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ABSTRACT Forecasting of energy consumption in Smart Buildings (SB) and using the extracted
information to plan and operate power generation are crucial elements of the Smart Grid (SG) energy
management. Prediction of electrical loads and scheduling the generation resources to match the demand
enable the utility to mitigate the energy generation cost. Different methodologies have been employed to
predict energy consumption at different levels of distribution and transmission systems. In this paper, a novel
hybrid deep learning model is proposed to predict energy consumption in smart buildings. The proposed
framework consists of two stages, namely, data cleaning, and model building. The data cleaning phase applies
pre-processing techniques to the raw data and adds additional features of lag values. In the model-building
phase, the hybrid model is trained on the processed data. The hybrid deep learning (DL) model is based on the
stacking of fully connected layers, and unidirectional Long Short Term Memory (LSTMs) on bi-directional
LSTMs. The proposed model is designed to capture the temporal dependencies of energy consumption on
dependent features and to be effective in terms of computational complexity, training time, and forecasting
accuracy. The proposed model is evaluated on two benchmark energy consumption datasets yielding superior
performance in terms of accuracy when compared with widely used hybrid models such as Convolutional
(Conv) Neural Network-LSTM, ConvLSTM, LSTM encoder-decoder model, stacking models, etc. A mean
absolute percentage error (MAPE) of 2.00% for case study 1 and a MAPE of 3.71% for case study 2 is
obtained for the proposed forecasting DL. model in comparison with LSTM-based models that yielded 7.80%
MAPE and 5.099% MAPE for two datasets respectively. The proposed model has also been applied for
multi-step week-ahead daily forecasting with an improvement of 8.368% and 20.99% in MAPE against the
LSTM-based model for the utilized energy consumption datasets respectively.

INDEX TERMS Appliances energy forecasting, bidirectional LSTM, deep learning, hybrid model, power
forecasting.

I. INTRODUCTION

Energy consumption in buildings is one of the significant
contributors to energy efficiency programs worldwide [1].
Additionally, a major component of the energy consumed
in the buildings is wasted through over-utilization of energy
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appliances such as exhaust fans, and Heating, Ventilation,
Air Conditioning (HVAC) systems, ineffective control over
thermal comfort, and not optimizing the start-up time and
sequencing of electrical equipment. Therefore, it is essen-
tial to properly manage energy consumption in buildings
which could be done by creating smart buildings (SB)
with installed sensors, measuring devices, and various con-
trol strategies [2]. One of the management stages to realize
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demand-side response is to predict the household energy
consumption with high accuracy. If the short-term load fore-
casting at the building level is obtained with high accuracy
and precision, the power utilities can utilize the information
to manage the operation and maintenance of power systems.
This would help the utilities to match the generation of power
with the load demand, thereby enabling them to plan and
schedule the energy resources.

Energy consumption profile at the building level consists of
three components [3]: 1) Regular consumption patterns that
can be recognized from the inherent historical load patterns in
the building, 2) Uncertain consumption patterns owing to the
different daily weather conditions, and 3) Noise component
that cannot be physically modeled.

Short-term load forecasting at aggregated levels has a
majority component corresponding to regular consumption
patterns and therefore, it is easier to predict with a high
degree of accuracy. Household-level energy consumption is
volatile and uncertain owing to the unpredictable patterns due
to weather conditions. Furthermore, customer consumption
behavior may change based on various reasons, including
the weather. Hence, the consumption depends on individual
consumer behavior, and it is too stochastic to predict easily.
Therefore, the challenge in short-term energy forecasting at
the building level is to predict the uncertain patterns consider-
ing the weather conditions and stochastic nature of consumer
consumption behavior.

Considering that the energy consumption in buildings is
highly volatile and unpredictable, deep learning techniques
are forerunners in developing highly accurate prediction
models. Extensive research has been performed in the last
decade to forecast load at aggregated levels [4]-[6]. In [4],
density-based spatial clustering of applications with noise
(DBSCAN) algorithm was utilized to aggregate different sub-
zones into clusters based on the historical yearly energy
consumption values and the forecasting models are developed
at an aggregated level of cluster. Considering the variation
of consumption behavior between households, the house-
holds were clustered, the aggregate forecasts for each clus-
ter were determined separately, and finally, the forecasts
were aggregated in [5]. The aggregation of the residential
load was proposed and the percentage of users within a
cluster that should be equipped with smart meters and sub-
metering capability was determined in [6]. However, the
work on short-term energy forecasting at the household con-
sumer level is still limited. Energy forecasting and man-
agement methods for household-level consumption include
time series analysis, metaheuristic algorithms such as binary
backtracking search algorithm in home energy management
systems (HEMS), machine learning approaches such as sup-
port vector machines, deep learning methods such as neu-
ral networks, and ensemble deep learning models [7]-[16].
Among deep learning models, Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) have
been extensively used in energy forecasting problems. CNN
is a feed-forward neural network that bases its calculations
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on convolutions. RNN is a recurrent neural network in time
with cells whose internal states depict the dynamic behav-
ior of the dependent feature with time. Long Short Term
Memory (LSTM) is a type of RNN and it has three gates
to decide which information to move forward and which
information to discard. It has been found that LSTM models
are more accurate than RNN models. The CNNs have been
employed in hybrid models in the first phases to get accurate
performance without feature extraction phase [16]. How-
ever, the complexity of CNN models depends on multiple
factors including convolution process, kernel number, and
large memory access. Whereas LSTM networks are based
on space and time and the input size does not exponentially
grow network requirements. After considering the above
factors, the bi-directional LSTM layer is used to extract
information from features instead of complex CNN layer,
and stacking of LSTM layers on dense layers is used to
forecast the dependent variable i.e. energy consumption in
our work. Also, the proposed model is evaluated in terms of
accuracy and training time performance against the widely
used hybrid models including the LSTM encoder-decoder
model, CNN-LSTM, ConvLSTM, and another ensemble
model.

The key contributions of this work include the following:

1) A novel hybrid deep learning model is built using
stacked bi-directional and uni-directional LSTM mod-
els allowing the learning of exceedingly non-linear
and convoluted patterns and correlations in data that
are beyond the reach of classical uni-directional
architectures.

2) Two real case studies are depicted to demonstrate the
accuracy of the proposed model in forecasting the
appliances’ energy consumption at the household level
in buildings with sensors.

3) Quantitative analyses are performed through score met-
rics and the effectiveness of the proposed model is
demonstrated in comparison with the existing state-of-
the-art approaches.

4) The proposed model architecture, effects of model
parameters and hyperparameters, and impression of
adding lag energy features are meticulously stud-
ied. Furthermore, the proposed model is compared
with other deep learning models on two different
datasets.

The remainder of the paper is structured as follows.
Section II describes the literature review on bi-directional
LSTMs and machine learning models utilized in household-
level energy forecasting. Section III discusses the archi-
tecture of the proposed component deep learning layers.
Section IV proposes a short-term load forecasting method-
ology utilizing the proposed Hybrid Stacked Bi-directional
Uni-directional Fully connected (HSBUFC) model architec-
ture. In Section V, the performance of the proposed method-
ology is evaluated against the benchmark and traditional
deep learning models. Finally, conclusions are drawn in
Section VI.
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Il. RELATED WORK

Short-term load forecasting at the household level is currently
of much research interest with the integration of renewable
energy resources in smart grids at the distribution level [17].
The volatile load demand patterns at the consumer level, if
predicted with high accuracy, will help in load balancing and
renewable energy efficient utilization. Initial works on short-
term load forecasting at the household level included the time
series analyses and traditional statistical approaches. With
the research interest shifting to artificial intelligence, various
machine learning approaches and deep learning techniques
have been utilized to forecast the energy consumption at
the household level. In [18], Moradzadeh et al. proposed
multilayer perceptron (MLP) and support vector regression
(SVR) models trained on buildings’ structural characteris-
tics and technical parameters data for forecasting cooling
and heating loads in residential buildings. They reported a
very high correlation coefficient value of 0.9993 using their
proposed models. In [15], Wang et al. proposed a two-stage
forecasting methodology. In the first stage, the traditional
time forecasting models were utilized to perform a day ahead
load forecasts. To enhance the accuracy of the forecasts, the
second stage utilized models such as support vector machines
(SVM), linear regression, and quadratic models to generate
predictions of deviations. These deviations were integrated
with the forecasts from the first stage to yield the overall
forecast values with an average Mean Absolute Percentage
Error (MAPE) of 5.21 %. However, the SVM model is not
suitable for big data as the training time for the SVM model
scales super linearly with the increase in data records.

In [19], Rafiei et al. proposed wavelet pre-processing,
improved wavelet neural networks, and generalized extreme
learning machines (ELMs) on training data. The predictions
of the load were provided as intervals keeping in mind the
uncertainties of the forecasting models and data noise. ELMs
are neural networks with a single hidden layer. The usual
disadvantages of ELMs are that the forecasting accuracy is
heavily dependent on the activation function, and the gener-
alization is poor. These shortcomings were effectively tackled
by the introduction of wavelets as the activation functions in
their methodology. However, the ELM-based methods do not
effectively perform deep extraction of inherent information
and features associated with energy consumption data owing
to their single layer-based modeling.

In [20], the authors established mathematical models of
backpropagation neural networks and Elman neural net-
work. These models were used with small learning rates,
and layers to store internal states, and to deal with time-
varying characteristics of energy consumption data. Their
results concluded that Elman neural networks perform better
in dynamic load forecasting than backpropagation neural
networks. However, these neural network-based models are
bound to converge to local minima rather than global min-
ima. This leads to poor generalization and further, causes
overfitting.
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Recently, a lot of research attention has been focused
on the development of deep learning models to recognize
patterns in the energy consumption data and to perform
the forecasts with high accuracy and efficiency. Typically,
deep learning models suffer from the problem of explod-
ing gradients (i.e. learning diverges) or vanishing gradients
(i.e. the learning stops). This problem is taken care of by
LSTM networks that introduce memory cells and computing
gates. LSTMs are types of RNNs that have been utilized
in the past for time-series analyses and load forecasting
problems. In our recent works, multiple efficient and accu-
rate energy consumption forecasting models were devel-
oped based on ensemble models, extreme learning machines,
LSTMs, deep neural networks, and dimensionality reduction
techniques [14], [21], [22].

In [23], the authors developed hybrid sequential learning
based on the deep learning model. Their solution utilizes
CNN in the first phase to extract the features from the energy
consumption dataset and uses Gated Recurrent Unit (GRU)
in the second phase to utilize its effective gated structure
to make predictions. However, GRU-based models do not
have as great volatility as LSTM-based models owing to their
simplicity and a smaller number of gates for the gradient flow.

In [11], the authors proposed an advanced domain fusion
methodology based on CNN, which derived the time-domain
and frequency-domain features representing the changing
energy consumption trends, LSTM layers, and Discrete
Wavelet Transforms (DWT). The authors reported a MAPE
of around 1% on two datasets, which comprise energy con-
sumption (MW) information at aggregated levels. However,
this methodology was not tested on the disaggregated level of
household consumption or appliance energy use.

In [12], Kong et al. proposed an LSTM memory-based
framework for short-term energy forecasting at the residential
level. They incorporated the appliances energy data from a
Canadian household to illustrate the efficacy of their deep
learning framework. Although minutely data were available,
an aggregation of thirty minutes has been utilized in their
work. However, only six appliances’ energy data were uti-
lized in the study. Their results were compared against the
benchmarking models of Feed Forward Neural Networks
(FFNN) and k-Nearest Neighbors (k-NN). The superior per-
formance of the LSTM-based model, with a MAPE of
21.99% was displayed. In the current work, the bi-directional
LSTM-based hybrid model was utilized to improve the accu-
racy of forecasts.

To combine the strengths of different models and their
knowledge representations, many studies have been made
on hybrid models to perform accurate energy forecasting.
In [24], four learning algorithms i.e. k-NN regressor, SVR,
XGBoost, and genetic algorithm (GA) were combined to
propose an ensemble model for forecasting electricity con-
sumption at the distribution transformer level. Forecasting
day-ahead photovoltaic power has been performed in [25]
using LSTM and auto-encoder persistence model while
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handling uncertainties and predictions for complex weather
variables. Air conditioning energy prediction has been per-
formed in [26] using a meta ensemble machine learning
model based on stacked auto-encoders to optimize prosumer
energy management. A hybrid ensemble strategy involving
bagging, boosting, and random subspace with pruning on
LSTM-based models has been suggested in [27] to extract
the features from multi-feature data on industrial power load
and a new loss function was proposed to balance the tradeoff
between bias-variance and to reduce peak load prediction
error. In [28], deterministic and probabilistic low-voltage load
forecasting was performed using a hybrid ensemble deep
learning model based on deep belief networks. In the same
work, the regression ability of the networks was improved by
utilizing bagging and boosting techniques and the weights of
sub-models in the ensemble were optimally determined by
using the k-nearest neighbor method. A comparative study of
a novel hybrid artificial intelligence (AI) and deep learning
(DL) model for power distribution networks was performed in
[29], where Al techniques such as optimally pruned extreme
learning machines (OP-ELM), adaptive neuro-fuzzy infer-
ence system (ANFIS) and deep learning techniques such as
LSTM were examined.

Several recent works were based on LSTM-based models
and these models were developed using past data. However,
there are other invariants of LSTMs that consider not only
the past inputs but also the future context values [30]. The
output of distinct hidden layers in either direction is passed
through connections to the same layer, and this is the concept
of bidirectional LSTMs that are utilized in the proposed work.
The advantages of bidirectional LSTMs are 1) to exploit the
data features to extract the bidirectional temporal dependen-
cies from available data, and 2) to preserve the information
from past and future inputs in the hidden states of LSTM cells.

The proposed model in this paper outperforms [31] in
energy consumption forecasting. The same dataset is uti-
lized in the current paper and reference work [31]. In [31],
the authors developed data-driven models based on gradient
boosting machines, random forests, support vector machines
with radial basis function, and multiple linear regression.
The authors reported the lowest MAPE of 13.43% for their
model predictions using random forests. Although various
deep learning or hybrid models are developed to forecast
energy consumption at the household level, the error rate
is high. Hence, in this work, a hybrid model (HSBUFC) is
developed based on the stacking of bi-directional and uni-
directional LSTMs followed by fully connected dense layers
to achieve the forecasts with high accuracy and low error
percentages as compared to the mentioned models.

lIl. ARCHITECTURE OF DEEP LEARNING MODELS

In this section, the architectures of the uni-directional and
bidirectional LSTMs are discussed. The forward and back-
ward passes in bi-directional LSTMs are utilized to recognize
inherent patterns in energy consumption data using past and
future inputs.
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FIGURE 1. Overview of LSTM cell.

A. UNI-DIRECTIONAL LSTMS (OR LSTMS)

LSTM is a type of Recurrent Neural Network that is clas-
sically built to process, analyze, and forecast sequence
data [32]. The RNN model predicts based on the input of
the current time step and the output from the previous time
step. In addition to the ability to utilize information from
the recurrent connections to the outputs of previous time
steps, LSTMs also have memory cells to accumulate steps
over prediction sequences enabling them to perform better
with long-term dependency tasks such as energy forecasting.
Also, the existence of gates and more complex recurrent
units in LSTMs enable them to control the information that
is passed through and overcome the problem of vanishing
gradients [33].

The LSTM unit can be defined as a collection of vectors
in RY at every time step ¢. The overview of the LSTM cell
is illustrated in Figure 1. LSTM vectors are presented as
follows [34].

Memory cell (m,): It is given by the following:

my=fr-m_1+i ¢ ()
where ¢, is given by
¢ = Tanh(Wy, - [hi—1, y;1 + bm) 2

where ¢ symbolizes the current time step, t — 1 symbolizes
the previous time step, W,, represents the weight matrix for
memory cell neurons, /;_1 represents the hidden state at step
t — 1, y; represents input at step ¢, and b,, represents bias for
memory cell units.

Input gate (i;): It is given by the following:

ir =0 (Wi [hi—1, y, ]+ bi) 3
Forget gate (f;): a gate that resets the old memory.
Jo=oWr - [hi—1, 5,1+ by) “
Output (0;): Output of LSTM unit and output valve.
0 =0(Wo - [hi—1, y;1 + bo) &)
Hidden cell state (4;): A, is given as follows.
hy = oy x Tanh(my) (6)
33501
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FIGURE 2. The architecture of unfolded bi-directional LSTM model.

INPUTS

The LSTM cell using its structure (as depicted in Figure 1)
processes information in four steps as follows. The cell for-
gets the irrelevant parts of the previous states, stores the
relevant parts of new information into its cell state, updates
the relevant information from prior and current input into its
internal cell states, and yields outputs as inputs for the next
time step.

B. BI-DIRECTIONAL LSTMS

Bi-directional LSTM is a development over uni-directional
LSTM models. The bi-directional LSTMs process the inputs
in two directions - in the forward pass, from past inputs to
future inputs, and in the backward pass, from future inputs
to past inputs. The combination of hidden states from the
forwarding pass and backward pass preserves the informa-
tion from both past inputs and future inputs through two
different hidden layers. The output from these hidden layers
is passed to the single identical output layer. This allows
the bidirectional LSTMs to preserve the context and data
patterns better from both past and future inputs without delay.
It has been proven that bi-directional LSTMs perform better
predictions and classifications than uni-directional LSTMs
in diverse fields such as speech recognition [35]. However,
the advantages of bi-directional LSTMs have not been much
explored in the field of energy consumption forecasting in
smart grids.

The architecture of the unfolded bi-directional LSTM
model, comprising of forwarding LSTM units and backward
LSTM units, is depicted in Figure 2. The forward pass output
(;z) is successfully determined using inputs in the positive
sequence of time from 7' — k& to T — 1. Whereas the backward
pass output (Z) is successfully determined using inputs in the
negative sequence of time from 7" + k to T + 1. There are
no hidden-to-hidden layer connections between the forward
LSTM units and the backward LSTM units. The calculations
of outputs of the forward pass and backward pass utilize the
traditional LSTM functions, i.e. equations (1) to (6). The final
output vector of the bi-directional LSTM layer is represented
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asZr = 27—k, 2ZT—k+1> - - - -» 2T—1]- Each element in the final
output vector is given by the following:

2 =0k, hy) )

where o represents a function used to integrate the outputs
from forwarding pass and backward pass. The o function can
be a summation, averaging, concatenating, or multiplication
function. And the forward pass output (7) and backward pass

output (Z) are given as follows.

h=H (Wi + Wighes1 + by) @)

=1

=H <WyZYt T Weehipr + b}?) )

where H represents the hidden layer function, y, represents
the input sequence.

IV. PROPOSED HYBRID METHODOLOGY

In this section, the proposed methodology that performs high
accuracy predictions of energy consumption at the household
level is presented.

A. DATA ACQUISITION
1) UCI APPLIANCES ENERGY DATASET
To build and evaluate the proposed hybrid model, a real-world
dataset of appliances energy consumption is used. The dataset
is available online and was collected in a smart building
fitted with different temperature and humidity sensors [36].
The different features in data used in the current analyses
with a proposed hybrid deep learning model are described
in Table 1. Apart from data on temperature and humidity in
different rooms, appliances energy use, light fixtures energy
use, weather data from the nearby weather station, outdoor
temperature, outdoor relative humidity, atmospheric pressure,
wind speed, visibility, and dewpoint temperature data are
available.

The data were collected for a period of five months ranging
from 11 January 2016 to 27 May 2016. The frequency of
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TABLE 1. Description of features in the UCI appliances energy dataset.

S.No. Features Units Feature description

1 Date mm-dd-yy hh:mm Date & Time of energy use

2 Appliances Energy Use Wh Energy consumed by all the appliances in the house

3 Light Fixtures Energy Use Wh Energy consumed by the light fixtures in the house

4-12 Indoor Room Temperature Celsius Room temperature is recorded for nine rooms in the house including but not
limited to the laundry room, bedroom, kitchen room, etc.

13-21 Indoor Relative Humidity % The relative humidity is recorded for nine rooms in the house including but not
limited to the laundry room, bedroom, kitchen room, etc.

22 Outdoor Room Temperature Celsius The outdoor external temperature is collected from the nearest weather station.

23 Outdoor Relative Humidity % Outdoor external relative humidity recorded.

24 Pressure mm Hg Atmospheric pressure is collected from the nearest weather station.

25 Windspeed m/s Speed of the wind as collected from the nearest weather station.

26 Visibility km Visibility as collected from the nearest weather station.

27 Dewpoint A°C Dewpoint temperature as collected from the nearest weather station.

28-48 Lag values Wh Past values of appliances energy used as features in the dataset.

TABLE 2. Descriptive statistics of data features in UCI appliances energy dataset.

Features Min (Wh)  Max (Wh) Mean (Wh) Std. deviation (Wh)
Appliances 10.00 1080.00 97.6949 102.5248
Lights 0.00 70.00 3.8018 7.9359
Indoor Temperature Features (4-12) -6.0650 29.8567 19.3817 4.9952
Indoor Relative Humidity (13-21) 1.00 99.90 42.7094 12.8473
Outdoor Temperature -5.00 26.10 7.4125 5.3184
Outdoor Relative Humidity 24.00 100.00 79.7504 14.9010
Atmospheric Pressure 729.30 772.30 755.5226 7.3994
Wind speed 0.00 14.00 4.0397 24512
Visibility 1.00 66.00 38.3308 11.7947
Dewpoint temperature -6.60 15.50 3.7609 4.1952
Rvl 0.0053 49.9965 24.9880 14.4966
Rv2 0.0053 49.9965 24,9880 14.4966

data was 10 minutes. For the forecasting, the next time step - ,

temperature and humidity values are utilized in regression [\

models with an assumption that these values are obtainable. - I\

Also, weather forecasting is exceptionally accurate in current A

times. The descriptive statistics of data features are men- gl

tioned in Table 2. The standard deviation, mean, maximum, = oo | \

and minimum values of different attributes are tabulated. oo | |

The table indicates that the appliances’ energy consumption oo0zs N

has a high standard deviation corroborating the fact that a0 e T -

the energy consumption at the household/appliances level is
highly volatile. Figure 3 depicts the data distribution of the
target feature that is appliance energy use. It can be observed
that the distribution has a long tail indicating the high variance
of data.

There is a strong correlation between the appliance energy
use and weather features such as outdoor relative humidity,
outdoor temperature, visibility, wind speed, etc. Also, these
weather features have irregular distribution. This is depicted
in the distribution plot of the various weather features, as
shown in Figure 4.
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Appliance energy use in Wh

FIGURE 3. Distribution plot of appliance energy use.

2) UCI HOUSEHOLD ENERGY DATASET

An individual household electric energy consumption dataset
is utilized to evaluate the performance of the proposed
model. The dataset is available in the dataset archive
of the University of California, Irvine (UCI) Machine
Learning repository [37]. The data contain 2075259 records
for 9 attributes. The measurements are collected over a period
of 4 years with a frequency of one minute from December
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TABLE 3. Data Attributes in UCI household energy dataset.

S.No. Attributes Units Attribute details

1 Date dd/mm/yyyy Date of energy consumption

2 Time hh:mm:ss Time of energy consumption

3 Global Active Power kW household global minute-averaged active power

4 Global Reactive Power kW household global minute-averaged reactive power

5 Voltage \" minute-averaged voltage

6 Global Current Intensity ~ Amps. household global minute-averaged current intensity.

7 Sub Metering 1 Wh of active energy  energy sub-metering corresponding to the kitchen, containing mainly a dishwasher, an
oven and a microwave.

8 Sub Metering 2 Wh of active energy  energy sub-metering corresponding to the laundry room, containing a washing-machine,
a tumble-drier, a refrigerator and a light.

9 Sub Metering 3 Wh of active energy  energy sub-metering corresponding to an electric water-heater and an air-conditioner.

10-74 Lag values kW Past values of global active power used as features in the dataset.

TABLE 4. Descriptive statistics of data features in UCI household energy dataset.

Features Min (kW) Max (kW) Mean (kW) Std. deviation (kW)
Global Active Power 0.076000 11.122000 1.091615 1.057294
Global Reactive Power 0.000000 1.390000 0.123714 0.112722
Voltage 223.200000 254.150000 240.839858 3.239987
Global Current Intensity 0.200000 48.400000 4.627759 4.444396
Sub Metering 1 0.000000 88.000000 1.121923 6.153031
Sub Metering 2 0.000000 80.000000 1.298520 5.822026
Sub Metering 3 0.000000 31.000000 6.458447 8.437154

20

BH & Tdewpoint

40 ) o o 5 10 15
Visibility red

FIGURE 4. Distribution plot of features with irregular distribution.

2006 to November 2010. The different attributes in the energy
consumption data are described in Table 3. Electrical quanti-
ties such as minute-average voltage values, minute-average
current values, active power, reactive power, sub-metering
values are available. There are missing values for 1.25%
of the measurement records. Imputation methods have been
utilized to deal with the missing values [38]. The descriptive
statistics of data features are mentioned in Table 4. The
standard deviation, mean, maximum, and minimum values of
different attributes are tabulated.

The collected data were scaled using a minimum-
maximum scaler, as per Equation 10 [39], before passing
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the data to the deep learning model. The range of the
scaled values was set to [0, 1] inclusive of both the extreme
values.

5&{” _ xin_xm,min (10)

Xm,max —Xm,min

where ), and xJ, correspond to the scaled value and actual
value for feature ‘m’ at time step ‘j°, respectively. And, X max
and Xy, uin correspond to the maximum and minimum of
actual value for feature ‘m’ respectively.

The data in case study 1 has 19,736 records and data from
case study 2 has 2075259 records. We have selected case
study 2 with a larger dataset to prove the scalability of the pro-
posed model and that the proposed model is computationally
competent to the commonly employed deep learning hybrid
models. Furthermore, additional features that represent the
past values of energy consumption/power were added to the
dataset for modeling. These past values are referred to as lag
values.

In this work, the short-term energy forecasting problem is
formulated (with a frequency of 1 to 10 minutes) as follows.
Consider that the recorded energy consumption or power
values are given by the time series E up to time steps j’. E is
represented as:

E=e1,er,e3,.....,¢/,...... e, 1=<t=<j (1D
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FIGURE 5. The framework of proposed hybrid stacked model.

where e, represents the t™ energy consumption for time step 7.

Each time step is of ‘.4’ minutes duration (k = 10 in case
study 1 and k = 1 in case study 2) with the maximum value
of time steps equal to j. The energy consumption problem is
to forecast energy consumption value for the next time step
t + 1 using the previous ‘I’ time step energy consumption
values and different indoor and outdoor environment features
using the machine learning model ‘f” which is represented as:

1+1
e =1 <61+t—1132+t—l933+t—17-~---set7M + ) (12)

where M'*! represents the values of the set of features (that
represent the indoor and outdoor environment variables) at
time step ¢ + 1.

The number of lag features was set to 21 in case study 1 and
set to 65 in case study 2 after the optimization of the param-
eter. The optimization is performed using the grid search
algorithm, and the metric used for optimization is the root
mean square error of predictions.

B. PROPOSED MODEL ARCHITECTURE

The framework of the proposed hybrid stacked bi-directional
uni-directional LSTM with fully connected dense layers
(HSBUFC) model is illustrated in Figure 5. HSBUFC model
consists of three types of layers: 1) Bidirectional LSTM
layer, 2) Stacked Uni-directional LSTM layers, and 3) Fully
connected layers/dense layers. As discussed in the earlier
section, bi-directional LSTMs make use of both forward and
backward dependencies. The temporal long-term dependen-
cies of the energy consumption values are extracted during
the feature learning process in two directions by the initial
layer of bi-directional LSTM. Next, LSTM layers, which are
efficient in the forward dependencies, are employed in the
top layers, which receive the outputs from the lower layer
after learning from the extracted comprehensive and complex
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features. In neural network architectures, one of the most
powerful ways of regularization and avoiding overfitting is
the mechanism of dropout [40]. Dropout refers to eliminat-
ing a percentage of neuron units i.e. removing the ingoing
and outgoing connections from the neuron units resulting
in a diminished network. Dropout layers are adopted by the
hybrid model within the stack of uni-directional LSTM layers
to prevent overfitting. Also, the use of early stopping yields
better model generalization by aiding avoidance of overfit-
ting. Finally, the fully connected dense layers are employed to
learn the representations extracted till the previous layer and
the final dense layer makes predictions of energy consump-
tion for successive future time steps. The effectiveness of
the bi-directional LSTM layer and stacking of uni-directional
LSTM layers is that the amalgam model can learn long-term
dependencies and model implicit representation concealed in
the sequential data. In energy consumption or load forecast-
ing application, the historical consumption data are available
at once. On that account, there is no rationale not to exploit
future and history dependencies together at any time point
while training machine learning models.

Different parameters, model parameters, and hyperparam-
eters such as activation function in the hidden layer, batch
size, dropout, learning rate, network weight initialization,
number of neurons in the hidden layer, number of layers in
stacking, optimization algorithm, training epochs, etc. are
optimized. Mean absolute error is used as a loss function
and Adam solver is utilized as a gradient descent optimiza-
tion algorithm. Adam solver was selected after investigat-
ing it against Adadelta, Adagrad, Adamax, RMSProp, and
stochastic gradient descent (SGD). Randomized search cross-
validation is exploited to perform a search for optimum
parameter values from a defined dictionary of parameters and
the possible range of values. Batch size is referred to the
number of training points that are utilized in one iteration
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TABLE 5. Parameter settings for deep learning layers in the proposed
model.

Parameter settings Value

Batch size 128

Epoch {50, 100}
Activation {tanh, linear, ReLU}

Dropout after LSTM layer 25%
Loss function Mean absolute error

Model optimizer Adam

of training. Recurrent networks such as CNN, LSTM, etc.
are very sensitive to the batch size and hence, crucial to
be optimized in our case. Furthermore, there are merits and
demerits in adopting the low value to batch size. Low batch
size value requires less memory and classically the networks
train faster with mini-batches. Nevertheless, the smaller the
batch size gets, the lesser accurate the gradient estimate
will be. To optimize the number of epochs, the training was
performed initially by maintaining a large number for the
maximum number of epochs and early stopping with the
patience of 10 epochs. This method yielded a model that does
not overfit and provided an approximate range for the number
of epochs to start with. A few of the optimized parameter
settings that are obtained after randomized search cross-
validation (CV) strategy for the stacked deep learning layers
of the proposed model are mentioned in Table 5.

V. EXPERIMENTAL RESULTS

In this section, several experiments were performed with a
goal to obtain high accuracy energy forecasting in smart
buildings using the proposed HSBUFC model and to com-
pare the performance of the proposed model with that
of other baseline models and widely employed hybrid
deep learning models. The baseline models include linear
regression, ELM, neural networks, uni-directional LSTM,
stacked LSTM models, and bi-directional LSTM model.
The commonly deployed hybrid models include LSTM
encoder-decoder model, CNN-LSTM, ConvLSTM, and other
ensemble models.

The experimental results have been obtained after the
execution on a supercomputer with the specifications of
Nodes: 1, Cores: 8, Intel Central Processing Unit (CPU)
with clock rate: 2.4 GHz, Random Access Memory (RAM):
256 GB, Network speed: 40-100 Gpbs, and programming
environment: python. 80% of the data was used for training,
and 20% of the data was used as a testing dataset. The train
and test datasets were generated using a resampling proce-
dure of k-fold cross-validation. The value of k was chosen to
be 5 as it has been empirically proven in the literature to yield
better model generalization and to avoid high model bias
and variance [41]. To consider the temporal dependencies

33506

= True values
== Predicted values

h
-
1=}
S
=}

800

600

400

200

Appliances Energy Use (Wh)

=== EESEzZEEEEES====3
TTTdTcTIgaEEiEaEEEEREREEAT TS T
000 000000 0000000000000 oo
I R I s T B e B B B (s s B B s B B B B B
I T IO - B R R
- o - o
Time

FIGURE 6. Case study 1 actual v/s predicted values for appliances energy
use.

= True values
== Predicted values

N w N w

Household Active Power (kW)

[=)

COO0O0O0C0DOO0OO0O0DO0O0D0DODO00O0O000O0CDO0D0O0O00OCQ

S0090505060606569595966060950635565903

LMOMM~HNIME~EAN M~ A NN ANOME~EAN M AWNm

NMueNmMY NI ANTNONMUOANT NI N

AHANNNNMMAMOMSE TS ONONO OO OSSNSO ®

A A A A A A AT A A A A A A A A A A A A A A A A A A
Time

FIGURE 7. Case study 2 actual v/s predicted values for global active
power.

of energy consumption on the DateTime feature, lag val-
ues of energy consumption are added as additional features
to the dataset before k-fold cross-validation is performed.
Model settings are created using the deep learning package
of Keras (2.4.3) and the open-source software library Tensor-
Flow (2.2.0) is employed as a backend. The proposed model
architecture is built using the Keras Functional Application
Programming Interface (API).

The actual and predicted values using the proposed model
for appliances energy use on a random day in the testing
dataset are plotted in Figure 6. The independent axis in the
figure indicates the time of the day and the dependent axis
depicts the appliance energy consumption. It can be observed
from the figure that the predicted values follow closely with
the actual energy consumption values. This shows the high
accuracy and low error of the proposed hybrid deep learning
prediction model. Similarly, the real and predicted values
using the proposed forecasting model for global active power
on a subset of records from case study 2 are demonstrated
in Figure 7. The proposed model delivers substantially per-
fect accuracy performance at both spikes and troughs in the
illustration.
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TABLE 6. Proposed model performance.

UCI appliances energy dataset (case study 1) UCI household energy dataset (case study 2)
Training Model RMSE MAPE MAE Rlscore |RMSE  MAPE  MAE L,
(Wh) (%) (Wh) (W) (%) W)
Linear Regression 137.27 70.3098 85.5421 0.10300  [70.6600  9.661 62.97 0.99520
Extreme Learning Machine 90.109 65.8758 53.4437 0.16300 51.4800 7.647 38.76 0.99700
Neural Nets (3 hidden layers) 86.263 57.9317 48.9346 0.23200  |51.0200  6.906 32.88 0.99700
Preprocessing + LSTM 17.543 7.80154 13.5716 0.99730  |50.2100  5.099 36.89 0.99729
Preprocessing + Stacked LSTM (2 layers) [15.968 5.82827 12.8362 0.99675  [47.4500  4.673 32.41 0.99783
Preprocessing + Stacked LSTM (3 layers) [20.837 12.2823 17.2399 0.99541  [47.7700  4.443 27.69 0.99781
AREM [14] 14.385 5.27108 11.6723 0.99740  |42.1570  4.088 28.35 0.99785
LSTM Encoder Decoder model 6.3320 2.55666 4.36822 0.99957  [37.7616  4.948 27.72 0.99863
CNN-LSTM model 19.741 11.1782 14.9775 0.99588  [37.1890  4.410 24.27 0.94800
ConvLSTM model 7.4780 2.67748 5.55012 0.99941  [39.1423  6.493 24.25 0.93935
Preprocessing + Bi-directional LSTM 12.712 3.17975 10.1398 0.99829  [39.3297  4.674 25.29 0.99851
Proposed Model 5.4430 2.00027 3.45383 0.99968  [29.2107  3.710 22.248  0.99867
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FIGURE 8. Case study 1 MAPE for different number of LSTM layers in
stacking.

Further, the experiments were performed by increasing the
number of LSTM layers that are stacked on top of the bi-
directional LSTM layer. The MAPE results of such exper-
iments on case study 1 and case study 2 are illustrated in
Figures 8 and 9. The independent axes in the figures depict the
number of LSTM layers within the stacking of the proposed
model and the dependent axes depict the MAPE error value
in percentage. As shown in Figures 8 and 9, the error of
predictions decreases when the number of layers is increased
from 1 to 2. Whereas, when the number of LSTM layers
in the proposed HSBUFC model is increased beyond 2, the
complexity of the model extends beyond the point where the
model overfits. Therefore, the error of predictions increases.
The same set of experiments were performed using the epoch
value of 100, and the trend of a drop of prediction error for 2
LSTM layers in the stacking is corroborated in both cases.

The performance results of different machine learn-
ing and deep learning models are depicted in Table 6.
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No. of LSTM layers in Stacking (Proposed Model)

FIGURE 9. Case study 2 MAPE for different number of LSTM layers in
stacking.

The performance metrics used for comparison are Root Mean
Square Error (RMSE), MAPE, Mean Absolute Error (MAE),
and R2 score/coefficient of determination. These widely
employed metrics are given by the following parametric
Equations (13) to (16) [22].

1 n
RMSE = |-+ (A —P))° (13)
n =
1 Aj— P
marg = 20 oy JAZE (14)
n =1 A
AP
MAE — Z_]_l ’nJ J’ (15)
’_1_ A: —P: 2
R~ Score = 1 — 2= A= P) = (16)
Zj'.l: | (Aj — mean (A))
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TABLE 7. Proposed model time performance on UCI appliances energy dataset.

Training Model

Linear Regression

Extreme Learning Machines
NN (3 hidden layers)
LSTM

Stacked LSTM (2 layers)
Stacked LSTM (3 layers)
AREM [14]

LSTM Encoder Decoder model
CNN-LSTM model

ConvLSTM model
Bi-directional LSTM

Proposed Model

UCI appliances energy dataset UCT household energy dataset
Fit time (s) Testing time (s) | Fit time (s) Testing time (s)
0.008976 0.000997 1.037000 0.005970
0.015818 0.002219 31.63213 13.77380
45.00497 0.024792 54.59372 19.11836
18.55806 0.680055 88.95819 33.46719
30.88267 1.167051 134.3528 45.47228
44.53208 1.748603 188.1297 56.87649
52.84724 1.720164 192.3247 57.15006
55.38721 0.289620 206.2960 69.87476
187.3263 2.116030 621.4900 173.6303
87.48251 0.850860 222.5634 0.228140
20.54402 0.983213 200.0609 47.23239
36.40035 1.517856 423.8497 74.02498

Here, A; corresponds to actual energy consumption value at
time step j, P; corresponds to predicted energy consumption
value at time step j, and » is the total number of time steps.
The performance metrics MAPE and R2-score provide scale-
independent measures. Hence, the short-term energy fore-
casting performance can be evaluated by comparing MAPE
values or R%-score.

As shown in Table 6, in case study 1, linear regression
attained an RMSE of 137.274 Wh and MAPE of 70.30%,
while ELM achieved 90.109 Wh RMSE and 65.875% MAPE,
and Neural Networks with 3 hidden layers attained 86.263
Wh RMSE and 57.931% MAPE. The improvement in model
accuracy was observed after the inclusion of lag values of
appliance energy use, data preprocessing and optimization
of the number of lag features to be included. With prepro-
cessing, LSTM attained 17.543 RMSE and 7.801% MAPE
while Stacked LSTM (2 layers) achieved 15.968 RMSE
and 5.828% MAPE and stacked LSTM (3 layers) attained
20.83 Wh RMSE and 12.28% MAPE. Results of LSTM
models with different stacking depths showed that increasing
the complexity does not necessarily enhance the model’s
accuracy. Our proposed model has an RMSE of 5.443 Wh
and MAPE of 2.00% for appliances energy use prediction,
while the single-layer bi-directional LSTM model, after pre-
processing, has the RMSE value of 12.71 Wh and MAPE
of 3.1797%. The better performance of the proposed model
against the different invariants of unidirectional LSTM layers
indicates that the prediction of current values benefits from
the information in the forward and backward pass (effect
of bidirectionality) existent in bi-directional LSTMs. Also,
the proposed model has been evaluated in comparison to the
most widely used hybrid models such as the LSTM Encoder-
Decoder model, CNN-LSTM hybrid, and ConvLSTM model
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with superior results for our proposed hybrid model. And, we
have included the proposed Averaging Regression Ensemble
Model (AREM) ensemble model from our previous work in
performance evaluation.

In case study 2, linear regression attained an RMSE
of 70.66 W and MAPE of 9.661%, while ELM achieved
51.48 W RMSE and 7.647% MAPE and Neural Networks
with 3 hidden layers attained 51.02 W RMSE and 6.906%
MAPE. Our proposed model attained 29.21 W RMSE and the
lowest MAPE of 3.7% whilst the LSTM layer based model
achieved 50.21 W RMSE and MAPE of 5.099%. The better
performance of the proposed model in both the case studies
indicates that the forecasting model benefits from the two-
direction information and training present in bi-directional
LSTMs. The best results in case studies 1 and 2 are high-
lighted in Table 6, and the best performing values correspond
to the proposed hybrid model involving bi-directional LSTM,
multiple layers of LSTM, and fully connected layers.

Table 7 presents the time cost of different training models
developed for the energy use and global active power pre-
dictions task in case study 1 and case study 2 respectively.
The time cost is provided for fitting/training times, and testing
times. The simple single-layered models of LSTM and Bidi-
rectional LSTM have low fit times among all the models. It is
evident from Table 7 that the fitting time is directly dependent
on the number of layers in a model. The proposed model
consisting of two layers of LSTM, one layer of bi-directional
LSTM, and two layers of fully connected networks have a
fit time of 36.4 secs in case study 1 and 423.8 secs which
are highly competent to the other models in the table. As
a tradeoff between the accuracy and fitting time, it can be
concluded that the proposed model is the best model out of
the tested models for the application requirements.

VOLUME 9, 2021



D. Syed et al.: Household-Level Energy Forecasting in SB Using a Novel Hybrid DL Model

IEEE Access

TABLE 8. Results of multi-step week-ahead daily forecasting.

UCI appliances energy dataset UCT household energy dataset
Training Model RMSE MAPE MAE RMSE MAPE MAE
(kWh) (%) (kWh) (kW) (%) &W)
Linear Regression 11.31660 55.540 10.15917 1510.31 59.97 1524.60
Extreme Learning Machine 8.227196 39.308 5.464549 598.973 46.98 330.320
Neural Nets (3 hidden layers) 8.144832 38.572 5.426364 598.694 46.90 330.320
LSTM 7.532940 39.676 5.582667 663.082 41.81 647.206
Stacked LSTM (2 layers) 7.419587 37.920 5.334749 452.088 25.70 431.305
Stacked LSTM (3 layers) 7.810895 40.136 5.646407 645.140 28.80 519.824
AREM [14] 7.278559 37.313 5.075018 419.035 24.32 401.763
LSTM Encoder Decoder model 8.033106 36.308 5.107945 395.306 40.60 319.353
CNN-LSTM model 7.825592 35.288 4.964348 393.194 37.51 298.060
ConvLSTM model 8.674451 39.609 5.572306 405.804 37.60 318.887
Bi-directional LSTM 8.227171 32.389 4.804583 393.246 27.23 294.561
Proposed Model 7.093705 31.308 4.404549 391.137 20.82 290.42

Short-term energy forecasting ranges to a maximum of two
weeks. Hence, to demonstrate the accuracy of the proposed
model for multi-step ahead short-term energy forecasting, we
have performed a week-ahead average daily energy forecast-
ing for subsequent weeks. The testing errors for the week-
ahead daily energy forecasting are provided in Table 8. The
same widely used hybrid models, ensemble AREM model,
and different invariants of LSTM have been investigated for
multi-step forecasting on datasets from case study 1 and case
study 2. The performance comparison is presented in Table 8.
As shown in Table 8. the proposed model provides the least
error and the highest accuracy even in the case of multi-
step ahead forecasting. In case study 1, the average daily
MAPE is improved by 4.032% utilizing the proposed hybrid
deep learning model when compared to the LSTM-based
model. In case study 2, the average daily MAPE for the
LSTM-based model is 27.2% and the least error is for the
proposed hybrid deep learning model with an average MAPE
value of 20.828%.

VI. CONCLUSION

Improving the accuracy of energy consumption forecasting
at the level of buildings will hugely impact the generation
and scheduling of energy resources and efficient utilization
of renewable energy resources. This paper proposed a novel
hybrid deep learning model that amplifies the merits of uni-
directional LSTMs, bidirectional LSTMs, and stacking of
RNNSs on energy consumption forecasting accuracy. Bidirec-
tional LSTMs are used to recognize the underlying energy
consumption patterns in both directions and forecast energy
consumption values with high accuracy. The obtained accu-
racy is irrespective of the high uncertainty and stochasticity
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of individual household load demand. Superior accuracy
performance was demonstrated using two real energy con-
sumption datasets in individual residential smart buildings.
Dropout regularization and early stopping were employed
to prevent overfitting in the proposed hybrid deep learn-
ing model. The proposed model has been evaluated against
the widely employed hybrid models including CNN-LSTM,
ConvLSTM, LSTM encoder-decoder model, other invariants
of stacked LSTM models, and our proposed ensemble AREM
model from previous work. The superior performance of our
proposed model in both case studies and in multi-step fore-
casting corroborates the merits of employing bidirectional
training. The proposed model is not limited to short-term
energy forecasting. The work can be extended to medium-
level forecasting and long-term forecasting of energy con-
sumption. Future work will focus on including additional
contributing factors such as household occupancy data. The
scalability of the proposed model will be evaluated on big
data. In the future, we will explore to speed up the model
training time to facilitate real-time big data analytics for
energy forecasting applications. Future research calls for
parallelization of bidirectional LSTMs to achieve distributed
computing and training of energy forecasting models.
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