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ABSTRACT The existence of failures in photovoltaic systems causes energy losses, security problems,
and damage to its components. Therefore, it is necessary to develop monitoring systems to improve their
productivity, reliability, efficiency, and safety. This work proposes a method for detecting and indicating
short-circuit failure and partial shading present in grid-connected photovoltaic modules. The novelty of this
proposal is the processing of voltage and current signals generated (ripple signals) by the electrical interaction
between the photovoltaic string, the photovoltaic inverter, the condition of the modules, temperature, and
irradiance. The magnitudes of specific frequency components are obtained from these electrical signals
using DFT, and Cartesian coordinates are formed in a three-dimensional plane. Coordinates belonging to
each of the string conditions are mostly located in different octants from this plane. This distribution allows
an assessment of the modules state. Certain scattering is solved with a K-nearest neighbors algorithm. The
effectiveness of the methodology was experimentally validated in two PVG with different characteristics.
In each test case, the method was adaptable to the real conditions of the photovoltaic system. The results
show effectiveness greater than 90% in the first evaluation levels, there is a slightly lower detection certainty
in anomalous conditions with coordinates that are very close to each other. However, the system has
100% certainty detecting the presence of an abnormal condition. The method allows adaptation to different
conditions, and takes advantage of the electrical signals derived from the actual performance of the used
devices.

INDEX TERMS Fault detection, frequency components, grid-connected system, photovoltaic inverter,
photovoltaic module.

NOMENCLATURE
∝ Negative voltage factor due to temperature
a0 0 Hz component
a2fg 2fg Hz component
arrC String condition state
d Euclidean distance
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dbV Database
dbV ′ Normalized database
dV Distance vector
evV Evaluation vector
evV ′ Normalized evaluation vector
fg Grid frequency
G Irradiance
I Current
Ig Grid current
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Vmp Maximum-power point voltage
Im Maximum current
iripple Ripple current
Iscs Short-circuit string current
Isc Short-circuit current
istr String current
KPV Utilization ratio
nd Number of diodes activated due to partial shadow
P Power
Pm Maximum power
T Temperature
V Voltage
Vg Grid voltage
Vhf High-frequency voltage
Vlf Low-frequency voltage
Imp Maximum-power point current
Vm Maximum voltage
Vocs Open-circuit string voltage
Voc Open-circuit voltage
vripple Ripple voltage
vstr String voltage
AC Altern current
AI Artificial intelligence
DC Direct current
DFT Discrete Fourier transform
DWT Discrete wavelet transform
KNN K-nearest neighbors algorithm
MPPT Maximum power point tracker
PS Partial shading
PVA Photovoltaic array
PVG Photovoltaic generator
PVI Photovoltaic inverter
PVM Photovoltaic module
PVS Photovoltaic string
SC Short circuit

I. INTRODUCTION
The rapid growth of electricity generation through photo-
voltaic technology has allowed photovoltaic installations to
generate and consume electricity [1], which electrify urban
regions more easily. However, photovoltaic systems are sub-
jected to adverse conditions, both environmental and physi-
cal, which cause a decrease in the electrical energy generated.
For example, when there is a non-uniform distribution of irra-
diance (G), a partial shading condition (PS) is caused. This
condition of the photovoltaic generator (PVG) is considered
transient and easily located through visual inspection. On the
other hand, a short circuit (SC) is regarded as an abnormal
condition due to a physical cause. The SC causes a constant
decrease in power and is difficult to identify by visual inspec-
tion. Therefore, various methodologies have been developed
to determine the condition of a PVG. The methodologies take
many features into accounts, such as the electrical character-
istics of the photovoltaic modules (PVMs), the electrical con-
figuration chosen for their connection, and some variables.

These variables are temperature (T ), irradiance, current (I ),
voltage (V ), and power (P).
The methods reported for determining the condition of

photovoltaic generators (PVGs) are classified into three cate-
gories: 1) use of instantaneous values of electrical parameters,
2) analysis of the I − V and P − V curve, and 3) use of
unconventional parameters. In the first category, the deter-
mination of the state of the PVG is based on the compar-
ison of the instantaneous values of I and V . These signals
are obtained from experimental and simulated tests carried
out under specific conditions of G and T . This technique
is applied in [2] to determine the presence of short-circuit
modules and open-circuit modules on a PVG. The PVG is
made up of various photovoltaic strings (PVSs), whereby
each PVS is connected to a MPPT [3]. A similar proposal is
presented in [4], where the open-circuit conditions in a PVS,
general shading, and partial shading in sections of a PVM
were determined. The analysis of the condition of the photo-
voltaic system was based on an Elman-type neural network.
In this detection category, the simulation of the PVG, carried
out under various conditions, causes an increase in the devices
that are needed for determining the PVG state. Furthermore,
some methodologies require the calculation of intermediate
parameters that require specific processing, which causes an
increase in the requirements in general.

In the second detection category, I−V andP−V curves are
used to determine the PVG conditions. These curves allow a
representation of the simulated or experimental response of
the set of PVMs that are in the direct current (DC) section of
a PVG. Both curves have a specific shape when it belongs to
a PVG in healthy state. However, these curves show signifi-
cant changes when abnormal conditions affect the PVG. The
variation was used to indicate the presence of failures in the
PVG. Pattern recognition and normalized curves were used
for this purpose [5].

On the other hand, the I − V curve was analyzed to obtain
specific parameters, such as open-circuit voltage (Voc), short-
circuit current (Isc), maximum voltage (Vm), and maximum
current (Im) [6]. The analysis determines the conditions of
short circuit, open circuit, aging, and partial shading. Discrete
wavelet transform (DWT) is applied to the I − V curve
to determine the presence of partial shading in a PVS [7].
The determination was possible because the DWT coeffi-
cients presented a specific behavior for each analyzed con-
dition. Alternatively, the P − V curve is used to detect
different partial shading conditions in a photovoltaic array
(PVA) [8]. The determination was performed to relocate the
PVM in case of failures detection. All the second detection
category methodologies have a drawback: disconnecting the
PVMs segment to be analyzed, thus resulting in zero energy
production [6], [8]–[10].

The third detection category corresponds to methodolo-
gies using non-conventional parameters. The capacitance to
ground and reflectometry techniques were used in [11] to
determine the state of a PVA. The identified conditions are
PVM disconnection and PVM degradation.
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On the other hand, statistical techniques were used to deter-
mine the location of the PVS in failure condition [12]. The
state of each PVS was determined using only the magnitude
of the normalized current. Another methodology of the third
category is presented in [13]. The methodology identifies
the PVSs with open-circuit failure. The identification was
possible by analyzing the frequency response of the set of
PVMs. These tests were carried out under conditions of zero
irradiance, and one of the PVMs was struck by a pulsing
light at a specific frequency (find ). Therefore, the open-circuit
location in the PVS was determined by a variation in the
magnitude of the induced frequency component.

Another methodology to determine the PVM conditions
is proposed in [14]. Open-circuit and partial shading con-
ditions are determined unlike the previously commented
research. The equations that describe the electrical and ther-
mal behavior of a PVM were used. A thermographic camera
was used to validate the proposed method. The validation
implied special equipment and qualified personnel to perform
the measurements. All the methodologies presented in this
category require specific conditions or equipment for their
application, increasing the total costs of the system.

In a device with an integrated MPPT, the voltage of the
PVM assembly presents oscillations resulting from the exe-
cution of the algorithm programmed in the MPPT [15]. The
oscillations present variations in the magnitude and shape of
the voltage and current signals, which are called the ripple
voltage and ripple current [16]. These signals contain infor-
mation that is representative of the condition of the PVS.
Therefore, this work proposes a method for determining fail-
ures in a PVS by using the vripple and iripple signals gen-
erated from the interaction between the PVS and the PVI.
The proposed method uses the Discrete Fourier transform
and the K-nearest neighbors algorithm. DFT is a technique
used to extract the characteristics of signals in the frequency
domain, whereas KNN is a learning technique that belongs
to artificial intelligence. KNN works for both supervised and
unsupervised learning, and its main characteristic is taking
into consideration all the training data. KNN is applied to
solve classification and regression problems because of its
simplicity of operation.

The proposed method allows the detection of short-circuit
conditions and partial shading on the PVMs. The detection
based on the PVG signals allows the use of a minimum
number of elements, mainly those necessary to carry out the
data acquisition. Also, the system operates online and in real-
time. Compared to other reported works, none of them take
advantage of the interaction between PVS and PVI. Ripple
voltage and ripple current have not been used to indicate the
condition of a grid-connected photovoltaic system. In addi-
tion, the proposed system performs a greater sampling of the
variables to better represent the phenomenon. Easy to acquire
sensors and measuring devices are used for this purpose.

Furthermore, themethodology proposed in this article does
not require the execution of simulations, which allows its
implementation in low computing power equipment. The use

FIGURE 1. General diagram of an electrical grid-connected PVG.

of the KNN method allows a learning whose training time is
short. Finally, this proposal does not require the disconnec-
tion of the analyzed PVS, which guarantees a performance
free of interference to the PVG.

The rest of the article is organized in the following man-
ner. Firstly, Section II presents the theoretical background
needed to understand the ripple voltage and the variation it
undergoes due to the operating conditions of a PVS. Sec-
ondly, Section III describes the proposed failure detection
method. The simulation of a grid-connected PVG is carried
out in Section IV. Next, Section V presents the experimental
setup and the presentation of interest cases, while results are
analyzed in Section VI. A discussion section is presented in
VII. Finally, the conclusions of this study are presented in
Section VIII.

II. THEORETICAL BACKGROUND
A grid-connected PVG is a set of electronic components
working in a coordinated way to send energy to the electrical
grid [17], [18]. The process begins with PVMs that convert
the energy from sunlight to useful electrical energy. How-
ever, the DC voltage delivered by the PVMs is not compatible
with the grid. The incompatibility is solved by the PVI, which
takes a voltage signal in DC and converts it to voltage in
alternating current (AC) with adequate amplitude (Vg) and
frequency of the electrical grid (fg). Both Vg and fg must
meet the standards of the electrical grid to which the PVG
is connected [18]–[20].

Figure 1 shows the two main sections of a PVI. The
first section is the DC to DC voltage converter [21], which
maintains the fixed voltage that will serve as the basis for
AC investment. This section implements the MPPT algo-
rithm, which continuously searches for a combination of V
and I that provide the highest electrical power to the grid.
The second section of the inverter corresponds to the process
of converting DC voltage to AC voltage. The output stage of
this section makes the coupling to the electrical grid. This
coupling must guarantee an interference-free connection, and
the generated signal will induce a minimum number of har-
monics to the line to which it is being coupled. TheDC−AC
convertion method will depend on the PVI designer. The
aforementioned does not allow a general characterization of
all converters of this type [20].
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FIGURE 2. Variation of the vstr waveform as a function of the PVI status.

On the other hand, Fig. 2 shows that a PVI simulta-
neously operates in two stages. During the initial start-up
stage, the input voltage to the PVI corresponds only to
the open-circuit voltage (Voc) delivered by the PVA. Then,
the PVI goes into synchronous with the grid, and the Vripple is
generated [22]. Therefore, the voltage signal comprises three
components in the inverter input section. The signals com-
prise a signal with constant displacement, a low-frequency
signal, and a high-frequency signal. The high-frequency sig-
nal is typical of theDC−AC voltage convertion process. The
inversion frequency is selected by the PVI designer and set
between 10 kHz and 50 kHz [23], [24]. Equation 1 represents
the input voltage to the PVI (vstr ). The signal only exists when
the inverter interacts with the PVMs set.

vstr = Vmp + Vlf + Vhf (1)

It is essential to mention that Vmp is variable and depends
on the PVS condition. Low and high-frequency compo-
nents shall be visible when the sampling frequency is equal
to or greater than twice the Vhf frequency value. A sampling
frequency with this feature fulfills the Nyquist theorem.

The magnitude of Vmp in a PVS in a healthy state (Hty)
is variable due to irradiance and temperature [16]. However,
the value of Vmp changes significantly when abnormal oper-
ating conditions occur. The variation of Vmp causes small
changes in Vlf and Vhf , and these changes are difficult to
detect in the time domain. Therefore, there are two conditions
to consider in the ripple voltage analysis. First, the variation
of Vmp under different environmental and physical conditions
must be understood. Second, the analysis of the ripple signal
is found in the frequency domain.

A. MAXIMUM POWER VOLTAGE
The maximum power value (Pm) is located at the point at
which the product is the global maximum on the I −V curve,
obtained from Eq. (2).

Pm = max(VxIx) (2)

where x is the position of the data vectors of V and I . The
MPPT algorithm locates the position ofmaximumpower for a
PVI, and causes variations in bothVmp and Imp. The variations
are in agreement with the conditions of the PVS. Therefore,

FIGURE 3. Location of the maximum power point under different
conditions of the PVS.

it is appropriate to back up variations of Vmp and Imp with the
I − V curve.
The theoretical analysis of the I − V curve of a PVS

requires taking into account multiple parameters, irradiance,
temperature, quantity (n) of PVMs, and the data provided
by the datasheet. Therefore, if a PVS is composed of n
PVMs, then the PVS open-circuit voltage (Vocs) is obtained
by Eq. (3). Moreover, the maximum current obtained from
a PVM is Isc. The short-circuit current of a PVS (Iscs) is
obtained by Eq. (4).

Vocs = n(Voc+ ∝ (T − 25)) (3)

Iscs =
IscG
1000

(4)

The ordered pairs (Vx , Ix) of the I−V curve are obtained by
calculating the current (Ix) that satisfies a specific condition
of Vx , considering that Vx varies from 0 to Vocs. Figure 3
shows normalized I-V curves for different PVS conditions.
The first analysis considers the PVS in two health condi-
tions, albeit with different irradiance levels. The first healthy
condition, named Hty, is obtained with a G of 1000 Wm−2.
The second healthy condition is named HtyLowG, which
is obtained from a G of 800 Wm−2. Figure 3 shows that
both curves are similar, but the HtyLowG curve presents a
lower current generation due to the lower irradiance level.
The maximum power points for Hty and HtyLowG are found
at the Cartesian coordinates (VH, IH) and (VHLG, IHLG),
respectively. Figure 3 also show that the VH and VHLG
components are very close. However, IH and IHLG take quite
different values.

On the other hand, Fig. 3 shows that the I − V curve
acquires a different shape when the condition of partial shad-
ing, named PS1, exists. It compared to the I −V curve in the
healthy state. This variation is directly related to the shading
area and the number of protection diodes that the PVMs have.
The internal structure of a PVM is analyzed below to better
understand this phenomenon. Figure 4(a) shows that a PVM
consists of s sections of photovoltaic cells (PVCs), and each
section is protected by a diode in reverse bias, see Fig. 4(b).
The protection diodes come into operation when the cells
to protect are uncoupled [7], [14]. Each uncoupled segment
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FIGURE 4. The architecture of a PVM. (a) Module composed of 3 cell
segments, and (b) Cell segment protected by a diode.

causes a voltage loss (Voc/s). Therefore, the magnitude of
the voltage corresponding to the maximum-power point for
the partial shading condition (VPS1) can be obtained with
Eq. (5), using the value of the VH component present in the
Hty condition as reference.

VPS1 = VH −
nd
s
Voc (5)

The partial shading condition analysis concludes with the
PS1 curve of Fig. 3. This curve presents a Pm located at
the Cartesian coordinates (VPS1, IPS1) and has a significant
change between the value of VPS1 and VH components.
However, the value between the IPS1 and IH components
varies very little. Therefore, the variable Vmp takes the value
of the VPS1 component for the partial shading condition.

On the other hand, Fig. 3 shows the I − V curve obtained
when the short-circuit condition, named SC1, occurs in a
PVS. This curve also takes a different shape compared to
the conditions mentioned above. The SC1 condition can be
observed when a PVM does not provide power to the string
where it is connected. In addition, there are 0 V between
terminals. Figure 3 shows that the presence of the short
circuit causes a significant displacement of the position at the
maximum-power point. This displacement places the point of
maximum power in the Cartesian coordinates (VSC1, ISC1).
The ISC1 component will have the same magnitude as the
current obtained in the PS1 condition, while the value of the
VSC1 component for mmodules in a short circuit is obtained
through Eq. (6). Consequently, Vmp will be equal to the VSC1
component.

VSC1 = VH − mVoc (6)

FIGURE 5. Variation effect of Imp on Vmp.

B. RIPPLE VOLTAGE
The I − V curve is a convenient way of analyzing the static
behavior of the PVS. However, when PVI is operating, both
Imp and Vmp oscillate at a specific frequency [22]. In [20],
[24] is shown that this frequency corresponds to 2fg, and its
amplitude depends on the magnitude of 1I . Figure 5 shows
the relationship between 1V and 1I .

The maximum value of1V is obtained by means of Eq. 7.

1V =

√
2(KPV − 1)Pm
3ηVmp + β

(7)

1V will be determined by Vmp and Pm when KPV , η, and
β have constant values. Therefore, for each condition pre-
sented in Figure 3, 1V will be different. In some cases,
these changes are small; however, the PVI responds to these
changes based on its control system. Consequently, for two
different PVI, the waveform of both signals will have differ-
ent frequency components. A more detailed analysis of the
vripple calculation can be found in [3].

III. FAILURE DETECTION METHOD
The proposed method includes a training stage and a detec-
tion or decision-making stage. Figure 6 shows the flowchart
of the proposed method, which is divided into four processes.
InProcess 1, the data acquisition is performed, and the DFT is
applied. The storage and normalization of the data acquired
and digitally processed during Process 1 are carried out in
Process 2. Next, Process 3 involves the training of the KNN
network. Once the training is done, Process 4 is carried out;
a data vector is introduced at the input of the KNN network.
The category to which the vector of entry belongs is obtained
using the KNN algorithms.

A. PROCESS 1
The first step is acquiring the T , G, vstr , and istr signals that
the PVS generates under three conditions: healthy, partial
shading, and short circuit. The acquisition is performed at
fixed sampling frequency fs, and Z sampling are acquired
from each condition. p samples are acquired for each sam-
pling. After the acquisition, the absolute value of the fre-
quency components of the vstr and istr signals is obtained.
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FIGURE 6. Flowchart of the proposed method. In the first stage of the
process the database is obtained. The training takes place in the next
stage. Finally, decision-making is repeated indefinitely.

The DFT definition is used for that, along with Eq. (8) and
Eq. (9).

VF =

∣∣∣∣∣∣
p−1∑
∂=0

vstr (∂)e
−j 2πp F∂

∣∣∣∣∣∣→ F = 0, 1, . . . , p− 1 (8)

IF =

∣∣∣∣∣∣
p−1∑
∂=0

istr (∂)e
−j 2πp F∂

∣∣∣∣∣∣→ F = 0, 1, . . . , p− 1 (9)

where VF and IF are the vectors that contain the absolute
magnitudes of the frequency components. The T signal, G
signal and obtained data are stored in the vector ofmagnitudes
of frequencies of interest, called cV , which has the structure
shown in Eq. (10). The detailed description of all of Process
1 is shown in the flowchart of Fig. 7.

cV = [T ,G,VF (a0),VF (a2fg), IF (a0)] (10)

FIGURE 7. Flowchart used to obtain the cV vector of each condition of
the PVS.

B. PROCESS 2
This process is part of the training stage, and it creates an
array called dbV [jp] with jp = 1, 2, . . . , h, where h represents
the maximum record number. This matrix stores the cV vec-
tors that were obtained in Process 2 (see, Eq. (11)). These
vectors are the records that identify the behavior of a PVG
and which will be used in Process 3. On the other hand,
the detected condition of the PVS is assigned by integer val-
ues stored in a variable called arrC with arrC = 1, 2, . . . , c,
where c is the maximum value of possible conditions. All the
PVS conditions are stored in a vector called condV [jp] with
jp = 1, 2, . . . , h, where h is the maximum record number.
The vector is obtaining with Eq. (12). Process 2 is cyclical,
and its duration will be determined by the conditions imposed
in Fig. 6.

dbV [jp] = cV (11)

condV [jp] = arrC (12)

C. PROCESS 3
This process is also part of the training stage and consists
of applying the KNN algorithm to perform supervised learn-
ing [10], [25]. The KNN requires two input elements for this
purpose [26], [27]. Figure 8 shows that the first element is
the condV [jp] vector, and the second element is the dbV ′[jp]
matrix. The matrix contains the normalized elements of the
dbV [jp] matrix, which was stored during Process 2. Normal-
ization is a requirement of the KNN technique, and this is
carried out in the training and decision-making stages. This
normalization allows obtaining input values less than or equal
to one, regardless of the difference in orders of magnitude
between the variables.

The normalization of the training stage data consists of
multiplying the elements of the register stored in dbV [jp]
with a vector named Kn[b], where b = 1, 2, . . . , 5. The
value of each of the elements of Kn[b] is obtained using the
procedure indicated in Fig. 9, which is called the normal-
ization initiation stage in Fig. 8. T has the value of 25 ◦C,
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FIGURE 8. Graphic representation of the normalization process used in
the training and decision stages.

FIGURE 9. Initialization stage of normalization.

which is the theoretical reference temperature to generate a
voltage variation of the PVM due to temperature, whereas G
has the value 1000 Wm−2, which is the maximum irradiance
considered theoretically for a PVM.

The dbV ′[jp] matrix can be obtained through the procedure
described in Fig. 10. The procedure is carried out once the
Kn[b] vector is acquired. The KNN training function pro-
posed by the Python Scikit library is used once the normaliza-
tion of dbV vector is carried out. KNNonly organizes training
data in quick access structures such as Ball Tree or KD Tree,
unlike other artificial intelligence techniques. The value of 1
is assigned to the variable Trd to indicate the end of the KNN
training.

D. PROCESS 4
The classification of a particular case is carried out after
Process 3. This process is also called the decision-making
stage. A vector, called evV ′, is introduced to the decision-
making. The vector contains the normalized elements of
the evV vector (see Fig. 8). This last vector contains five
elements with structure and variables identical to the vector
cV (see Eq. (10)), which were acquired in Process 1. The

FIGURE 10. Procedure to obtain the dbV ′[jp] matrix.

data are not stored but are normalized after its acquisition,
unlike the training stage. The normalization process is the
same as that applied to the training stage during Process
3 (Figures 9 and 10). A mathematical algorithm is used to
locate the KNN within the dbV ′[jp] matrix, considering the
input vector evV ′ origin. This procedure is carried out once
the normalized input vector evV ′ has been obtained.

The most widely used mathematical procedure is that of
the Euclidean distance, the definition of which is shown in
Eq. (13).

d(evV ′, dbV ′) =

√√√√ 5∑
i=1

(evV ′i − dbV
′
i )
2 (13)

where i = 1, 2, . . . , 5, which is the maximum value of
parameters that each one of the analyzed vectors contains.

A vector of distances, called dV (d, arrC), is formed after
obtaining the Euclidean distances. The vector is composed of
j pairs, ordered from least to most significant as d distance
function (see Eq. (14)). The number of times each category
appears in the dV (d, arrC) vector is counted because arrC
may take the value of one or more categories or conditions of
the PVS. Finally, the test vector is assigned the category with
the highest number of matches in the dV (d, arrC) vector.

dV (d, arrC) = [[d0, arrC0] ,

[d1, arrC1] , . . . ,
[
dj−1, arrCj−1

]
] (14)
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FIGURE 11. Graphical representation of the Euclidean distance.

FIGURE 12. Flowchart for the general decision-making sequence.

where j is the number of neighbors to consider in the evalu-
ation. A graphical representation of the Euclidean distance
is shown in Fig. 11, where elements u, v, and w surround
the Q point. The distances, identified as du, dv, and dw, are
considered closest to the Q point. This point belongs to Cat1
category because dv and dw belong to the this category.

The methodology mentioned above to locate the nearest
neighbors is repeated for the processes indicated in Fig. 12.
It should be noted that each of these processes has a smaller
number of elements than the preceding process. The afore-
mentioned is because decision-making is carried out each
time for more specific cases.

TABLE 1. Simulated tests.

TABLE 2. Characteristics of the simulated modules.

The HF Process allows the detection of a healthy
state or failure state. If healthy, the messageHty State appears
on one display. Nevertheless, if a failure state is detected, then
the next level of analysis is performed. The level is called
FS1 Process. Therein, a specific type of condition present
in the PVS is located. If this failure is detected, the message
FS1 State is shown to the user. If this failure is not detected,
then the FS2 Process is applied, identifying whether the FS2
condition is present. If this failure is detected, the message
FS2 State will appear on display. Otherwise, the message
FS3 State will appear. The FS1 Process to FS3 Process do
not refer to a specific condition of the PVS. In other words,
the failure cases to be detected and their decision-making
sequence are not defined but will be established based on the
general behavior of the PVG to be evaluated.

IV. SIMULATION OF AN ELECTRICAL GRID
CONNECTED PVG
The simulation of a grid-connected PVG was carried out to
demonstrate the dependences between the PVS-PVI signal
and the irradiance conditions. Table 1 shows the tests carried
out in the simulation. The vstr and istr signals were measured
for each simulation.

The Photovoltaics library from OpenModelica was used
as a computational tool. The simulated PVS contained three
PVMs, and each PVMhad three protection diodes. Themodel
of the PVM used and its characteristics are shown in Table 2.
The PVI is a single-phase type, and it was designed with an H
bridge with semiconductor device technology. The electrical
grid has a voltage of 110 V and a frequency of 60 Hz. The
electrical diagram of the simulation is shown in Fig. 13.

V. EXPERIMENTAL CONFIGURATION AND CASE STUDIES
Experimental tests were carried out to evaluate the proposed
method. Two PVGs of different characteristics were studied,
which were called PVG1 and PVG2, and their PVSs were
called PVS1 and PVS2. The tests demonstrate the efficiency
of the proposed method because each of the used PVSs has a
different response in ripple voltage. Also, the PVMs used at
each site are from different manufacturers and with different
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FIGURE 13. Electrical diagram of the grid-connected PVG used in the
simulation.

TABLE 3. Test conditions.

internal configurations. The characteristics of each PVG will
be described in case study 1 and case study 2 subsections.

The PVMs were identified as Aw with w = 1, 2, . . . ,H ,
where H is the maximum number of PVMs for each PVS.
The experimental tests were carried out with the PVMs under
different conditions. Table 3 shows these conditions, along
with their identifiers and characteristics. It was verified that
there were no interferences on the PVMs surface for the Hty
condition.

The Ps1, Ps2, and Ps3 conditions were created artificially
through a canvas of non-transparent material. The canvas
was placed in the lower segment of the PVM to activate the
number of diodes corresponding to the type of condition (see
Table 3). Finally, the Sc1 condition was induced similarly
to what was carried out in [6]. This technique consists of
placing a cable segment between the two ends of the PVM,
which allows the passage of current with a minimum voltage
drop.

The T , G, vstr , and istr signals were measured in each test.
The signals were acquired at 8-second intervals and were
stored sequentially in the dbV [jp] matrix. The experimental
settings are shown in Fig. 14, and the PVS for each case
is shown in Fig. 15. The T signal was measured with a
model DS18B20 digital thermometer placed in direct contact
with one of the PVMs. On the other hand, the G signal
was measured with a Vaisala brand QMS101 pyranometer.
This sensor is analog with a linear response and a sensitivity
of 75 µ V/Wm−2. The sensor was placed parallel to the
plane of inclination of the PVS. Because the sensor is analog,
an ADC1115 analog-to-digital converter (ADC) was used,
with 16 conversion bits and 1Wire communication.

FIGURE 14. Experimental setup (a) Electrical diagram of PVG1, and (b)
Electrical diagram of PVG2.

FIGURE 15. Photovoltaic strings used in: (a) PVG1, and (b) PVG2.

The vstr and istr signals were conditioned before the mea-
surement. A resistive voltage divider and a resistive current
divider were used for this purpose. This conditioning was due
to the voltage levels required by the system or data acquisition
card (DAQ). A third of the istr signal was measured after
conditioning, via an ACS712 current sensor with an analog
output.

1000 samples were processed in all the study cases. This
number is half the number of acquired samples. This pro-
cess allows more stable data to be processed by selecting a
segment with the least difference between its minimum and
maximum value.

Performance analysis of the KNN response was performed
for the final choice of j. The training response was analyzed
with 70%, 60%, and 50% of the recorded dbV [jp] vectors.
Furthermore, the values of j from 1 to 15 were tested for
each of these cases. The amount of input data for training
depends on the records found in the dbV [jp] vector. Finally,
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TABLE 4. Characteristics of materials and equipment used.

the detected condition of the PVS is displayed on a liquid
crystal display (LCD).

A. CASE STUDY 1
Table 4 shows the characteristics of the PVG1 elements, and
Fig. 14(a) shows the block diagram of the experimental setup
of this case study. The PVG1 has 8 PVMs, identified from A1
to A8 (see Fig. 15(a)). The negative terminal of the PVS1 is
not connected to the ground of the DC − AC converter.
This configuration is due to the characteristics of the PVI.
The resistive voltage divider was set to provide 5.4% of vstr .
On the other hand, the istr signal was measured through
an ACS712-5 sensor, with a maximum measurement range
of 5 A and a resolution of 180 mV/A. A TBS1102B-EDU
Tektronix oscilloscope was used for data acquisition. The
control of communication via USB and data processing were
implemented on a Raspberry Pi 3 card, using the Python lan-
guage. The vstr and istr signals were acquired with a sampling
frequency of 5 kS/s, and 2000 samples were acquired per
period. On the other hand, Table 3 shows the test conditions
of the PVMs. The Ps3 case was not carried out because the
PVMs used only have two protection diodes.

The dbV [jp] matrix considered for the KNN network train-
ing were established within a range of temperatures and
irradiances. The T signal range was from 26 ◦C to 34 ◦C,
whereasG signal range was from 400Wm−2 to 1000Wm−2.

B. CASE STUDY 2
Table 4 shows the characteristics of the PVG2 elements.
The block diagram of the experimental configuration of this
case study is shown in Fig. 14(b). The PVG2 has 11 PVMs,
identified from A1 to A11 (see Fig. 15(b)). Furthermore,

FIGURE 16. Results of the simulation of a PVG at different irradiance
conditions. (a) Signal vstr in the time domain. (b) istr signal in the time
domain.

the negative terminal of the PVS2 is connected to the ground
of the DC-AC converter, unlike PVG1. This connection is
because this PVI has different features than those PVI used
in case study 1. The resistive voltage divider was set to
provide 2.54% of vstr . The istr signal was measured through
a sensor model ACS712-20, with a maximum measurement
range of 20 A, and a resolution of 100 mV/A.

A 12-bit DAQ MCC118 Measurement Computing was
used for data acquisition. DAQ control and data processing
were implemented on a Raspberry Pi 3 card, using the Python
language. The istr and vstr signals were acquired with a sam-
pling frequency of 2 kS/s, and 2000 samples were acquired
during each period. Table 3 shows conditions analyzed.

The range of temperatures and irradiances considered for
the dbV [jp] matrix were different from the temperatures and
irradiances of the case study 1. The T signal and G signal
ranges were from 40 ◦C to 50 ◦C and from 700 Wm−2 to
1000 Wm−2.

VI. RESULTS
This section analyzes the results obtained from the simula-
tion of a grid-connected PVG and the results obtained from
the experimental tests when applying the failure detection
method to two PVGs with different characteristics.

A. SIMULATION RESULTS OF A GRID-CONNECTED PVG
The results of the simulation of a grid-connected PVG are
shown in Fig. 16(a). The figure shows that the DC displace-
ment of the vstr signal and the low voltage component fre-
quency amplitude are modified when the irradiance changes.
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Furthermore, voltage changes due to partial shading and short
circuit conditions are agree with Eqs. 5 and 6, respectively.
Figure 16(b) shows that the istr signal also experiences an
adjustment in its waveform when the irradiance changes;
these changes agree with Eq. 4.

B. EXPERIMENTAL RESULTS OF CASE STUDY 1
The results of the first case study are analyzed below.
Figure 17(a) and (c) shows three segments of the vstr and istr
signals obtained from the experimental tests of the PVG1.
The figure includes the results of all the conditions performed
on the PVMs (Table 3). Figure 17 shows that the vstr and
istr signals have a DC shift. Also, a set of different frequen-
cies can be noticed. These results agree with the simulation.
Furthermore, Fig. 17(a) shows that the vstr signals have a low-
frequency component, which causes overlap between the vstr
signals obtained under different conditions. The aforemen-
tioned makes it difficult to immediately identify the condi-
tion to which a specific vstr signal belongs. Therefore, it is
necessary to analyze the signal in the frequency domain.

Figure 17(c) shows that the istr signals obtained in the
PVG1 present small oscillations in the order of tenths of
Ampere, which are not so significant. However, in some
instants of time, there are current peaks with amplitudes
bigger than 1 A. These current peaks affect the results of the
analysis in the frequency domain. Therefore, measurements
showing this type of oscillation should be discarded. Further-
more, Fig. 17(c) shows that for some PVS1 conditions, istr
signal levels are overlapping, which makes their detection
difficult.

On the other hand, Fig. 18(a) shows a three-dimensional
Cartesian plane containing the normalized magnitudes of the
frequency components VF [a0], VF [a2fg], and IF [a0]. These
components correspond to the frequencies of 0Hz and 120Hz
of the signals vstr and istr . The signals were obtained exper-
imentally from the PVG1 under some conditions presented
in Table 3. Figure 18 shows only a representative subset of
the data experimentally obtained from PVG1. This subset
belongs to tests with the T signal range from 30 ◦C to
31 ◦C, whereas the G signal range was from 400 Wm−2 to
1000 Wm−2.

Figure 18(b) shows that the normalized magnitudes,
belonging to the frequency components for the Hty and Ps1
conditions, are located in octant I. Figure 18(c) shows that
the magnitudes belonging to the Sc1 condition are located
in octant V. Finally, Fig. 18(d) shows that the normalized
magnitudes of the frequency components for Ps2 and Sc1
conditions are located in octants V and VI, respectively.
In general, Fig. 18 shows that each condition of the PVS1 is
located mostly in different octants. Therefore, the state of
the PVS1 can be identified from their vector of frequency
components. The small dispersions that occur in some cases
are solved by using the KNN technique. Table 5 shows the Kn
vector values obtained during the KNN training of the PVG1.

Table 6 shows the exclusive sequence of evaluation pro-
posed for the decision-making in the PVG1. The sequence is

FIGURE 17. Signals in the time domain obtained from the PVGs used in
the experimentation. (a) vstr from PVG1, (b) istr from PVG1, (c) vstr from
PVG2, (d) istr from PVG2.

based on the analysis of the distribution of normalized magni-
tudes of Figures 18 and 12. The last evaluated conditions are
the coordinates of the Ps2 and Sc1 conditions. It is because
they are very closed in the Fs2 process.

Figure 19(a) shows the results of the KNN efficiency of
PVG1, obtained during its training. The figure shows that the
best performances of the KNN are obtained with 70% and
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FIGURE 18. Set of normalized values for various conditions of the PVS1:
(a) data universe, (b) regions for Hty and Ps1 conditions, (c) regions for
Ps2 and Sc1 conditions, and (d) approach to the region for Ps2 condition.

TABLE 5. Values obtained of Kn for the PVG1 and PVG2.

TABLE 6. Proposed evaluation sequence for the case studies.

60% of the recorded dbV [jp] matrix. It can also be observed
that there is a coincidence between the three performances
analyzed when j takes a value of 9. Therefore, the value
of 9 was chosen as the number of nearest neighbors to be
considered at all evaluation levels.

Figure 20 shows the results of the evaluation sequence
(Table 6) for the decision-making. The results belong to the
condition of the 741 test cases of the PVG1. The figure shows
a 97% effectiveness in detecting Hty conditions and 100%
effectiveness in detecting the presence of failures. Out of this
100%, it was 100% effective in detecting the Ps1 condition
but was only 97% effective for detecting any Ps2 and Sc1

FIGURE 19. KNN efficiency of the (a) PVG1, and (b) PVG2.

FIGURE 20. Effectiveness of condition detection in the PVG1. (a) HF
Process, (b) FS1 Process, and (c) FS2 Process.

conditions. Finally, out of this 97%, a 58% effectiveness
was obtained when detecting the Ps2 condition, and a 61%
effectiveness for Sc1 condition.

C. EXPERIMENTAL RESULTS OF CASE STUDY 2
Figure 17(b) and (d) shows three segments of the vstr and
istr signals obtained from experimental tests of the PVG2.
The figure includes the results of all the conditions presented
in Table 3. The figure shows that the vstr and istr signals
show a DC shift, which coincides with the results obtained
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FIGURE 21. Set of normalized values for different conditions of the PVS2:
(a) Universe of data, (b) Regions for Hty and Sc1 conditions, (c) Regions
for the Ps1 and Ps2 conditions, and (d) Region for the Ps3 condition.

in the PVG1. Similarly, the set of different frequencies of
the PVI2 operation can be noticed. Figure 17(b) shows that
the vstr signal levels have a transition in some conditions
of the PVS, whose slope can be positive or negative. This
slope causes that, under different PVS conditions, the vstr sig-
nals overlap each other and make it difficult to immediately
identify the condition to which a given vstr signal belongs.
The amplitude of the low-frequency signal is not determined
directly. Therefore, it is necessary to analyze this signal in the
frequency domain.

On the other hand, Fig. 17(d) presents the istr signals
obtained in the PVG2. Although the istr signals show lower
oscillations than the istr signals obtained from the PVG1,
and although for the PVG2, there are no current peaks with
amplitudes bigger than 1 A, as happened for the PVG1, it is
not possible to detect some conditions of the PVS2. The istr
signals levels are overlapping for some conditions, as was the
case for conditions of the PVS1.

Figure 21(a) shows a three-dimensional Cartesian plane
containing the normalized magnitudes of the frequency com-
ponents VF [a0], VF [a2fg], and IF [a0]. These components
correspond to 0 Hz and 120 Hz frequencies of the vstr and
istr signals, which were obtained experimentally from the
PVG2 under the conditions specified in Table 3. Only a
representative subset of the experimental data obtained from
the PVG2 is shown in Fig. 21. This subset belongs to the T
signal tests in a range from 40 ◦C to 45 ◦C.As for theG signal,
values range from 800 Wm−2 to 1000 Wm−2.

FIGURE 22. Effectiveness of detection in the condition of the PVG2. (a) HF
Process, (b) FS1 Process, and (c) FS2 Process.

Figure 21(b) shows that the normalized magnitudes of the
frequency components for the Hty condition are located in
the octant I. In contrast, the magnitudes of the Sc1 condi-
tion are found in the octant V. Figure 21(c) shows that the
normalized magnitudes of the frequency components for the
Ps1 and Ps2 condition are located in the octant II and VI,
respectively. Finally, Fig. 21(d) shows that the magnitudes
for the Ps3 condition are located in octant VIII. In general,
Fig. 21 shows that each PVS condition is located mostly in
different octants. Therefore, the condition of the PVS2 can
be identified from their vector of frequency components. The
small dispersions that occur in some cases are solved by using
the KNN algorithm. Table 5 shows the values of theKn vector
for the PVG2.

Table 6 shows the exclusive sequence of evaluation pro-
posed for decision-making in the PVG2. The sequence was
obtained from the analysis of the distribution of normalized
magnitudes presented in Fig. 21. The Ps2 and Ps3 condi-
tions are in the same category because they show similar
results.

Figure 19(b) shows the results of the efficiency of the KNN
of the PVG2, obtained during training. This figure shows
that the best performances of the KNN are obtained with
70% and 60% of the recorded dbV [jp] matrix. The results
are the same as the obtained from the PVG1. There is a
coincidence between the two best performances when the
number of nearest neighbors to be considered at all evaluation
levels is 8.

Figure 22 shows the results of the evaluation sequence pre-
sented in Table 6. The results belong to the decision-making
in all 650 test cases on the PVG2. The figure shows that
the proposed methodology is 90% effective in detecting Hty
conditions and 99% effective in indicating the presence of a
failure. Out of this 99%, it was 97% effective in detecting con-
ditions due to some level of partial shading. Furthermore, this
third level of detection has a 75% effectiveness in detecting
Ps1 condition and 65% effectiveness for detecting Ps2 or Ps3
conditions. Validation tests for the Sc1 condition were not
carried out.
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TABLE 7. Comparative between proposed methodology and methods described in [2], [5], and [12].

VII. DISCUSSIONS
The classic proposals for the monitoring of photovoltaic
systems consider ideal performance conditions. However,
in order to subject them to real performance conditions,
adjustments to some parameters are necessary. Moreover,
there are methodologies whose operation depends on the
I −V curve of the set of PVM used. The procedure to obtain
the I − V curve involves stopping energy production in a
PVS or PVA. These are some of the features that limit apply-
ing this type ofmethodologies in real operating environments.

Table 7 provides a comparison between the proposed
methodology and the methods described in [2], [5], and [12].
In [2], it is necessary to compare the theoretical power of each
PVS against its generated power at a given instant. A measur-
ing device is used per each PVS, making the application of
the methodology costly. On other hand, the proposed method
in [5] uses a PVM of the entire PVS as a reference. The selec-
tion of the PVM with least deviation is difficult to perform
in large photovoltaic systems. In [12], the current generated
by each PVS is compared against the others. This proposal
only considers systems that have more than one string in
parallel. None of the three aforementionedmethods considers
the architecture of PVMs; and in some cases, the PVMs used
are not applicable in real environments.

Regarding the present proposal, two considerations must
be taken into account before applying the described method-
ology. First, it is necessary to have a DB with all the cases
to consider in the training stage. The lack of DB will cause
a delay in the initial stage of the process. Regarding the sec-
ond consideration, the DFT calculation can consume many
resources. Therefore, it is recommended to perform an anal-
ysis to obtain the appropriate number of samples per sampling
period.

VIII. CONCLUSION
In this work, a method for determining the condition of a grid-
connected PVG is presented. The developed methodology
allowed detecting if the PVMs of a PVG are in healthy
conditions or failure conditions. The methodology detects
anomalies and indicates if the failure is due to a PVM in
a short circuit or the failure is due to partial shading. The
method indicates the number of protection diodes that were

activated if the last condition arises. The proposed methodol-
ogy does not require specialized sensors nor specific condi-
tions that affect the electrical installation present in the PVS,
unlike other techniques. These characteristics allow adapting
the evaluation based on the general behavior of the PVG.
The considered environmental variables are temperature and
irradiance, whereas the electrical variables of interest are the
voltage and current generated from the interaction between
the PVS and the PVI.

The magnitudes of 0 Hz and 2fg Hz components are used
from the voltage signal, and only the magnitude of the 0 Hz
component is used from the current signal. Cartesian coor-
dinates are formed from these magnitudes and graphed in a
three-dimensional space. The coordinates belonging to each
of the PVS conditions are mostly located in different octants.
This distribution allowed for the detection of the condition
of the array based on its location. The small dispersions
that occur in some cases are solved using the KNN tech-
nique, which allows differentiating between conditions that
are very close to each other. The simplicity in implementing
the techniques used makes it possible to use devices with low
computational power, which is reflected in the decrease in
costs. An additional advantage of the proposed technique is
that it has a training stage, which allows it to adapt to the
performance conditions of different PVGs.

The simulation of a grid-connected PVG was carried out
as a first approximation to the analyzed phenomenon. The
simulation showed that the voltage and current signals gen-
erated from the interaction between the PVS and the PVI are
modified as a function of the conditions of the PVS.

On the other hand, the effectiveness of the proposed
methodology was experimentally validated in two grid-
connected PVGs, which have different characteristics. The
detection results show effectiveness greater than 90% in
the first evaluation levels, whereas there is a slightly lower
detection certainty in anomalous conditions with coordinates
that are very close to each other. However, the system has
100% certainty when detecting the presence of an abnormal
condition.

Finally, the proposed methodology could be included as an
additional element in the design of new PVIs, which offers
PVGs users a tool to obtain a better performance or avoid
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accidents. It is according to the results and characteristics of
the signals used.
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