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ABSTRACT The hyperspectral remote sensing images are classified by traditional neural networks methods
can achieve promising performance, but only operate on regular square regions with fixed. This will
lead to between neighborhood pixels have limitations in achieve long-distances joint interaction modeling
and cross-spacetime information flow for capturing complex spatial-temporal dependencies. Meanwhile
ignoring importance detail information and improved utilization of irrelevant information. In the work,
we propose a stack attention-pruningmultiscale aggregates graph convolution framework (SAP-MAGACN).
The framework can automatically learn and selectively attend to the relevant subspace structure by stack
attention-pruning module, can effectively disentangle the complex space structure of remote sensing
images and capture the rich structural semantics. Meanwhile a refine graph of neighborhood pixels are
constructures. Then we adopt the aggregation manner for multiscale graph convolution of pixels nodes
in different neighborhood for effective long-range joint interaction modeling. Finally, we leverage dense
cross-spacetime edges to completion propagation of multiscale spatial-temporal information, and gradually
produce the discriminative embedded features and effectively distinguish the categories of boundary pixels.
The experimental results shown the propose SAP-MAGCN outperformance all others state-of-the-art
methods on Indian Pines and Salinas public benchmark datasets. Such as the OA, AA and Kappa of our
propose SAP-MAGCN frameworks is 96.75%, 95.73% and 97.33%, respectively, on Indian Pines datasets.

INDEX TERMS Hyperspectral remote sensing image classification, stack attention-pruning, multiscale
graph convolution networks, longdistances joint interaction, multiscale spatial-temporal information,
cross-spacetime edges.

I. INTRODUCTION
Image classification is one of the main tasks of remote
sensing image processing. In recent years, influenced by
the continuous development of remote sensing technology,
hyperspectral remote sensing image has been playing an
increasingly important role in many fields such as ecological
environmental protection, land resource survey, military
monitoring, agriculture and Marine research [1].

Up to now, researchers have been proposed many different
methods to distinguish the attributes of the image elements
in hyperspectral images. The early stage mainly based on
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traditional pattern recognition and representation of image
content by means of manual marking. Such as BOW sparse
representation, scale invariance (SITF). etc. feature repre-
sentation, simple linear classifier. Among these traditional
methods, Random Forest (RF) [2], decision-making Tree
(DMT) [3] or simple Logistic Regression (LR) [5] has
good robustness and satisfactory classification effect due
to its strong processing ability for high-dimensional data.
Nevertheless, With the considering that spatially neighboring
pixels usually carry correlated information in a smooth
spatial domain, it is difficult to distinguish the categories of
pixels in an im-age with spectral information [6]. Therefore,
many researchers combine spectral and spatial information
to propose a multi-source feature joint classification method.
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For example, the morphological contour method proposed by
Fauvel et al. [7] and Song et al. [8] to effectively combine
spatial and spectral information.

However, these methods are based on the simple features
of manual participation setting and screening, which largely
depend on prior knowledge, and the classification accuracy is
seriously affected. To address these problems, deep learning
technology has been widely used in hyperspectral image
classification tasks due to its powerful presentation capabili-
ties [9]. Deep learning method utilizes the activation state of
neurons to gradually gather low-level features and automat-
ically obtain abstract higher-order representations, avoiding
complex feature engineering [10]. For example, [11]–[15]
use the convolutional neural network to obtain the local
deep abstract features of ground objects in remote sensing
images, classify and identify them, and achieve a better
classification effect. Chen et al. [16] constructed a stacked
automatic encoder for high-level feature extraction to classify
hyperspectral images. [16], [17], [19] et al. used cyclic neural
network to further improve the utilization rate of semantic
information of ground objects in remote sensing images, and
enhance the representation ability of semantic features and
the accuracy of classification and recognition. Lee et al. [20]
designed a deep CNN, which is able to optimally explore
contextual interactions by exploiting local spectral-spatial
relation-ship among spatially neighboring pixels. To further
im-prove the flexibility of convolutional neural network
and cyclic neural network in remote sensing image content
representation, the attention mechanism model is introduced
into remote sensing image classification tasks [21]–[23].
Although the traditional deep learning method has achieved
a better classification effect to some extent, it can only obtain
the higher-order features of ground objects in the regular
distribution region, and cannot adaptively capture the geo-
metric changes of different object regions in the hyperspectral
remote sensing image. In addition, in the feature extraction
process, the boundary pixel category attribute information
may be lost, affecting the final classification accuracy.
In other words, the traditional neural network cannot capture
the high order feature information of all the ground objects
in the hyperspectral remote sensing image. Therefore, how
to enhance the utilization rate of boundary pixel attribute
information and capture the higher-order feature information
of ground objects in irregular distributions areas so as to
improve the classification accuracy of hyperspectral remote
sensing images has become a re-search hotspot.

In recent years, graph convolution network (GCN) has
been paid more and more attention [24], [25]. GCN can run
directly on the graph structure and aggregate and transfer
neighbor node information. At the same time, it can also
capture higher-order semantic information of irregularly
distributed data. For example, Sheng et al. [26] applied the
image convolutional neural network to the classification of
hyperspectral remote sensing im-ages for the first time, which
improved the classification accuracy. Kang et al. [27] propose
a deep metric learning based on scalable neighborhood

components for remote sensing scene characterization, which
aims at discovering the neighborhood structure in the metric
space and preserving the class discrimination capability.
Although this method captures the property information of
boundary pixel effectively, it ignores the difference between
different scale feature graphs and the correlation of graph
nodes in spatial substructure. At the same time, it does
not select the key information and discard the redundant
information. In other words, it increases the use of redundant
information.

In this paper, we proposed a stack attention-pruning multi-
scale aggregates graph convolution network (SAP-MAGCN)
for hyperspectral remote sensing image classification.
In SAP-MAGCN framework, we first prune the pixels that
are weakly correlated to each other and delete this irrelevant
redundant information by stack attention. And constructure
the refine graph of neighborhood pixels. Then take many
factors into consideration such as hyperspectral remote
sensing data is often contaminated by redundant noise, and
traditional graph convolution network (GCN) is limited by
the initial graph structure when captures neighborhood nodes
information, namely, the initial input graph structure may
not accurate. Therefore, to effectively solve the limitation
brought by predefine initial graph structure, we bring the
graph convolution networks (GCN) into processing the graph
of neighborhood pixels. Secondly, since hyperspectral remote
sensing image obtain rich space structure information while
the multiscale structure information is proven useful for
improve the accuracy of image classification. we construction
the multiscale graph by adaptive changes to the numbers
of neighborhood nodes, and design a novel fusion manner
called masked fusion, in this process, the adaptive changes
of graph nodes and embedding features can effectively
reinforce interaction of between neighborhood nodes, and
establish dependency and complementary of the different
scaled structure information. Finally, we adopt aggregates
manner to aggregate the multiscale graph convolution blocks
which facilitates direct information flow across spacetime
and further boosts framework performance.

To sum up, the key contributions of the work are
summarized as follows:

(1) We proposed a stack attention-pruning multiscale
aggregates graph convolution (SAP-MAGCN) framework
that removes the limitation of predefine graph structure, and
removes redundant dependencies between node features from
different neighborhoods and scales, which allows powerful
multiscale aggregators to effectively modeling long-distance
joint interaction and cross spatial-temporal dependencies
on neighborhood nodes, and further refine multiscale
graph.

(2) Multiscale graph convolution is utilized to extensively
exploit and disintegrate the complex spatial structure infor-
mation. Meanwhile, can achieve better features representa-
tion by masked fusion and aggregates manner, the interaction
and spatial-temporal dependencies are enhanced of neighbor-
hood nodes.
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(3) The stack attention-pruning scheme is involved in
our propose SAP-MAGCN framework, which significantly
reduces the using of irrelevant redundant information and
further refine the graph of neighborhood nodes. Then the
experimental results on Indian pines and Salinas public
benchmark datasets show that our proposed SAP-MAGACN
acquire best performance when compared with others state-
of-the-art methods.

The remaining of the paper is organized structured
as follows: The related works on hyperspectral remote
sensing image classification. Are summarized in Section II.
We elaborate the proposed SAP-MAGCN framework in
Section III. Section IV describes the experimental parameters
and classification results. Finally, Section V draws the
conclusion with future research discussion.

II. RELATED WORK
In this section, we elaborate existing method of hyperspectral
remote sensing image classification.

With the development of remote sensing technology,
the classification of hyperspectral remote sensing image has
been studied deeply. For example, the classification of remote
sensing images by support vector machines (SVM) [28] with
kernel function shows a good classification effect. However,
the correlation between adjacent pixels cannot be effectively
utilized. In order to solve these defects, spectral space joint
information was designed, For example, Li et al. assumed
that adjacent pixels in the space have the same labels,
and used Markov random fields (MRF) [28] to capture the
contextual information in the image space to realize the
classification of hyperspectral remote sensing images, which
achieved encouraging results. Zhu et al. [29] captured HSV
and ISH features of hyperspectral remote sensing images and
classified them, achieving a good classification effect.

These methods use manually captured spectral and spatial
features to represent the complex contents of the image,
which are highly dependent on the prior knowledge of experts
and have poor applicability. The classification method of
hyperspectral remote sensing image based on deep learning
can automatically capture the high-level discriminant features
of image and effectively improve the classification accuracy
of image. For example, Li et al. [30] used deep confidence
network to capture high-level abstract features of images
and image classification. Shi et al. [31] used a recursive
neural network (RNN)to capture the multi-scale spectral
spatial features of images, and learned the spatial dependence
between non-adjacent pixels in a two-dimensional space do-
main. Yang et al. [32] proposed a dual-channel convolutional
neural network to capture spectral and spatial joint features
of hyperspectral remote sensing images, in which different
channels are used to learn spectral and spatial features respec-
tively. Jiang et al. [33] introduced the concept of multi-scale
into the residual convolutional neural network to capture the
multi-scale spatial information of images, further proving
the effectiveness of multi-scale information. Zhou et al. [34]
proposed a rotational invariant feature learning and joint

decision method based on Siamese convolution neural
network and combined recognition and validation model due
to the limited size of remote sensing scene data set and
the lack of label information. Duan et al. [35] proposed
a multi-scale full variational method to extract structural
features from hyper-spectral remote sensing images, tested
and verified on multiple benchmark data sets, and proved
that this method can well solve the problems of poor
feature representation of small sample data. Xu et al [37],
[38] propose multiscale octave 3D CNN with channel and
spatial attention and faster multiscale capsule network with
octave convolution for hyperspectral image classification.
Although these deep learning methods can automatically
extract the spectral and spatial features of images, they cannot
effectively consider the geometric appearance of each local
area, resulting in classification errors.

In recent years, the graph neural network has received
wide attention. The compared to the convolutional neural
network, recursive neural network and the mechanisms of
attention, graph neural network (GNN) [36], [37] is effective
in handling the irregular distribution of data, it can be
through the feature information gathering and transferring
node, capture figure higher-order abstract characteristics of
data structure, and the figure structure data embedded in the
first low dimensional discriminant space, realize the node
classification and related tasks. In general, the traditional
graph neural network is inefficient in the operation of
largescale graph structured data. Therefore, in order to solve
these problems, Bruna et al. [38] proposed the spectral
convolutional network, which convolved the neighborhood
nodes of graph structured data and obtained the higher-order
abstract features of graph structured data.With the continuous
development of graph convolutional neural network, GCN
has been widely used in many fields such as natural language
processing and Skeleton-based Action Recognition, and has
achieved good results [39]–[43]. For example, Kipf and
Welling [44] proposed semi-supervised graph convolutional
neural network. Marcheggiani et al. [45] proposed a depth
map convolutional encoder for text generation of structured
data. In these works, GCN was simplified by a first-order
approximation of graph spectral convolution, which leads to
more efficient run operations.

Although GCN has made great achievements in many
fields, it has only been used for hyper-spectral image
classification in the previous two works [25], [26]. Among
them, [25] only uses a fixed graph in the process of node
convolution, so it cannot accurately reflect the internal
relationship between pixels. Reference [26] effectively solved
the influence brought by the graph structure itself, it did not
capture category attribute information of boundary pixels to
the maximum extent and did not strengthen the dependence
between different scale features. Therefore, in order to
solve these problems, we propose SAP-MAGCN framework,
it can strengthen the dependencies between different scales
characteristics, characteristics of the different scales of graph
thinning, highlight the differences of characteristics between,
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FIGURE 1. The framework of our propose SAP-MAGCNs.

and capture the maximum boundary pixels, the category of
the attribute information, ensure good classification effect.

III. THE PROPOSED METHOD
In this section, we will present the basic components used for
constructing our SAP-MAGCN model. refer to the Fig.1 for
details. First, in order to reduce the running complexity
of the model, the hyperspectral remote sensing image was
preprocessed by using simple stack attention algorithm
and divided into several subspace pixel blocks. Secondly,
the pixel that constitutes the subspace pixel block is treated
as a fully connect, and the whole fully connect pixel blocks
is pruned into several subpixel block of different scales, and
the adjacency matrix is constructed on this basis.

Among them, the edge weight of nodes not in the
subpixel block is zero, and the edge weight of nodes in
the subpixel block is allocated through the stack-attention
pruning layer, which can effectively remove irrelevant
redundant information, strengthen the correlation between
relevant pixels, and retain the category attribute infor-
mation of boundary pixels to the greatest extent. Then,
the multi-scale aggregates graph convolutional network is
used to perform convolution operation on these subpixel
blocks of different scales, aggregate the multi-scale spectral
spatial features of images, and gradually refine the input
graph to further strengthen the dependence between the
features of different scales. Finally, the mask fusion layer
is used to splicing the feature maps of different scales to
realize the accurate classification of hyperspectral remote
sensing images. In figure 1, the SAP-MAGCN algorithm
we proposed is mainly composed of three parts: the input
of hyperspectral remote sensing image (see parts (a)). The
backbone of SAP-MAGCNs, which includes stack attention
pruning (part b and (c) in figure 1 for details), self-attention

guided construction of adjacencymatrices (part d), multiscale
aggregates graph operations, and mask fusion layers (see
parts e and f). Classification results (see section h).

In figure 1, (a) is the original hyperspectral remote sensing
image. (b) subspace pixel blocks of hyperspectral remote
sensing images, each of which contains several pixels. (c) to
use the clipped graph structure data of the stack attention,
which contains nodes and edges; (d) the adjacency matrix
constructed for the use of the attention guidance module is
the self-attention networks. Where represents the original
adjacency matrix, and if there is an edge connection between
nodes, it is 1; otherwise, it is 0. is the reconstructed adjacency
matrix, and represents the attentional edge weights between
nodes. (e) graph convolution black of multi-scale dense con-
nection, where represents adjacency matrices constructed by
multi-head self-attention networks; For themask fusion layer,
which integrates feature information of nodes of different
scales and realizes classification. (f) for the classification
results of hyperspectral remote sensing image.

Next, we will detail the key steps of our proposed
SAP-MAGCNs algorithm.

A. PRETREATMENT BY SUPERPCA
Normally, hyperspectral remote sensing images contain hun-
dreds of pixels, which may increase the running complexity
of our proposed SAP-MAGCNs frameworks if used directly
for classification operations. In order to effectively solve this
defect, we used the SuperPCA [46] algorithm was carried
out on the original remote sensing image segmentation
preprocessing operations such as super pixels, reducing
proposed frameworks complexity and strengthening of the
remote sensing image spectrum space correlation, then
helped to keep the local spatial structure of hyperspectral
remote sensing image information, and to further highlight
the correlation between similar pixels.

VOLUME 9, 2021 44977



N. Liu et al.: Stack Attention-Pruning Aggregates Multiscale Graph Convolution Networks

B. MULTI-SCALE PRUNING BY STACK ATTENTION
To further eliminate subspace pixel block of different pixel
between the redundant information, we use the stack attention
module to pruning the fully connect pixel blocks and
according to the different scale, will be the same pixel block
to build the fully connect pixel cut to contain different number
of nodes of the subpixel block, different scales is completed
construction of graph nodes. In the process of constructing
subpixel blocks [47], we need to calculate the information
gain of both the global and local attribute to ensure the
optimal partitioning. The subpixel block construction is
shown in equation 1.

αt,x = λα
global
t,x + γαlocalt,x , γ ≈

1
2
− λ. (1)

where, γ, λ indicates factor of weights. αglobalt,x and αlocalt,x
indicates the probability of global and local attention,
respectively. αglobalt,x and αlocalt,x as:

α
global
t,x =

exp(score(ht , h̄x))∑Tx
x ′=1 exp(score(ht , h̄x ′ ))

αlocalt,x =
exp(score(ht , h̄x))∑Tx ·δ(vTp tanh(Wpht ))+D

Tx ·δ(vTp tanh(Wpht ))−D
exp(score(ht , h̄x ′ ))

·

exp(−
(x − Tx · δ(vTp tanh(Wpht )))2

8D2 )

(2)

where, δ indicates activation function.
When each local attribute is used as the dependent attribute

of other global attributes, the original image graph structure
data can be divided into N different subspace pixel block and
further pruned to improve the difference between of different
scales. Thus, N multi-scale graphs with different nodes are
constructed. The specific build process is shown in figure 2.

FIGURE 2. The pruning process of multi-scale pixel blocks by stack
attention. ‘‘Pr-X’’ indicates pruning; ‘‘SPB’’ indicates super pixel fully
connect blocks.

In figure 2, (a) is the initial graph data constructed after
fully connect pixel block segmentation; (b) the subpixel
block after the first pruning of the dependency attribute,
the irrelevant connection edges are removed, that is,
the large-scale figure S = 4; (c) is the dependent decision tree
after the second pruning. It can be seen that v7 and v8 pixel are
pruning, and irrelevant connection edges are pruning at the
same time; (d) is the subpixel blocks after the third pruning,
and it can be seen that the pixel v6 is pruning to form a small
scale figure S = 2; (e) is the subpixel block after the fourth
pruning. It can be seen that the pixel v4 and v5 are pruning to
form a small-scale figure S = 1.
Multiscale information has been widely applied in hyper-

spectral remote sensing image classification task [33], [48],
[49], because the surface object in the hyperspectral remote
sensing image often has a number of different geometric
shape, the different scales of structure information can be
from different levels, different angles describe the content
of the complex image, this method can not only through
different neighborhood scale figure to get multi-scale struc-
ture on optical spatial information, at the same time rely on
stack attention pruning the original figure data structure, can
effectively reduce the redundant information on graph nodes
and edges, meanwhile, also reduces the SAP-MAGCNs
frameworks complexity, and further highlights the relevance
between adjacent pixel block.

Specifically, through the multi-scale graph after pruning
by relying on the decision tree, on the s-scale, each pixel xi
is connected with other adjacent fully connect pixel blocks,
while a certain fully connect pixel blockVi is pruned formany
times, and the node set of the multi-scale graph formed is
shown in equation 3.

γs(vi) = γs−1(vi) ∪ γ1(γs−1(vi)). (3)

where γ0(vi) = vi,and γ1(vi) is the set l-order of vi in the
subtree.

C. GRAPH BULID BY SELF-GUIDED ATTENTION
The stack attention is to pruning the whole fully connect
pixel block super pixel block into a subspace pixel block
and construct an adjacency matrix. However, this pruning
is predefined in that the connectionless edge weight is
directly defined as 0 during pruning. Such a pruning strategy
may remove the part relevant information from the original
fully connect super pixel block. Therefore, to effectively
solve this problem, we designed a multi-head self-attention
guide module to redistribute the edge weight to the trimmed
subspace pixel block, further highlighting the correlation and
interaction between graph nodes, namely, building stronger
multi-scale graph structure.

For self-guided attention module, we adopt the strategy
of multi-head self-attention [48]–[50] to transform the
multi-scale subspace pixel block into a fully connected
graph. And constructs the adjacency matrix A′ from attention
guidance, meanwhile, the weights have been improved of
edges. Then, each A′ corresponds to a certain fully connected
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graph and each entry A′ij is the weight of the edge going
from node i to node j. The self-attention machine can capture
the interactions between two arbitrary positions of a single
sequence, and attention for inducing relations between nodes,
(See part d in figure 1). The calculation of A′ is shown in
equation 4.

αmhsaij =
exp(LeakyReLu(aT [wEvi||wEvj]))∑

k∈Ni exp(LeakyReLu(Ea
T [wEvi||wEvk ]))

(4)

where T indicates the transpose of matrix; w indicates the
weights of nodes. Ni indicates the neighbor nodes of node i,
LeakyReLu(·) indicates [51]–[53] activate function. Namely,
M matrices are constructed, where N is a hyper-parameter.
The four heads were used for our SAP-MAGCNs models.

The pruning subspace pixel block adjacency matrix as the
initialization input, the dependencies between nodes can be
further captured by the multi-head self-attention guidance
module. Meanwhile, the category attribute information of
boundary pixel is captured to the maximum extent and
enhance the ability of interaction between pixel node and
subpixel block, and the classification accuracy of boundary
pixel is improved.

D. DYNAMIC AGGREGATES MULTI-SCALE GCNS
Graph convolutional network (GCN) [10], [41]–[44], [54]
is also a kind of direct effect on graph structure data, and
each node in the graph is associated with a corresponding
label, and the label is transferred through transfer and sink
node information to obtain unlabeled node labels. Formally,
the definition of an undirected graph is shown in equation 5.

ς = (v, ε) (5)

where v = {v1, v2, . . . , vn} indicates the set of nodes,
ε = {ε1, ε2, . . . , εn} indicates a set of edge. The notation A′

the adjacency matrix of ς which indicates whether each pair
of nodes is connected and can be calculated as.

A′ij =


αmhsaij , vi 6= vj
1, vi = vj
e−κ||vi−vj||

2
, otherwise

(6)

where, αmhsaij indicates the weights of neighbor nodes by
multi-head self-guided attention coefficient; the parameter κ
is empirically set to 0.2 in the experiments [26], [47].

However, our propose SAP-MAGCNs frameworks includ-
ing multiple multi-scale dynamic aggregates GCNs module
(in FIGURE 1 (e) dynamic aggregates graph convolution
networks), and each dynamic aggregates GCNs module
including multiple (r) aggregates graph convolution layers.
Thus, the module of adjacency matrix can be dynamic update
as.

A′(r)← A(A′(r−1) + αh(r−1)h(r)T )AT + βI (7)

where h(r−1) indicates the output features of (r − 1)th

layers; α, β indicates the coefficient of association. h(r) Can

indicates as.

h(r) = δ(̃Ah(r−1)W (r)) (8)

where δ indicates activate function of softplus(·); and Ã can
be as show in equation (9).

I + D−
1
2A′D−

1
2 → D̃−

1
2 ÃD̃−

1
2

D̃ij =
∑
j

Ãij (9)

where I indicates the identity matrix.
Since we have M different attention guided adjacency

matrices, M separate densely connected layers are required.
Accordingly, we modify the computation of each layer as
follows (for the l th matrix Ãt ) in equation 10.

H (l)
ti = δ(

n∑
j=1

ÃtijW
(l)
t Z lj + b

(l)
t ) (10)

where t = 1, . . . ,M and t selects the weight matrix and
bias term associated with the attention guided adjacency
matrix Ãt . Z (l)

j as.

Z (l)
j = [Xj, h

(l)
j , . . . , h

(l)
j ] (11)

where, each densely connected layer has L sub-layers.
For masked Fusion module, our can intuitive to represent

the classification network as a including masked function
fully-connected layer, namely, we can concatenate the output
of the gst GCNs along the column dimension, and the
calculation as.

FCNgst = SoftMax([GCNgs0 , . . . ,GCNgst ]Wfcn) (12)

where st = 0, 1, 2, 3, Wfcn indicates the weights of fully
connected layers.

The dynamic aggregates and graph constructure process of
SAP-MAGCNs is summarized in algorithom 1.

Algorithm 1: The Dynamic Aggregates and Graph
Constructure Process of SAP-MAGCNs
Input:input fully connect pixel block X ; the number of
pruning S by stack attention; the initial adjacency
matrices A ;
1. for s = 1 to S
2. calculate the subspace pixel block xi,and
xi = SAP(X ), i = 1, 2, 3, 4 (in FIGURE 2)
3. Update the multi-scale graph gst and adjacency matrix
A′ (in equation (6))
4. input the SAP-MAGCNs, and achieve the masked
fusion FCNgst (in equation (12))
5. Optimizer the graph structure by τ (gst )
output:optimization structure of the multi-scale graph

In algorithm 1, τ (gst ) indicates the loss function, and can
be calculated as.

τ (gst ) =
s∑
i−1

τ (gist ), i = 1, 2, 3, 4 (13)

VOLUME 9, 2021 44979



N. Liu et al.: Stack Attention-Pruning Aggregates Multiscale Graph Convolution Networks

where τ (gst ) indicates the cross-entropy error loss, namely,
the cross-entropy error is adopted to penalize the difference
between the network output and the labels of the original
labeled examples.

What has been discussed above, we proposed the
SAP-MAGCNs hyperspectral remote sensing image clas-
sification method, the correlation between nodes are
emphasized, utmost ground to capture and retain the
boundary pixels, the category of the attribute information,
at the same time, this paper introduced a concept of stack
attention pruningmulti-scale, capture the surface object in the
remote sensing image of local and global spatial semantics,
and use the multi-head self-guided attention modules on
the multi-scale characteristic figure gradually refinement,
the increase of capability of characterization of feature maps.

IV. EXPERIMENTAL PARAMETERS AND RESULTS
Next, we conduct exhaustive experiments to validate
the effectiveness and dependability of the proposed
SAP-MAGCNs method, and also provide the corresponding
algorithm analyses. To be specific, we first compare
SAP-MAGCNs with other state-of-the-art approaches on
two publicly available hyperspectral image reference
datasets, where five metrics including per-class accuracy,
overall accuracy (OA), average accuracy (AA) and kappa
coefficient are adopted. Then, we demonstrate that both the
multi-scale manipulation and dynamic graph design in our
SAP-MAGCNs are beneficial to obtaining the promising
performance. After that, we validate the effectiveness of our
method in dealing with the boundary regions.

A. PUBLICLY AVAILABLE DATASETS
1) INDIAN PINES [57]
This dataset was collected from the Indian Pines experimental
base in Indiana in the United States in 1992 using AVIRIS.
The image size was 145 * 145, that is, 21,025-pixel blocks.
The spatial resolution is 20 meters and the number of
spectral bands is 220.In order to reduce the impact of noise
on classification accuracy, 20 bands with high noise were
removed, and the remaining 200 bands were tested. The
image contains 16 different types of surface objects, including
corn fields, grassland, wheat, wood, soybeans and stone
steel towers. FIGURE 3 exhibits the false color image and
ground-truth map of the Indian Pines dataset. As can be seen
from table 1, there are 16 categories and the number of labeled
pixels is 10249.

The amounts of labeled of various classes are listed in
TABLE 1.

2) SALINAS [58]
The total spectral band of this data set is 224, after removing
the redundant band, it is 204. The spatial resolution of the
image is 3.7 meters and the size is 512*217. There are a total
of 111104 pixels, among which 54129 pixels are used for
classification (the remaining pixels are background pixels,

FIGURE 3. The datasets of Indian pines.

TABLE 1. The labeled of indian pines.

TABLE 2. The labeled of salinas.

that is, unavailable pixels) and include 16 surface objects
such as arable land and celery. Figure 4 exhibits the false
color image and ground-truth map of the Indian Pines dataset.
As can be seen from table 2, there are 16 categories and the
number of labeled pixels is 54129.

The amounts of labeled of various classes are listed in
TABLE 2.

B. EXPERIMENTAL PARAMETERS
In our experiments, the proposed algorithm is implemented
via keras with SGD optimizer. During training, 80% of the
labeled examples are used to learn the network parameters
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TABLE 3. The classification results of indian pines.

FIGURE 4. The datasets of Salinas (a) False color image. (b) Ground-truth
map.

and 20% are used as validation set to tune the hyperparam-
eters. Meanwhile, all the unlabeled examples are used as
the test set to evaluate the classification performance. The
network architecture of our proposed SAP-MAGCNs is kept
identical for all the datasets. Specifically, three neighborhood
scales, namely s = 1, s = 2, s = 3 and s = 4, are respectively
employed for graph construction to incorporate multi-scale
spectral-spatial information into our model. For each scale,
we employ three graph convolutional layers with 32 hidden
units, the learning rate and the number of training epochs are
set to 0.005 and 500, respectively. The self-attention head
number is set to 4.

To evaluate the classification ability of our proposed
method, other recent state-of-the-art hyperspectral image
classification methods are also used for comparison.
Specifically, we employ same CNN-based methods, i.e.,
R-2D-CNN [53]. Diverse Region based deep CNN [54]
and MS-DCNN [56]. Joint collaborative representation and
SVM with Decision Fusion (JSDF-SVM) [58]. By contrast,
GCN-based methods such as multi scale dynamic graph
convolution networks (MDGCN) [26].

C. EXPERIMENTAL RESULTS
To show the effectiveness of our proposed SAP-MAGCNs,
here we evaluate the classification performance by comparing
SAP-MAGCNs with the aforementioned baseline methods.

1) THE CLASSIFICATION RESULTS OF INDIAN PINES
The results are as follows in table 3. In table 3, we present the
SAP-MAGCNs model classification results in indian pines
dataset.

FIGURE 5 exhibits a visual comparison of the clas-
sification results generated by different methods on the
Indian Pines dataset, and the ground-truth map is provided
in Figure.5(b).

In table 4, S represents the scale Figure 6 shows a visual
comparison of the classification results generated by the
different parameters of the method we proposed on the
Indian pine datasets, and the ground truth graph is provided
in figure 6 (b).

The classification results obtained by different methods
on the Indian Pines dataset are summarized in Table 3 and
Table 4. We observe that the traditional convolution neural
networks (CNN) based methods including R-2D-CNN and
DR-CNN achieve relatively low classification accuracy,
which is due to the reason that they can only conduct the
convolution on a regular image grid, so the specific local
spatial information cannot be captured.

By contrast, Multi Scale-based methods such as JSDF
and MSDC achieve relatively good classification accu-
racy. which combines spectral and spatial information in
diverse scales, ranks in the second place. This implies that
the multiscale spectral-spatial features are quite useful to
enhance the classification performance. The GCN-based
methods such as MSGCNs, SAGGCNs and MDGCN are
capable of adaptively aggregating the features on irregular
non-Euclidean regions, so they can yield better performance
than others methods such as R-2D-CNN, DR-CNN, JSDF
and MSDC.

For the nonlocal GCN and min-batch GCN methods,
the performance of classification outperformance others
methods such asMSDC andDRCNN et al.Themainly reason
is improving the interaction of neighborhood nodes by GCN
layers and mini-batch strategy. In the table 5 and Figure 6,
we can observe SAP-MAGCNs methods outperformance the
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FIGURE 5. The classification results generated by different methods. (a) False color images. (b) ground truth map; (c) R-2D-NN; (d) DRCNN; (e) JSDF;
(f) MSDC; (g) MDGCN; (h) nonlocal GCN; (i) mini-batch GCN; (j) SAP-MAGCNs.

FIGURE 6. The classification results generated by different methods. (a) False color images. (b) ground truth map; (c) S = 1,2; (d) S = 3,4;
(e) MSGCNs; (f) SAGGCNs; (g) SAP-MAGCNs (Non) indicates the frameworks not including the SuperPCA block. (h) SAP-MAGCNs; Among them,
MSGCNs stands for no self-attention guidance layer.

SAP-MAGCNs (Non) methods by 6.92%, 0.21% and 7.84%,
respectively.

Furthermore, we observe that the proposed SAP-MAGCNs
achieves the best performance among all the methods in
terms of OA, AA, and Kappa coefficient, and the standard
deviations are also very small, which reflects that the
proposed SAP-MAGCNs models is more stable and effective
than the compared methods.

2) THE CLASSIFICATION RESULTS OF SALINAS DATASETS
The results are as follows:

In table 5, we present the SAP-MAGCNs model algorithm
and others methods.

Figure 7 exhibits a visual comparison of the classi-
fication results generated by different methods on the
Indian Pines dataset, and the ground-truth map is provided
in Figure.7(b).
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TABLE 4. The classification results of our models.

TABLE 5. The classification results of salinas.

TABLE 6. The classification results of sap-MAGCNS in salinas datasets.

Figure 8 shows a visual comparison of the classification
results generated by the different parameters of the method
we proposed on the Salinas dataset, and the ground truth map
is provided in figure 8 (b).

From the quantitative results in table 4 and 5, the following
conclusions can be obtaining:

(1) R-2D-CNN, DR-CNN and other classification algo-
rithms are the lowest in multiple evaluation indexes (OA,
AA and Kappa), because when convolutional neural network
captures the deep information of surface objects in images,
it will ignore a large amount of global information.

(2) MS - DCNN due to capture the surface of the object
in the image classification algorithm of multi-scale spatial
structure information, make its classification accuracy is
R-2D-CNN and DR-CNN classification algorithms such
as CNN (CNN) is high, because this method captures
the different dimensions of spatial structure information,
strengthen the correlation between different scale features
at the same time, in addition, a further sign of multi-scale
spatial structure information, can effectively improve the
classification accuracy of the surface of the object in the
image.

(3) the classification algorithm proposed in this chapter
is most effective in terms of overall accuracy (OA), average
accuracy (AA), Kappa coefficient. Because, SAP-MAGCNs
classification algorithm not only can effectively capture the
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FIGURE 7. The classification results generated by different methods. (a) False color images. (b) ground truth map;
(c) R-2D-NN; (d) DRCNN; (e) JSDF; (f) MSDC; (g) MDGCN; (h) SAP-MAGCNs.

FIGURE 8. The classification results generated of Salinas datasets by different methods. (a) False color images.
(b) ground truth map; (c) S = 1,2; (d) S = 3,4; (e) MSGCNs; (f) SAGGCNs; (g) SAP-MAGCNs; Among them, MSGCNs stands
for no self-attention guidance layer.

surface of the object in the image of the deep semantic
information, at the same time through information gathering

node could improve the ability of features of characteriza-
tion, and maximize the extraction of the boundary pixels,
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TABLE 7. The classification results of different quantities salinas.

FIGURE 9. The classification results generated of salinas datasets by different training datasets. (a) False color images.
(b) ground truth map; (c) train = 0.1(d) train = 0.2; (e) train = 0.3; (f) train = 0.4; (g)train = 0.5; (h) SAP-MAGCNs; Among
them,’’ Train’’ is training datasets of salinas.

the category of the attribute information, such as further
illustrates the advantages of SAP-MAGCNs classification
algorithm, comparedwith other classification algorithms, this
method is stable and good robustness.

3) THE CLASSIFICATION RESULTS OF DIFFERENT
QUANTITIES OF SALINAS DATASETS
ON THE SAP-MAGCNS MODEL
In order to further verify the effectiveness of the
SAP-MAGCNs model method, we will use different training

sets to conduct training tests on the model. Among them,
the Salinas data sets for training are 10%, 20%, 30%, 40%,
50%, etc. The results of classification on the Salinas data set
are shown in table 7. In table 7, we present the SAP-MAGCNs
model algorithm.

As can be seen from table 7: As the amount of training
data increases, the classification accuracy of SAP-MAGCNs
method increases. Moreover, when the training data is 10%,
a better classification effect is obtained. This is because the
self-attentional guidance layer in SAP-MAGCNs enhances
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the subtlety while removing irrelevant redundant information.
It is further proved that SAP-MAGCNs method can also
achieve good classification effect on small sample data sets.
Figure 9 shows a visual comparison of the classification
results generated by the different parameters of the method
we proposed on the salinas dataset, and the ground truth map
is provided in figure 9 (b).

It is obvious from figure 9 that with the increase of the
training data set, the classification effect on SAP-MAGCNs
method gradually gets better. And it further proves that
the number of training samples will affect the accuracy of
classification. The more training samples, the higher the
accuracy.

V. CONCLUSION
In this paper, a hyperspectral image classification method
based on stack-attention-pruning aggregates multiscale graph
convolutional network (SAP-MAGCNs) is proposed. The
dependent decision tree by stack attention is used to prune
the graph data, which reduces the computational complexity,
strengthens the relevance and interaction between different
nodes of the subtree species, and simplifies and reconstructs
the subtree with different dependent attributes. Pair then
design the boot module, since the attention in the tree node
distribution of the weight and the maximum retained the
boundary pixels, the category of the attribute information,
as well as to the different scales of subtree are realized,
finally, using multi-scale connection diagram convolution
dense network of arithmetic operation, the capture of hyper-
spectral remote sensing image multi-scale local and global
semantic information, at the same time to strengthen the
dependency relationship between-n multi-scale feature maps.
The experimental results on three widely-used hyperspectral
image datasets demonstrate that the proposed SAP-MAGCNs
is able to yield better performance when compared with the
state-of-the-art methods.

Next work we will continue to explore the semantic
information of remote sensing image of classification
tasks. Namely, we will further design a simply and
powerful semantic networks-based graph and attention
pruning.
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