishing a connection based on the neighborhood
relations in the image. This signifies that, if we start from a
restored pixel p(f ,c), located in row r and column c, its eight
neighbors are:

ℵ8(p(f ,c)) = {p(f−1,c−1), p(f−1,c),

p(f−1,c+1), p(f ,c−1), p(f ,c+1),

p(f+1,c−1), p(f+1,c), p(f+1,c+1)} (14)

FIGURE 18. Set of twenty meshes with artificially generated holes that
were used to test our algorithm.

If we denote v(p(f ,c)) as the point equivalent to that pixel
p(f ,c), once the transformation has been carried out, the trian-
gulation of the point group corresponding to the neighbors of
p(f ,c) along with v(p(f ,c)), is generated as follows:

T (ℵ8(p(f ,c)) ∪ p(f ,c))

=



v(p(f−1,c−1)) v(p(f ,c−1)) v(p(f−1,c))
v(p(f−1,c)) v(p(f ,c−1)) v(p(f ,c))
v(p(f ,−1c)) v(p(f ,c)) v(p(f−1,c+1))
v(p(f−1,c+1)) v(p(f ,c)) v(p(f ,c+1))
v(p(f ,c−1)) v(p(f+1,c−1)) v(p(f ,c))
v(p(f ,c)) v(p(f+1,c−1)) v(p(f+1,c))
v(p(f ,c)) v(p(f+1,c)) v(p(f ,c+1))
v(p(f ,c+1)) v(p(f+1,c)) v(p(f+1,c+1))


(15)

Taking into account the neighborhood relations in the
image, the triangulation is built by creating edges between
the points whose pixels have a horizontal or vertical neigh-
borhood. If these connections are projected onto the image
plane, we attain a regular grid. It is then necessary to create
unions corresponding to the diagonals of the grid. Only one of
the two possible diagonals must be chosen to split the square
into two triangles. Different triangulations will be obtained
depending on the diagonals chosen. Therefore, it is advisable
to establish a criterion to choose the same direction for all
diagonals.

Fig. 16 shows an example of T1 triangulation. Figs. 16c,
16d and 16e depict the triangulation of various possibili-
ties depending on the orientation of the diagonals. Finally,
as shown in Fig. 16f, the triangulation established for the
image points is translated to the point cloud Li.
With regard to triangulation T2, it is computed for the point

cloud B1i ∪BHi . In this situation, there is no prior knowledge
of the relations between the points as in T1. The method
employed to perform this triangulation is that proposed in
[49]. This method, which is based on the Delaunay triangu-
lation ( [50]) and has been extended to 2.5 D, starts from an
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FIGURE 19. Results of the application of the hole-filling algorithm.

initial triangle that acts as the seed of the process from which
the triangulation is extended to the whole point cloud.

IX. INTEGRATION OF MESH PORTIONS
For the integration of the filled mesh, the tuple that character-
izes themesh portion corresponding to the hole hi, {Vi,Ai,Ti},
will be attached to the tuple of the whole mesh MT , which
results in the tuple in 16, that representsM ′T .{[

V T
V i

]
,

[
A T
A i

]
,

[
T T
T i

]}
(16)

The new global mesh M ′T will be used in the next itera-
tion to fill the next hole hi+1. It is particularly important to
ensure that the parts belonging to the original mesh and those
which have been artificially generated during the restoration
process are always identified. To do this, we have defined the
’restoration Matrix’, Mρ, which has three columns and the
same number of rows as processed holes. Cardinal of vertices,
edges and triangles sets that are being added at each iteration
of the process are stored in the three columns:

Mρ =


card ( V T ) card ( A T ) card ( T T )

card ( V 1) card ( A 1) card ( T 1)

card ( V 2) card ( A 2) card ( T 2)
...

...
...

card ( V m) card ( A m) card ( T m)

 (17)

Fig. 17 shows an example of the triangulation and integra-
tion of four zones (a), (b), (c) and (d), of the mesh shown
in Fig. 2. The filling process is executed iteratively with
the aim of generating the filling meshes for all the holes hi
that were initially detected. Upon completion, and to ensure
that a closed mesh is obtained, the hole-detection process is
executed again, since it is possible that, due to the various
sub-processes of the method, some holes may be generated.

Once the mesh has been filled, a global remeshing can be
applied to ensure a uniform distribution of the resulting mesh.

X. EXPERIMENTAL RESULTS
To experimentally validate the hole-filling method proposed
in this paper, several tests were performed. The algorithms

were programmed in Matlab, running on an Intel i7-3770
3.4 GHz PC with 8 GB of RAM.

Twenty manifold and closed 3D meshes were used
(Fig. 18). Some of them belong to the AIM @ SHAPE
repository [51] and the rest were obtained by our research
group with a Minolta VIVID laser scanner. The selected set
of meshes is composed by a great variety of free form objects
whose surfaces do not have deep crevices or handles that
could give rise to hidden holes not seen from the outside.
In each of the 3D models, some holes were artificially gen-
erated (from 2 in mesh 8 to 8 in mesh 5). The total number
of holes is 83. These holes are of different shapes and sizes
and they are on surfaces with a varied topology. The holes
were placed in areas with different degrees of curvature and,
in some cases, in areas with linear features. Fig. 18 also
shows the holes that were created. Next, we will show the
qualitative results of applying the hole-filling algorithm to the
meshes indicated above in sub-section X-A. In sub-section X-
B, a quantitative comparison between the results obtained
with the algorithm proposed in this work and the results
obtained with other algorithms will be made.

A. RESULTS OF THE HOLE-FILLING METHOD
The results of applying our hole-filling algorithm to all the
meshes of Fig. 18 are showed in Fig. 19. Some interesting
results are discussed in detail below. Fig. 20a shows mesh 13,
which presents a hole located in an inner zone or slit. This is a
type of region inwhich holes usually appear in the digitization
of meshes. Due to the fact that the proposed method is based
on the projection of a part of the 3D mesh on a plane, these
holes, in areas of high curvature surface, would theoretically
be difficult to fill. However, Fig. 20b shows that the algorithm
fills this type of hole without problems.

Another interesting case is the one presented in mesh 11
(Fig. 20i). It might seem that it is necessary for there to be a
large area around the hole for the filling to be correct. How-
ever, as can be seen in Fig. 20j, the algorithm can reconstruct
the surface satisfactorily.

In general, zones with geometric or curvature discontinu-
ities are zones where hole-filling algorithms generate worse
results. Figs. 20c and 20d show mesh 15 before and after
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FIGURE 20. Details of the results after the application of the hole-filling
algorithm to several meshes.

applying our proposal. As is clear, the result of our algorithm
is also quite good in this type of zone.

Another outstanding feature of our hole-filling proce-
dure is the ability to follow linear structures (for exam-
ple, an eyebrow on a face or the edge of a polyhedron),
as occurs in the upper part of mesh 15, previously analyzed
(Figs. 20c and 20d). A similar example occurs in mesh 18,
shown in Figs. 20k and 20l.

FIGURE 21. Restoration of the 3D models of the Aeneas sculptures from
the National Museum of Roman Art (Mérida, Spain) after the appearance
of various holes in the scanning process.

Conversely, for cases of repeated non-linear structures in a
mesh, this method does not provide satisfactory results. This
is a common situation for non-exemplar based hole-filling
algorithms (e.g. [43]), such as our proposal. An example can
be seen in Figs. 20g and 20h.

In addition, our method was applied to various meshes
obtained after the digitization of sculptures at the National
Museum of Roman Art in Mérida (Spain), where holes
appeared owing to some limitations or errors in the acqui-
sition process. Fig. 21 shows the results obtained for one of
the sculptures.

B. COMPARISON WITH OTHER APPROACHES
In order to validate the proposed hole-filling method,
we compared our results with those provided by three widely
used algorithms: Liepa’s method [36], Ju’s method [41] and
Wang’s method [38]. All these methods are currently being
used in different 3D mesh processing software. Specifically,
Liepa’s method is used in MeshLab [52] and ReMESH [53]
(we have used the former, in muchmore common use than the
latter); Ju’s method is used in PolyMender [54]; and finally,
Wang’s method is used in MeshWorks [55].

A comparison is made to analyze two aspects: error
between ground truth and the portion of mesh generated by
each method, and the resolution of the 3D models before and
after applying the filling algorithms.

Error between the solution proposed by each method and
ground truth is measured by calculating the Hausdorff dis-
tance [56] between them. As ground truth we consider the
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FIGURE 22. Effectiveness ranking by classes for (a) our method, (b) Liepa’s method, (c) Ju’s method and (d) Wang’s method.

portions of the mesh removed from the 3D models to create
the artificial holes. Tables 1 and 2 show all this information.

We also determined the effectiveness of the four algo-
rithms when filling the 83 holes under test. This effective-
ness is obtained by ordering the errors computed for the
four methods in each hole. This results in a vector of 83
elements associated to each method, whose i − th element
∈ 1, 2, 3, 4 represents the position obtained by the method
when filling the i−th hole. The first positionmeans the lowest
error and the fourth position the highest one. Effectiveness is
then ranked by calculating the percentage of times that each
method achieves each position. Table 3 shows the effective-
ness ranking obtained in terms of Hausdorff distance. As can
be seen, our method is in first place in 71.08 % of the cases
and in second place in the remaining cases.

The next analysis performed is related to the sizes of the
holes. This is important because a filling method must be able
to fill holes of any size to be considered robust. As a first step,
the Pearson correlation coefficient (PCC), ρdH ,a, between the
vector of Hausdorff distances, dH , and the areas of the holes,

a, was determined. The closer to 1 ρdH ,a, the greater the posi-
tive linear relationship between the analyzed variables. If the
value is close to 0, there will be no relation between them.
As can be seen in Table 4, the method with the lowest ρdH ,a
value is ours. This means that, although there is a positive
relationship between the variables (the greater the area of the
hole, the greater the Hausdorff distance), our method is the
most robust of the four analyzed, since its performance is
the least affected by the sizes of the holes.

To confirm the robustness of the proposed method, a more
in-depth analysis of the influence of holes size on the final
result was carried out. We defined 10 evenly spaced classes
from the smallest to the largest hole area. The effectiveness
ranking of each class was then determined. The results are
shown in Table 5 and in Fig. 22.
The effectiveness of each class is represented (in %) with

a color code against the area associated with each class
(in mm2). From analysis of the data, we can conclude that
ours is the algorithm with the best behavior for all the
classes. In addition, for the largest holes (from 115.7mm2),
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TABLE 1. Hausdorff distance for all the holes of the 3D meshes
in Figs. 18 and 19. The lower the value, the better the result.

our approach always provides the best results. All of this
corroborates the fact that the robustness of our proposal sur-
passes that of the rest of the methods analyzed. The method

TABLE 2. Hausdorff distance for all the holes of the 3D meshes
in Figs. 18 and 19 (Cont.). The lower the value, the better the result.

TABLE 3. Effectiveness ranking percentages. The higher the value,
the better the result.

TABLE 4. Pearson correlation coefficients (PCC). The lower the value,
the better the result.

that follows ours in the ranking is Ju’s, which is in second
position in most of the classes. This is followed by Liepa’s
method. At the end of the ranking is Wang’s method.

As mentioned in Section I, robustness in a hole-filling
algorithmmeans that it must be valid for any configuration of
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TABLE 5. Effectiveness ranking by classes. The higher the value,
the better the result.

TABLE 6. Number and percentages of holes belonging to each of the
established categories to compare the performance of all methods after
the curvature analysis.

the problem, that is, it should fill holes of different sizes and
different types of 3D objects. To validate the robustness of
the algorithms when filling any type of 3D free form objects,
we propose to analyze the curvature of the surfaces where
the holes are located, specifically the maximum curvature.
After this analysis, we provide two different classifications of
holes. On the one hand, we establish a division of three ranges
in the variations of curvature. Thus, we distinguish between
holes located in areas with low (e.g. some holes in meshes 1,
13,. . . - Fig. 23a), medium (e.g. some holes in meshes 2, 8,
11, 17,. . . - Fig. 23b) and high maximum curvature (e.g. some
holes in meshes 4, 7, 8, 18,. . . - Fig. 23c). Table 6 shows the
number and percentages of holes belonging to each of those
categories. On the other hand, with this analysis some linear

FIGURE 23. Example of representation of the maximum curvature
analysis for meshes with holes belonging to the three established ranges:
mesh 1 (hole in low curvature area), mesh 5 (holes in medium curvature
area) and mesh 16 (holes in high curvature areas).

FIGURE 24. Example of representation of the maximum curvature
analysis where some paths can be traced by following similar
colors (values) on the curvature map. These paths correspond to linear
features of the mesh and are marked with a white dashed line:
(a) mesh 2; (b) mesh 15 and; (c) mesh 18.

features of the meshes can be easily detected by grouping
areas of extreme values of curvature, such as, for example,
the mouth in mesh 4, the limits between basis or caps in mesh
7, morphological characteristics of faces inmeshes 15 and 19,
abrupt changes of surface in mesh 16. Therefore, the second
classification distinguishes between holes located in areas
with and without linear features. Specifically, this is the case
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FIGURE 25. Classification of performances of all methods when filling holes located in high, medium and low curvature areas
and when filling holes located in areas with linear features: (a) our method, (b) Liepa’s method, (c) Ju’s method and (d) Wang’s
method.

in 47% of the set of 83 holes in our study. Some meshes with
some linear features are represented in Fig. 24.

Following the analysis of the results, the performance of
our method stands out among the others. Concerning the cur-
vature ranges, our method achieved first position when filling
68%, 79% and 78% of holes with low, medium and high
curvatures, respectively. The second position percentages for
our method are 32%, 21% and 22%. As for the performance
of our method with holes in areas with linear features, it is
remarkable that it achieves first position when filling 92% of
this type of holes. Fig. 25 summarizes the performance of the
four methods in both types of classifications described above.

The second aspect to be analyzed, as stated at the beginning
of the section, concerns the resolution of the model. Of the
methods analyzed in this section, Liepa’s, Wang’s and ours
are independent of the modeling process (see section III), that
is, the mesh generated to repair the hole is integrated into the
original 3D model. In the case of Ju’s method, the mesh is
completely rebuilt from a volumetric grid on the original data,
so the resolution of the final mesh will be constant. For the
other three methods, this does not happen. We analyzed this
aspect and the results are in Table 7. In this table, column
1 is for the mesh number; column 2 shows the mean edge
value for the original mesh, do; columns 3, 5 and 7 have the

TABLE 7. Study of the resolution of the original models and the meshes
obtained by the different algorithms to fill the holes.

mean edges for the portions of meshes generated by each of
the three methods, dh; and columns 4, 6 and 8 show the ratio
between these two mean edge values, r = dh/do. Thus, r
greater than 1means that the resolution of the mesh generated
to fill the hole is lower than the resolution of the original
mesh. The closer to 1 this ration is, the better the mesh
obtained.
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TABLE 8. Mean ratio between the mean edges for the portion of meshes
and the mean edge value for the original mesh for each of the methods
(r = dh/do). The closer to 1, the better the result.

As shown in Table 8, our method presents the mean ratio
value closest to 1, meaning that the meshes obtained with it
are more similar to the original meshes than those offered by
the other methods.

Although all methods are sensitive to the resolution of
the input mesh, we observed that Liepa’s and Wang’s were
affected to amuch greater extent by this parameter. Therefore,
considering the set meshes of our study, these two methods
only carry out a triangulation of the nodes of the holes’
boundaries, when filling the lower resolution meshes of the
set. However, Ju’s method (for the reasons stated above) and
our’s always insert a mesh portion (with additional points
besides the boundary points) to fill every hole.

XI. CONCLUSION
This paper presents an original method to restore incomplete
3D mesh models. The algorithm presented is based on the
use of image restoration techniques, traditionally applied to
photographs, and adapted here to 3D data. To do so, we first
developed a process to optimize the conversion of 3D data
to an image format. An inpainting algorithm is then applied
to the image. Finally, the inverse 2D to 3D transformation is
performed to achieve filling of the hole.

We present the results offered by our method when filling
a set of twenty meshes. These results provide proof of good
performance and robustness for a great variety of hole sizes
and configurations. Its ability to fill holes in corners and areas
with abrupt changes of curvature is noteworthy. Additionally,
the algorithm also responds correctly in linear structures that
appear on surface linear patterns.

We compared our results with those obtained after applying
three different popular restoration algorithms. This compari-
son was made taking into account two aspects: error between
ground truth and the portion of mesh generated by each
method, and the ratio between the resolution of these portions
before and after applying the filling algorithms.

It has been demonstrated that our method produces the
lowest errors inmost of the holes filled and that is the onewith
the best behavior on increasing the areas of the holes. It has
also been shown that the resolution of the meshes generated
by our proposal are the most similar to the original ones.

For future works, we plan to apply our proposed method to
other areas of interest such as medical imaging or microscopy
where, due to physical or technological restrictions, it almost
impossible to directly obtain 3D models without gaps or
holes, and, as such, the hole-filling techniques are very help-
ful to generate a complete 3D model. Furthermore, another
novel area where this method could be applied is in 3D

printing where a closed 3D model is required as input to the
3D printing system.
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