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ABSTRACT Autism spectrum disorder is a very common disorder. An early diagnosis of autism is essential
for the prognosis of this disorder. The common diagnosis method utilizes behavioural cues of autistic
children. Doctors require years of clinical training to acquire the ability to capture these behavioural cues
(such as self—stimulatory behaviours). In recent years, the advancement of deep learning algorithms and
hardware enabled the use of artificial intelligence technology to automatically capture self-stimulatory
behaviours. Using this technique, the work efficacy of doctors can be improved. However, the field of self-
stimulatory behaviours research still lacks large annotated data to train the model. Therefore, the application
of unsupervised machine learning methods is adopted. Meanwhile, it is often difficult to obtain good clas-
sification results using unlabelled data, further research to train a model that can obtain good classification
results and at the same time being practical will be valuable. Nevertheless, in the area of machine learning,
the interpretability of the created model has to be vital as well. Hence, we have employed the Layer-wise
Relevance Propagation (LRP) method to explain the proposed model. In this article, the major innovation
is utilizing the temporal coherency between adjacent frames as free supervision and setting a global dis-
criminative margin to extract slow-changing discriminative self-stimulatory behaviours features. Extensive
evaluation of the extracted features has proven the effectiveness of those features. Firstly, the extracted
features are classified by the k-means method to show the classification of self-stimulation behaviours in
a completely unsupervised way. Then, the conditional entropy method is used to evaluate the effectiveness
of features. Secondly, we have obtained the state-of-the-art results by combining the unsupervised TCDN
method with optimised supervised learning methods (such as SVM, k-NN, Discriminant). These state-
of-the-art results prove the effectiveness of the slow-changing discriminative self-stimulatory behaviours
features.

INDEX TERMS Autism spectrum disorder, computational behavioural analysis, machine learning, temporal
coherency, unsupervised deep learning.

I. INTRODUCTION

Autism Spectrum Disorder is a prevalent disorder. A recent
paper published in March 2020 revealed that 1 in 54 children
are identified with Autism Spectrum Disorder (ASD) accord-
ing to the estimates from CDC’s Autism and Developmental
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Disabilities Monitoring Network [1]. Studies have also
proven that early diagnosis of ASD is associated with sig-
nificant gains in intellectual ability, adaptive behaviour as
well as reduction of symptom severity in children with
ASD [2]-[4]. Using behavioural cues of autistic children is
a common method of diagnosis for ASD [5]. Some of the
exercising instruments which use those behavioural cues to
diagnose ASD include the Autism Diagnostic Observation
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Schedule (ADOS) [6] and the Autism Observation Scale for
Infants (AOSI) [7]. Moreover, self-stimulatory behaviours are
atypical behavioural cues that are assessed in these instru-
ments for diagnosis. Autism diagnosis requires clinicians to
interact with the child over multiple extensive sessions to
identify the behavioural cues [8]. However, suitably trained
clinicians may be unavailable and expensive in some areas.
Therefore, using a computer to automatically analyse char-
acteristics of children with autism such as self-stimulatory
behaviour can help doctors to infer further diagnosis[9][10].
Some self-stimulatory behaviours such as head banging, are
classified as self-injurious behavior [11] as they can cause
damages to the children. Considering the random occurrence
of self-stimulatory behaviour, it is impractical to observe the
autistic children at all times during the day. An automatic
self-stimulatory behaviour analysis system can help doctors
and parents to care for children with autism.

The existing research on self-stimulatory behaviours
is mainly divided into two categories, namely based on
accelerometers [12], [13] and computer vision [8], [14]
respectively. Since 2D cameras are cheaper and more acces-
sible, we decided to develop a self-stimulatory behaviour
classification algorithm based on video data.

A. PROBLEM STATEMENT AND HYPOTHESIS

Deep learning has made great achievements in the field of
human action recognition [15]-[17]. Although there is a large
amount of unlabeled video data in the public website (such as
YouTube) on self-stimulatory behaviours research, we still
lack large annotated real-word datasets to train an artifi-
cial neural network. Using unlabeled video data recorded in
an uncontrolled environment to train unsupervised models
is often difficult to obtain good classification performance.
Hence, choosing and optimising the model to achieve good
classification performance remains a challenge. Furthermore,
understanding the internal classification mechanism is often
difficult due to the nonlinear structure of artificial neural
networks. This prevents our model from providing intuitive
references and suggestions for researchers and doctors.

In this article, to use a large amount of unlabeled video
data obtained from the public website, we decided to use an
unsupervised method to automatically extract the features of
the video data to save time and effort. From the published
paper written by Wiskott and Sejnowski [18], we understand
that the input of a camera is a quick-changing matrix. A slight
change of the characters in a video will drastically affect the
input matrix. Thus, if we can obtain a slow-changing or even
steady feature of each autism self-stimulatory behaviour,
we can classify those behaviours easily [19], [20]. Other
than that, the ability of these slow-changing features to dis-
criminate different self-stimulatory behaviours is also crucial.
Till date, obtaining a slow-changing discriminative self-
stimulatory behaviours feature remains a problem.

In order to understand the model’s internal classifi-
cation mechanism, the Layer-wise Relevance Propagation
(LRP) [21] algorithm will be used to explain the Temporal
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Coherency Deep Networks and Support-Vector Machines
(TCDN-SVM) hybrid algorithm that was created.

B. CONTRIBUTION

The main contribution of this paper is that we have extracted
a slow-changing discriminative self-stimulatory behaviours
feature and the experiment was able to obtain a state-of-
the-art result. The unsupervised temporal coherency deep
networks (TCDN) method was used for the extraction of this
feature[22].

The TCDN algorithm is based on four Alexnet with the
same parameters and a loss function based on Euclidean
distance [23]. Next, in order to prove the efficiency of
features extracted by our method, a method that com-
bines K-means and conditional entropy is used. Thereupon,
unsupervised feature extraction methods and supervised
classification methods are combined to construct self-
stimulatory behaviour classifiers. Multiple supervised meth-
ods are employed to improve the classification performance
of our model to obtain a particularly good result. The methods
yielded 98% accuracy at frame level and 98.3% accuracy at
the video level. Finally, a TCDN-SVM model is constructed
and interpreted using the LRP algorithm to ascertain why this
model could achieve such good results. This model allows us
to provide evidence for the early diagnosis of autism.

The rest of this article is organised as follows: Section II
discusses some existing methods that can be used for the
self-stimulatory behaviour classification and its limitations.
Section III briefly introduces all the methods used in this
study. Section IV introduces the evaluation methods and pro-
vides the result of the experiment. While Sections V, VI and
VII discuss and summarise our research and propose future
research directions.

Il. RELATED WORK

A common diagnosis method for autism is using behavioural
cues of autistic children [5]. One of the existing diagnos-
tic instruments that is based on behavioural cues is the
Autism Diagnostic Observation Schedule (ADOS) [6]. This
instrument is a standardised and semi-structured evaluation
method. It can assess autistic patients based on social interac-
tion, communication, play and imaginative use of materials.
Another example of such instrument is the Autism Observa-
tion Scale for Infants (AOSI) [7], this algorithm was devel-
oped to detect and monitor early signs of autism in high-risk
infants. Self-stimulatory behaviours are atypical behavioural
cues that are assessed in these instruments for diagnosis based
on accelerometers or computer vision.

Westeyn et al. [24] used small 3-axis accelerometer mod-
ules to study the self-stimulatory behaviour. The accelerators
are placed on the right wrist, the back of the waist and
on the left ankle of a non-autistic person. Then, this non-
autistic person was prompted to mimic autistic patient to
perform self-stimulatory behaviours to collect data. Finally,
the collected accelerometer data was assessed using hidden
Markov models (HMMs). Since this dataset was collected
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FIGURE 1. The architecture of Temporal Coherency Deep Networks and supervised classifier [22].

from a single, neurotypical adult, the model may not be well
adapted to new data generated from people with autism. Other
than that, Min [12] have also used accelerometer modules to
assess self-stimulatory behaviours using the Time-Frequency
methods to extract features together with the hidden Markov
model to detect and label self-stimulatory behaviour. When
self-stimulatory behaviour occurs, the system will automat-
ically use a webcam and microphone to store the patient’s
video and audio data. By using this system, doctors can view
the patient’s video data to diagnose and treat autism. Moham-
madian Rad er al. [13] have also used a wearable inertial
measurement unit to detect the Stereotypical Motor Move-
ment of autistic patients. The Stereotypical Motor Move-
ment behaviour is very similar to self-stimulatory behaviours.
In their published work, they have used the convolution neu-
ron network to extract features and used LSTM to classify
them. However, since the model is fully trained using super-
vised learning methods, the model might not be able to adapt
to the new data very well.

A study published by Rajagopalan et al. [25] in 2013
demonstrated a standard action recognition pipeline on
the new Self-Stimulatory Behaviour Dataset (SSBD). This
dataset was collected from public domain websites such as
YouTube. Such video format datasets from an uncontrolled
environment are difficult to classify. Hence, Space-Time
Interest Points (STIP) was used with the Harris3D detector in
the Bag Of Words (BOW) framework to train the classifier.
However, the results reported were not promising, the best
accuracy was only 50.7%. Another article also published by
Rajagopalan et al. [8] used the SELECTION OF POSELET
BOUNDING BOXES method to identify the positions of
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autistic children to create a motion model based on the His-
togram of Dominant Motions (HDM) method. In this exper-
iment, they have achieved a state-of-the-art result (73.6%)
when the 5-fold cross-validation method was employed.

lll. METHODOLOGY

Referring to Figure 1, the first part used an unsuper-
vised TCDN method to automatically extract the features
of the self-stimulatory behaviour videos of children with
autism. This method is adapted from a paper published
by Redondo-Cabrera et. al that has introduced Quadruplet
Method, it is known to achieve unsupervised classification
at human action recognition task [22]. Once the features were
extracted, K-means and condition entropy methods were used
to verify feature effectiveness. In the second part, the perfor-
mance of the identification of the self-stimulatory behaviour
of autistic people is improvised. The features extracted using
the unsupervised recognition method in the first part was
used as input in this part to compare different supervised
classification methods, such as Decision trees, Discrimi-
nant Analysis, Linear SVM, k-nearest neighbours algorithm
(k-NN). Thereafter, the third part is to understand our model’s
internal mechanism to help humans design better models
for identification of the behaviour of autistic patients and
to assist doctors in making diagnoses. We then selected the
interpretable Linear SVM to be combined with the TCDN
algorithm to produce the TCDN-SVM algorithm. The LRP
algorithm was used to interpret it. The methods used in these
three parts and the results obtained will be discussed in detail
below.

VOLUME 9, 2021



S. Liang et al.: Autism Spectrum Self-Stimulatory Behaviors Classification

IEEE Access

A. TEMPORAL COHERENCY DEEP NETWORKS(TCDN)

In the area of self-stimulatory behaviours research,
self-stimulatory behaviours occur randomly. Hence, it is
challenging to make an annotated video dataset, super-
vising the classification without labels becomes an issue
as well. According to the slow feature analysis (SFA)
method [18], the image signal input by the camera, such
as grayscale or point, is a low-level and rapidly chang-
ing representation of the action. Even when a child with
autism moves slowly, the input signal will change quickly.
If a high level, slow-changing or even steady features can
be extracted from the input picture signal of each type of
self-stimulatory behaviour, they can be used as free super-
vision for classification.

In this study, we proposed an input-output algorithm which
utilises the temporal coherence between contiguous video
frames as free supervision to extract features. In brief, our
method uses unlabeled video data to train a convolutional
neural network (CNN) model to extract features. Our objec-
tive function is as follows:

.8 5 T
min =W +Zi=1LM(W, Uy (1

The input is a set of m unlabeled videos V. = Vi, V>,
V3, ..., Vin, and the W is the parameters of our CNN network.
4 is the weight decay constant. L, is the unsupervised regu-
larization loss term. U, is the representation of training tuples
of video frames. The key idea of this method is to keep the
temporal coherence of adjacent frames in the learned feature
representation. Meanwhile, the distance between two frames
separated by n frames is shorter than the distance between
frames from two different videos. The length of n frames is
called the temporal window.

K-means clustering

000 000%T

FIGURE 2. The architecture of Temporal Coherency Deep Networks
(TCDN).

Figure 2 represents the structure of TCDN. The input
of this architecture includes the following four frames
namely Vi, Vi;y1, Vii4n, and V; ;°. These four frames were
extracted from two videos V;, V;.

The V; ;41 is an adjacent frame of V; ;. There are n frames
between V;, and V;;,. The V;, and V;, originate from
different videos. Then, there are four AlexNet networks that
were used to process those four frames to four 1024 dimen-
sion representations (). These four networks share the same
parameters W. We assume that the learned feature repre-
sentation i is a function of the learned AlexNet network
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parameters W. The input of this function is a frame of a video,
the output of this function is a feature representation ¥ (V).
In order to realize our key idea, we designed a loss function
L (2) based on Euclidean distance d to train this network:

Lq (W (Vi,t) Y (Vi,t-i-l) Y (Vi,t+n) Y (Vjt’))
=d (¥ (Vie) , ¥ (Vis1)) +max {0, d (¥ (Vi) ¥ (Viir4n))
—d (¥ (Vis), ¥ (Vi) + @} @)

This loss function tries to make the feature representation of
Vi.r similar to the feature representation of V; ;1. However,
the distance between V;, and V; ;” must be greater than the
distance between V;; and V;,y, by a constant «, because
Vi, and V; . originate from different videos. Therefore,
the design purpose of our loss function is to hope that the
distance between two adjacent frames is as small as possible
and that the distance between two frames from different
videos is greater than the distance of two non-adjacent frames
from the same video.

B. SUPERVISED METHOD TO CLASSIFY LABELED
FEATURES

The supervised machine learning method has been known to
achieve better performance as compared to the unsupervised
method. Therefore, in this article, several supervised methods
have been used to obtain better results. Firstly, the unsuper-
vised temporal coherency deep networks (TCDN) is used to
extract features as the input of the supervised method. As the
TCDN is an unsupervised method, we were able to use all of
the data to train this model, and then we can use this model
to extract the feature of all frames form videos. After we
obtain the features, we can use those features as the input
of the supervised method. Then we can obtain a frame-level
classification. Here we introduce some supervision methods
provided by the Matlab classification learner app:

1) DECISION TREES

The decision tree is a straightforward and easily interpreted
method[26]. The parameters of this method are modified to
result in three different trees. The Coarse Tree has a few
leaves to make coarse distinctions, which makes the predic-
tion more robust. However, this method is usually unable to
attain high training accuracy. Secondly, Medium Tree has a
medium number of leaves. Lastly, the Fine tree has many
leaves to make many fine distinctions. However, this method
tends to overtrain.

2) DISCRIMINANT ANALYSIS

The Linear Discriminant method creates linear boundaries
between classes[27]. The Quadratic Discriminant creates
nonlinear boundaries between classes[28]

3) LINEAR SVM
The idea of SVM is to find the best hyperplane that can split
data points to different classes[29]. In this article, because of
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the large dataset and lack of computer source, only Linear
SVM was chosen.

4) K-NN

This algorithm categorises points based on their distance to
points (or neighbours) in a training dataset[30]. It is a simple
yet effective way of classifying new points. After evaluating
the effects of using different set of parameters (e.g. num-
ber of neighbours, distance method and distance weight) on
the performance of k-NN classifiers, 5 k-NN methods were
chosen to classify our SSBD dataset. Fine k-NN acquired
finely detailed distinctions between classes, the number of
neighbours was set to 1. The distance metric employed was
the Euclidean distance while the distance weight was set to
equal. Next, the Medium k-NN achieved medium distinctions
between classes, the number of neighbours was set to 10.
Finally, Coarse k-NN produced coarse distinctions between
the classes. The number of neighbours here was set to 100.
On the other hand, when the Euclidean distance was changed
to cosine distance, the Cosine k-NN method yielded medium
distinctions between classes. The number of neighbours was
set to 10, the distance weight was set to equal. At last,
when the distance weight was changed to the square inverse,
the Weighted k-NN yielded medium distinctions between
classes. The number of neighbours was also set to 10, the dis-
tance metric used was the Euclidean distance.

C. THE EXPLAINABLE HYBRID TCDN-SVM MODEL
Once the videos are represented by TCDN method, a major-
ity of the supervised classifications yielded good enough
accuracy. The reason for such state-of-the-art performance
still cannot be found. Moreover, the multiplication of the
nonlinear layers in the TCDN network caused the decision
process of this method to lack transparency. Considering the
interpretability of the linear SVM model, we decided to use
the LRP method[21] to explain the hybrid model composed
of TCDN and SVM.

As depicted in Figure 3, the forward transfer process of the
convolution neuron network(CNN) sends the message from
the node of one layer to the node of the next layer as follows:

Zij = Xiwij (3
Zj = Z Zjj + bj )
x5 =g () ©)

The x; is the i-th element of the hidden layer /, weight w;;
links layer / with the next layer / + 1, and the variable z;
represents the forward message passed between the input
neuron (i) and the output neuron (j). These forward messages
were aggregated and combined after bias (b;) was added.
Then, it was input into the nonlinear activation function (g) to
obtain the output (x;). The commonly used activation function
is relu g(z;) = max(0, z)).

Unlike forward propagation, LRP moves in the opposite
direction of the layer to resolve the output of the classifier into
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FIGURE 3. TOP: A neural network-shaped classifier(such as CNN)w;; are

weight and g; is the activation of neuron i. Bottom: The neural

network-shaped classifier during layer-wise relevance computation time.
!

R,Sl) is the relevance of neural . R; T are messages which need to be

J+
—J
computed to ensure the relevance conservation principle [25].

a relevance message R. We set RI"/*! as relevance message
which was sent from layer / + 1 to layer [.

A set of constraints need to be kept to ensure the relevance
conservation principle of LRP is upheld during layer-wise
relevance computation time:

[,1+1
R = YR ©
i J
1
)= YR g
dim(x)
[+1 [ 1
fx)=...= Z R; :ZR]-:...: ZRd
jed+1) jel d=1
(®)

As for tasks involving image classification, the overall idea
of LRP was to apprehend the impacts of each pixel from the
input image on the final prediction by the classifier. In this
study, we equipped three two-class SVM classifiers to com-
plete the multi-classification task using one vs all strategy.
In this strategy, for each binary learner, one of the three autis-
tic behaviours was set as positive and all the remaining classes
as negative. Then, the SVM is obtained for multi-tasking
purpose. When the behavioural videos of people with autism
were analysed, TCDN was used to extract the features of the
frame. This input was then passed to the SVM classifier. Due
to the similar structure between linear SVM and full connect
layers in the AlexNet, the LRP method was used to explain
TCDN-SVM, a model that is a mixture of TCDN and SVM.

This study utilised the fully connected linear LRP layer to
perform the decomposition process of linear SVM because
the structure of linear SVM is similar to that of the fully
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TCDN-SVM

. TCDN SVM classifier
image ~ = = —

¥, Pixel Relevance = 3, Feature Relevances = f(x) = SVM output

LRP

FIGURE 4. Visualization of the Layer-wise Relevance Propagation (LRP)
decomposition process. In the classification step, the image is converted
to a feature vector representation by TCDN and an SVM classifier is used
to get a category. The LRP method decomposes the SVM output f(x) into
the sum of feature and pixel relevance score. The final

relevances (heatmap) visualize the contributions of single pixels to the
prediction.

connected linear layer.

Zij = XiWjjZj = Zzij + bj )
i
LI+l _ % pltl
R; - = ;Rj (10)
j i
S . (L1+1)
consider if the z; is very small the relevance message Rigj

may become unbound. e-decomposition formula was chosen,
which introduces a sign-dependant numerical stabilizer ¢ in
the formula.

1I+1 ij 1+1
R = —F R 11
fr zj + ¢ - sign(z;) ! an

In an ordinary image classification task, LRP usually uses the
output of the softmax layer or fully connected layer in the
artificial neural network as the initial input of LRP backprop-
agation. LRP can divide the relevance scores into positive and
negative values in each layer using this step. When the LRP
is propagated back into the image input layer, the relevance
score at a pixel of the image becomes positive indicating
that the pixel helps the model to classify the image into the
correct category. Meanwhile, the colour is set to red in the
heatmap. Conversely, if the correlation is negative, the pixel
prevents the model from classifying the image into the correct
category (the colour is set to blue). Hence, we can determine
which area in the picture is important for the classification
task. In our model, the output of SVM represents the distance
between the sample and the hyperplane. We use this distance
as the initial input of the LRP algorithm to determine the areas
in each frame of the autistic patient’s video that affect the
classification results (distance).

IV. EVALUATION AND RESULTS

Firstly, the dataset was subjected to data preprocessing.
Then, the evaluation method was introduced. The results
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of this study were split into three parts. In the first part,
the K-means is used to classify the features and to evaluate
the effectiveness of the features obtained using unsupervised
learning. The results were then compared with the baseline
method (random classification method) by condition entropy.
In the second part, the accuracy and confusion matrix were
used to evaluate the performance of the different supervised
methods. Finally, the LRP output is analysed to assess the
classification model.

A. DATA

In order to use real-time detection of the children’s behaviour
and provide early warning for parents in an uncontrolled
environment, the SSBD [25] was selected as our training
test dataset. The SSBD dataset contained 75 self-stimulatory
behaviour videos of autistic children, which were classi-
fied into three categories. However, since these videos were
obtained from public domains like Youtube, seven of the
videos could not be downloaded due to copyright issues.
We managed to randomly select 20 videos from each of
the three classes to obtain a new dataset that contained 60
self-stimulatory behaviour videos.

Arm Flap
L]

pingVideos

FIGURE 5. Introduction of SSBD dataset [31].

Figure 5 illustrates some snapshots of the three types of
actions. The faces of the patients were masked with mosaics
to protect their identities.

34269



IEEE Access

S. Liang et al.: Autism Spectrum Self-Stimulatory Behaviors Classification

B. CLASSIFICATION USING AN UNSUPERVISED METHOD
TO EVALUATE FEATURES

In order to ensure that our method becomes fully unsu-
pervised, different K-means methods were used to classify
the video data. The K-means is a traditional unsupervised
classification method. In this study, the TCDN network was
used to obtain 1024-dimensional features of each frame in
the videos. We then passed them as inputs to the K-means
algorithm for classification. Since the TCDN and K-means
algorithms are both unsupervised algorithms, this method
can be used to classify the behaviours of autistic patients
completely unsupervised. For the K-means method, there are
different types of initialising methods which could impact the
performance of K-means classifier. Therefore, to obtain more
credible results, we used three different methods to initialise
K-means. The first method which is the K-means sample
method randomly selects k observations from the sample set.
The second method is the K-means uniform, which uniformly
selects k points at random from a range of sample set. The
last method selects k seeds by implementing the K-means++
algorithm for cluster centre initialisation. In step 1, one centre
c1 was chosen randomly and uniformly from the sample set.
While in step 2 a new centre ¢; with probability was chosen
as follows:

D(x)?
erX D(x)2

D(x) represents the shortest distance from a candidate data
point x to the nearest centre which we have selected. Step
2 was repeated until k centres were considered [32]. Next,
the impact of different K-means initialisation methods on
K-means performance was compared. Considering that there
were only three classes in our classification task, we set
parameter k of K-means as 3.

Following video classification, determining a method to
evaluate the performance of our model becomes a challenge.
Tuytelaars et al [32] compared different methods to evaluate
the unsupervised model. Based on the result of the said eval-
uation, Redondo-Cabrera, and Lopez-Sastre 2019 [22] have
used unsupervised methods to perform human action iden-
tification, that is, using standard metrics named conditional
entropy to evaluate models, as well as using a random method
as the baseline. This method (conditional entropy) was used
to evaluate our results. The conditional entropy method is as
follows:

S (12)

1
p(xly)

HX|Y) =) pO) Y pixlylog(

yeY xeX

) (13)

After classification with different K-means. the random clas-
sification method was chosen as the baseline method as
it provided a reasonable reference standard. In this way,
the classification performance of K-means classifier can be
evaluated by comparing with the baseline. The performance
of any classification method should be better than the random
classification method. Referring to the paper published by
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Redondo-Cabrera and Lopez-Sastre [22], the random clas-
sification method was used as a baseline for human motion
recognition. Hence, the random classification method was
employed to evaluate the efficiency of the unsupervised
method on the autistic action dataset.

On the other hand, the parameters in the model were
analyzed to assess the best performance. In this model, three
important parameters may influence the performance of our
model, namely (a) the margin «, (b) the temporal window
to consider contiguous frames (w) and the non-neighbour
frame index (n). However, considering that different videos
may have different frame rates in the wild environment,
the temporal window might not be suitable. Therefore, it is
very important to evaluate this parameter in a sufficiently
large dataset. In this article, we have referred to the settings of
the published article [8] (w = 1, n = 20) because they have
utilized a similar method for human motion recognition, and
verified the temporal window on a larger data set (UCF101).
However, considering that the movements of autistic patients
are very different from that of normal people, we decided
to analyse the optimal value of the margin parameter on our
dataset.

TABLE 1. Condition entropy (CE) of K-means.

Method CE CE CE CE
margin 0.5 1 1.5 2
random(baseline) 1.56 1.56 1.56 1.56
Kemeans uniform 1.12 1.11 1.06 1.11
(00.17) | (00.20) | (60.21) | (00.23)
K-means sample 1.16 1.17 1.15 1.17
(00.14) | (00.16) | (60.17) | (c0.18)
K-means plus 1.13 1.13 1.09 1.15
(00.17) | (00.18) | (60.19) | (c0.18)

Table 1 lists the conditional entropy and standard deviation
obtained from various classification methods as the TCDN
algorithm adopted different margin parameters. According
to Table 1, the conditional entropy of random classification
was 1.56, very close to the maximum conditional entropy
log, (3) = 1.58. If the conditional entropy of a classifier
results in a maximum conditional entropy, this classifier can
be considered completely futile (such as a random classifier).
Therefore, we can prove our baseline method (random clas-
sify) is absolutely random. However, each of our K-means
methods with different K-means initialization methods was
better than the baseline. In order to intuitively illustrate the
impact of different margin parameters and the K-means algo-
rithm on the classification effects, Figure 6 was plotted. For
the self-stimulatory behaviour classification task, using mar-
gin 1.5 and K-means uniform method, our proposed model
classified the different autistic behaviours very well.

In general, when our unsupervised temporal coherency
deep network method and K-means uniform method were
combined, the remaining uncertainty on the real autism
behaviour categories was reduced from a random classifica-
tion of 2136 =2.95 t0 2! = 2.08 (our method). This result
indicates that the proposed unsupervised method is useful for
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FIGURE 6. The influence of the margin.

. Arm Flapping
. Head Banging
« Spinning

FIGURE 7. Barnes-Hut t-SNE 2-dimensional embedding with our
1024-dimension fc7-features TOP: Draw with frames BOTTOM:
Draw with scatter.

the autistic data as the features extracted using this method
are very effective.

Figure 7 depicts a 2-dimensional embedding using
the Barnes-Hut t-SNE method. This method reduced the
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1024- dimensional features data in this study to two dimen-
sions by arranging pictures with similar features closely. This
figure has shown the utilization of two different ways to show
the clustering results of all self-stimulatory behaviours.

In this section, all of our K-means methods used the
five-fold cross-validation. In order to test the validity of our
features more rigorously, we then repeated our experiment 20
times. The average of these experimental results was accepted
as our final result.

1) IMPLEMENTATION DETAILS

In the training process of TCDN, the mini-batch Stochastic
gradient descent (SGD) method was used to train our unsu-
pervised TCDN due to the lack of training resources and to
maintain the stability of the training process. In the network,
the convolutional layer of AlexNet was used as the basic
structure before adding two fully connected layers on the pool
of 5 layer outputs. Hence, we obtained 1024-dimensional
features to calculate the loss function. During the training
process, we set the batch size to 40 tuples of frames. As for
the parameters of the network, the start learning rate was set
at 0.001, while the temporal window was set at 20.

C. EXPERIMENTAL SETUP AND RESULTS OF SUPERVISED
METHOD

In this section, the dataset from section IV is used. Initially, all
the videos in the dataset are used to train the TCDN network.
Then, the said network is used to extract the features of frames
in all the videos. In total, 136613 features were gathered for
all the frames. A 5-fold cross-validation method was used to
evaluate the performance of our supervised methods. In this
experiment, 11 supervised methods were used.

10 0944 0.945 0.948 0976 0.978 0978 0.978 098

accuracy
=
@

=
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FIGURE 8. Comparison of classification accuracy at the frame level.

Figure 8 indicates the accuracy of each supervised method.
Based on the observation, the Quadratic Discriminant method
demonstrated the best accuracy at the frame level, up to
0.98. To comprehensively evaluate the performance of the
Quadratic Discriminant method, the Confusion matrix of
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FIGURE 10. Accuracy at the video level.

our supervised methods were measured. Figure 9 represents
the confusion matrix of the Quadratic Discriminant. Since
our classification method is to classify by frame, the pro-
posed method detected the movements of children with
autism in real-time and they are diagnosed in real-time. How-
ever, in order to compare the results with previous studies,
the accuracy of the video level was also calculated. In this
study, the average classification score of all frames from a
video was calculated (Figure 10), whereby the class with
the largest average score was used as the classification of
this video. The state-of-the-art accuracy for the Quadratic
Discriminant, Linear SVM and Coarse k-NN methods were
estimated at 98.3%.

Figure 11 shows the TCDN-SVM classification result of
one Arm Flapping video.

In the Matlab classification learner app, the three-class
SVM classification task is decomposed into three
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FIGURE 11. The SVM classifier output(score) in the TCDN-SVM model. This
figure shows the score of each frame in an Arm Flapping video.

binary-classification tasks. The classifier performs classifica-
tion by calculating the distance between the features extracted
by the TCDN algorithm and the three hyperplanes, and the
classification category of the hyperplane with the largest
distance is used as the final category of the feature.

TABLE 2. Comparison with the recent state-of-the-art result.

Method accuracy
Poselet bounding box selection+ Histogram of 73.6%
::;«])minant Motions (HDM)+ discriminatory model

TCDN and Coarse KNN 98.3%
TCDN and Linear SVM 98.3%
TCDN and Quadratic Discriminant 98.3%
TCDN and Cosine KNN 96.7%
TCDN and Weighted KNN 96.7%
TCDN and Medium KNN 96.7%
TCDN and Fine KNN 96.7%
TCDN and Linear Discriminant 96.7%
TCDN and Fine Tree 83.3%
TCDN and Medium Tree 63.3%
TCDN and Coarse Tree 55%

Table 2 shows the comparison between our results and
the state-of-the-art results published by Rajagopalan et al [8].
In the article published by Rajagopalan and Goecke [8],
in order to track the child’s body motion, they have utilized
the nearest neighbour algorithm to select the postlet bounding
box. In this detected body regions, a Histogram of Dominant
motions (HDM) descriptors is computed and are being used
to train a discriminatory model. On the other hand, we have
instead, used slow-changing discriminative self-stimulatory
behaviours features to train supervised models (such as
SVM, k-NN, Discriminant), and to classify self-stimulatory
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FIGURE 12. Heatmap of the LRP output relevance(R,).

behaviours. Compared with the recent state-of-the-art result,
we have obtained an improvement of 24.7%.

D. EXPLAINING TCDN-SVM USING LRP METHOD

In order to understand the internal mechanism of the TCDN-
SVM model, we visualize the output result (R1) of the LRP
algorithm and used the heatmap to represent it.

Figure 12 suggested that the basis of the model may be
related to the magnitude of the action. When the model
classifies arm-flapping behaviour, the model mainly focused
on the effects of the arm on other parts of the body (such
as occlusion). The head banging behaviour also has the
upper body of the patient moving along with the head, so,
the model begins to give some attention to the environment
around the body. When the model begins to recognise the
spinning behaviour, as the patient mainly rotates the whole
body, the model recognises the human body influence on
the surrounding environment (such as occlusion). Therefore,
the heat map revealed that the model focused mainly on the
environment near the body.
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FIGURE 13. Use line graphs and histograms to visualize features.

As shown in Figure 13, we have visualized the features of
four frames in the same video with 5 frames apart, the features
extracted by the TCDN algorithm are slowly changing or even
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steady features, which makes it easier for the classifier to
correctly classify the samples.

V. DISCUSSION

In this research, we have introduced an unsupervised feature
learning method (TCDN) that can extract features from unla-
beled videos. This method uses the local temporal coherence
between contiguous frames as free supervision to obtain the
ability of learning from unlabeled videos.

Compared with the existing pretrained CNN feature extrac-
tion method, the TCDN method can better adapt and opti-
mize based on the researched dataset. Compared with the
CNN extraction method that requires fine tune and retraining,
TCDN can be trained in a completely unsupervised way to
avoid annotating the dataset.

As shown in Figure 6, we have evaluated the impact of
different margins on the clustering results. In order to sep-
arate the representation of different videos, a proper global
discrimination margin is necessary.

As represented in Table 1, after comparing the results
of different k-means classifiers with the random classifica-
tion method (baseline), we revealed the effectiveness of a
completely unsupervised method that combines TCDN and
k-means. This gives us the ability to take advantage of many
unlabeled autistic self-stimulatory behaviours videos.

Compared with the state-of-the-art result (73.6%) using
HDM descriptor features and discriminant classifier, our
slow-changing discriminative self-stimulation behaviours
features and discriminant can achieve a higher accuracy
(98.3%). This means that the features extracted by TCDN
can improve the accuracy of 24.7% in autistic self-stimulation
behavior classification task. The huge improvement of clas-
sification performance strongly proves the effectiveness and
superiority of TCDN method.

Considering the future application in the medical field,
it is necessary to understand the internal mechanism of the
model. The analysis of the LRP output (Heatmap) indicated
that our model classified the self-stimulatory behaviours by
analysing the interaction between autistic patients and their
surrounding environment. This mechanism laid a solid foun-
dation for accurate classification of the model. The success
and reasonable explanation of our model directly indicates
the effectiveness of our model.

VI. CONCLUSION
In this study, we introduce an unsupervised feature learn-
ing method to extract the slow-changing discriminative self-
stimulatory behaviours features from unlabeled videos.
Comparison of the conditional entropy results of the
k-means classifier and the random classifier shows the
efficiency of completely unsupervised classification using
TCDN and k-means.
As compared with the recent state-of-the-art result
(73.6%), our method is able to achieve a higher accuracy
(98.3%). Considering the same classifier used in those two
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studies, the efficiency of the TCDN feature extraction method
can be proven.

Overall, given the experimental results, we have confirmed
that learning from unlabeled videos can enhance visual learn-
ing in the field of self-stimulatory behaviour research.

FUTURE WORKS

Although our proposed methods were successful, we still
have some limitations. The data set used in this study was
small, hence it cannot be generalized to fit nationwide data.
In the future, collection of more self-stimulatory behaviours
videos of autistic patients will be done to expand the dataset.
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