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ABSTRACT In this paper, we propose TSFE-Net, two stream feature extraction networks for active stereo
matching. First, we perform extra local contrast normalization (LCN) for dataset due to dependency between
speckle intensity and distance. Second, we construct two stream feature extraction layers which consist of
convolutional layers and deconvolutional layers in different scales to simultaneously learn the features of
the original images and LCN images and aggregate context information to form the left and right features.
Third, we convert the obtained depth map into disparity map in virtue of camera parameters to construct a
supervised learning model. The TSFE-Net not only solves illumination effects between speckle intensity and
distance but also reserves details of the original image. Our dataset are captured by RealSense D435 camera.
We research extensive quantitative and qualitative evaluations based on a series of scenes, and achieve the
end point error (EPE) accuracy of 0.335 on the TITAN XP platform only for valid pixel. The assessment
results show that our network has the ability of real-time deep reconstruction for active pattern.

INDEX TERMS Active stereo matching, convolutional neural network, depth reconstruction, two stream
feature extraction.

I. INTRODUCTION
Depth reconstruction technology is popular in computer
vision, which is essential to virtual reality, augmented
reality [1], and the fields of vehicle automated driving.

Depth reconstruction systems are divided into passive
stereo systems and active stereo systems. The passive stereo
system directly captures the target scene without additional
light source. On the contrary, the active stereo system needs to
actively project the light source to the target scene. By select-
ing the correct sensing wavelength, the camera captures
the combination of active illumination and passive light.
The texture of the target scene is enhanced by active light
projector, which can solve a variety of real-world prob-
lems, such as textureless areas (e.g., slant wall and smooth
object etc.), and thin structures. There are some applications
based on active stereo system, such as Time of Flight (TOF)
[2], Structured Light (SL) [3], and binocular stereo matching.
TOF measures the distance based on the round-trip time of
the emitted light between the object and the receiver. SL
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calculates the modulation pattern of the target scene based
on the triangulation principle to obtain depth information.
Binocular stereo matching calculates all corresponding pixels
of object between two images. Our research is based on active
binocular stereo matching.

Binocular stereo matching technology computes the dis-
parity for all pixels in a pair of rectified images. Disparity
is the horizontal displacement between a pair of correspond-
ing pixels on the left and right images. For example, for
the pixel whose position is (x,y) in the left image, and its
corresponding point is found at (x-d,y) in the right image,
where d is the disparity of this pixel. The depth is calculated
by f*b/d, where f is the camera’s focal length and b is the
baseline distance between two camera centers. Traditional
binocular stereo matching algorithms can be divided into
local stereo matching algorithms [4]–[7], semi-global stereo
matching algorithms (SGBM) [8]–[10], and global stereo
matching algorithms [11]–[14] depending on the different
matching strategies. Local methods aggregate matching costs
with neighboring pixels and usually utilize the winner-take-
all(WTA) strategy to choose the optimal disparity. For exam-
ple, typical local stereo matching algorithms include block
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matching (BM) [15] algorithm. The global algorithms cal-
culate the global energy function and minimize it to find
the optimal disparity, such as dynamic programming (DP)
[16] and belief propagation (BP) [17]. Unfortunately, these
algorithms are sensitive to noise during the calculation pro-
cess. TOF and SL are highly adaptable to the scene for day
and night. However, TOF has motion artifacts and multipath
interference. SL methods are susceptible to environmental
lighting and interference with multiple devices. Recently,
the deep architecture [18]–[21] based on the convolutional
neural networks(CNNs) has become popular. It extracts infor-
mation of images and aggregates contextual information by
fusing spatial and channel information of local receptive
fields. Although aforementioned methods have made signif-
icant progress, they are only suitable for deep reconstruction
of scene with strong texture instead of textureless region
(e.g., slant wall). Active binocular reconstruction accurately
calculate depth of textureless areas in virtue of speckle infor-
mation and scene itself information. For instance, when esti-
mating the depth of the slant wall, it is difficult to complete
stereo matching of corresponding pixels because pixels with
different depths have close gray level information or RGB
information. However, the existence of speckle information
makes the pixel information of different depths various to
complete the matching process of two images. Active Stereo
Net [22], which is the first proposed deep learning solution
for active stereo systems. Active Stereo Net can reconstruct
depth of textureless scene based on active illumination.

In this paper, we propose two stream feature extraction
networks for active stereo matching(TSFE-Net) based on
end-to-end deep learning approach. It extends recent work on
self-supervised active stereo net [22] and supervised passive
stereo network [23] to achieve active binocular reconstruc-
tion. Our network solves reconstruction issue in textureless
region. The feature extraction layer of cascade network [23]
is modified to improve the performance and reduce com-
putation. Besides, two stream feature extraction layers are
constructed to learn the features of both original images and
LCN images which decrease fading of active stereo patters
with distance [22] and reserve details of original images. The
main work of our paper can be summarized as follows:

1.Our TSFE-Net simultaneously learns the features of the
original images and LCN images based on weighted local
contrast normalization with two stream feature extraction
layers.

2.The feature extraction layers use convolution and
deconvolution of different scales and dimensions to extract
feature information and aggregate context information in the
feature extraction layers.

3.We independently build the dataset that include differ-
ent scenes(indoor scenes and outdoor scenes) at different
illumination intensity with RealSense D435 camera.

4.We convert the obtained depth map from RealSense
D435 camera into disparity map in virtue of camera
parameters to construct an end to end supervised learning
model.

II. RELATED WORK
Depth estimation methods are categorized in traditional
methods and CNN methods based on deep learning.

A. TRADITIONAL METHODS
Traditional methods which are suitable for passive and active
patterns include block matching(BM) [15], semi-global
matching(SGBM) [10], BP [17], and graph cuts(GC) [24].
BM method refers to find correspondence in target image
for all pixels of reference image within a window when
the pixel’s energy function is the minimum. SGBM method
calculates cost volume from 16 or 8 directions to smooth
cost with neighborhood constraints, similar to the dynamic
programming(DP) [16] method. The DP method mini-
mizes global energy by finding the minimum cost of
pixel. GC method divides images to several non-overlapping
patches based on gray information or color information, tex-
ture information and other features to make these patches
are similar in the same block and show obvious differences
between different blocks.

B. DEEP LEARNING METHODS
Convolutional networks have been proven very successful
for a variety of recognition tasks, such as image classi-
fication, and face detection. According to the survey by
Scharstein et al. [25], a typical stereo matching algorithm
contains four steps: matching cost calculation, matching cost
aggregation, disparity calculation, and disparity refinement.
The end to end learning methods based on deep learning can
be divided into passive stereo matching algorithms and active
stereo matching algorithms.

In passive stereo matching systems, Zbontar and LeCun
[26] firstly put forward using neural networks to compute
matching costs. Mayer et al. [18] demonstrate the first scene
flow estimation with a convolutional network. Kendall et al.
present GC-Net [20] which construct a 3D cost volume and
use a differentiable soft argmin operation to figure out the best
matching disparity values from the cost volume and achieve
sub-pixel accuracy without any additional post-processing
or regularization. Following GC-Net, Chang and Chen [27]
propose a pyramid pooling module to exploit global context
information and introduce a stacked 3D hourglass networks
to regularize cost volume. Khamis et al. [28] use a siamese
network to extract features from the left and right image,
and hierarchically recover high-frequency details through
a learned upsampling function combining original image.
Guo et al. [29] propose the group-wise correlation stereo net-
work (GWC-Net) to construct the cost volume by group-wise
correlation. The left features and the right features are divided
into groups along the channel dimension, and correlation
maps are computed among each group to obtain multiple
matching cost proposals packed into a cost volume. Gu et al.
[23] introduce a efficient cost volume formulation comple-
mentary in memory and time which can narrow the depth
(or disparity) range of each stage by the prediction from the
previous stage.
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FIGURE 1. The pipeline of the network.

In active stereomatching systems, [30] present Ultra Stereo
Net which uses an unsupervised greedy optimization scheme
to learn discriminative features for estimating correspon-
dences in infrared images. Zhang et al. [22] introduce a
self-supervised active stereo matching and use local contrast
normalization (LCN). Besides, they propose a window-based
loss aggregation with adaptive weights for each pixel to
increase its discriminability and reduce the effect of local
minima in the cost function. [31] improves the Siamese
network by combining pyramid-pooling structure with the
squeeze-and-excitation network. In [32], a pair of left and
right images with abundant structured light information is
adopted to acquire a coarse depthmap by unsupervised CNNs
which is used for phase unwrapping and phase matching
to obtain accurate depth. However, simply feeding the LCN
image into the model ignores the details of the original image.
Compared to the above methods, our model consider origi-
nal feature of input images and reduce dependency between
brightness and distance.

III. METHODOLOGY
Our model is illustrated in Figure 1. The input of network
is a pair of rectified images with active illumination cap-
tured from RealSense D435 camera. The network consists
of four parts: extracting original image feature and LCN
image feature after local contrast normalization, constructing
cost volume, aggregating the cost volume, and refining the
disparity map. It will be described in the following sections.

A. FEATURE EXTRACTION
Feature extraction is done by a series of convolutional
and deconvolutional layers with different scales in the fea-
ture extraction layer. The purpose is to generate simple
and reliable feature representation of pixel-wise from the
input images which is useful for matching cost volume.

FIGURE 2. Feature extraction layer. The sub-network includes two stages,
and each stage involves symmetric convolution and deconvolution to
learn feature. The feature extraction part outputs feature representation
of different scale and different resolution. Stage1 represents 1/4
resolution of original size. Stage2 represents 1/2 resolution of original
size.

Specifically, given a pair of pixel l, r , we attempt to learn a
set of deep features Fl and Fr . [22] computes the local mean
µ and standard deviation σ in a small 9×9 patch to normalize
the current pixel intensity. LCN is used to remove illumi-
nation effects between speckle intensity and scene distance.
However, LCN ignores some details of original image due
to normalization in patch. Therefore, we exploit two stream
feature extraction layers to respectively extract features of
original image and LCN image. The weights of every feature
extraction layer are shared for left input and right input.
The impressive results are shown in Table 3. In the feature
extraction layer, 2D convolution layers are used to conduct
down-sampling image. In order to avoid losing information,
our model uses 2D deconvolution layers combining features
of the previous layer to expand receptive field, as is illustrated
in Figure 2. The layer outputs two stages of feature represen-
tation with 1/2 resolution and 1/4 resolution.

B. COST VOLUME FORMULATION
As shown in Figure 3, we construct a cost volume by con-
catenating features Fl and Fr of left images and right images.
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FIGURE 3. The formulation of cost volume. The size is channel ∗D∗H ∗W ,
where channel is the feature channels of feature maps,D is the disparity
range, H and W is the spatial resolution of feature maps respectively.

FIGURE 4. Cost aggregation layer which is based on the cost aggregation
layer of the cascade network.

As mentioned in [23], we construct the two stage cost vol-
ume corresponding to the feature extraction layer. Differ-
ently from [23],the disparity range of the stage1 covers the
entire disparity(maximum disparity is 144) range of the input
scene. Besides, we denote the disparity interval at the first
stage as 3 and the disparity interval sets to 1 at the second
stage.

C. COST AGGREGATION
Our cost aggregation layer is based on the cost aggrega-
tion architectures of the Cascade Net [23], as is illustrated
in Figure 4. The layer has three main hourglass networks.
And outputs four predicted disparity maps and losses (pred0,
pred1, pred2, and pred3). The loss function is described in
Sect.III.D. Disparity regression defined in (1). The predicted
disparity d̂ is calculated via each disparity d and cost cd based
on soft argmin operation σ (.).

d̂i =
D∑
d=0

d ∗ σ (−cd ) (1)

D. LOSS FUNCTION
We train our network in a fully supervised manner using
groundtruth data from RealSense D435 camera. The loss
function is calculated as the weighted summation of the four

losses mentioned in [23], which is shown in (2):

L =
3∑
ρ=0

σρ ∗ lossρ (2)

where lossρ = 1
N ×

∑N
i=1 smmoth(d

i
gt − d̂ iρ), N is the sum

of valid disparity value from RealSense D435 camera, d igt is

the disparity at valid pixel i, and d̂ iρ is the predicted disparity
at the same pixel i, lossρ(ρ = 0, 1, 2, 3) is output ρ from
cost aggregation layer. As mentioned in [23], σρ is the weight
values which are set to be 0.5, 0.7, 1.0, 1.0.

IV. EXPERIMENTS
In this section, we evaluate our proposed two stream feature
extraction network(TSFE-Net) on RealSense D435 dataset.
The dataset and implementation details are described in
Sect. IV.A. The accuracy and the performance of computa-
tional cost and time are showed in Sect. IV.B and Sect. IV.C.
The results of ablation experiments are showed in Sect.IV.D.

A. DATASET AND SETUP
Our dataset provide 10530 training and 857 testing images
of size 1280× 720 with ground-truth depth maps, which are
captured by the RealSense D435 camera. We used the camera
to capture the left infrared image, right infrared image and
depth value, as shown in Figure 5. We take the left and right
infrared images as input, and convert the depth map into the
disparity map as GroundTruth. We transform the depth map
into disparity map by 641.44989 × 50 ÷ depth (the focal
length is 641.44989 pixel and the baseline is 50mm). The
dataset contains a variety of scenes such as lab scene, office
scene, kitchen scene, and bedroom scene. Our network is
implemented with Pytorch. We use Kingma and Adam [33]
optimizer, with β1 = 0.9, β2 = 0.99. In the process of feature
extraction layer, the maximum downsampling resolution is a
multiple of 64, sowe need to crop the input image. To enhance
the variety of scenarios, we train our model with a batch
size of 4 on 2 Nvidia TITAN XP GPUs using 256 × 512
random crops from the train images. We test model with a
batch size of 1 using 704 × 1024 fixed crops from the test
images. According to the camera’s depth range, themaximum
of the disparity is set as 144. Before training, we normalize all
images by subtracting their means and dividing their standard
deviations, and use local contrast normalization to process
input image with a window size of 11*11. For our RealSense
D435 dataset, we train TSFE-Net for 20 epochs. In order to
make themodel converge, we verify that the dynamic learning
rate has more advantages through experiments. The initial
learning rate is set to be 0.001 for 6 epochs, and reduced by
4
5 at epoch 7 and downscale by 2 after epoch 14.
The evaluation metrics include the end point error (EPE),

the percentage of pixels which have greater than three pixel
or 5% disparity error(D1-valid), the percentage of pixels with
disparity error larger than 1 (Thres1), the percentage of pixels
with disparity error larger than 2 (Thres2), the percentage of
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FIGURE 5. Sample images of dataset.

TABLE 1. Comparison of different models. Accuracy and speed metrics are used for evaluations on RealSense D435 dataset.

FIGURE 6. Experimental results on different models. The first column shows the left input image of stereo image pair. From second column to
sixth column: the disparity maps obtained by RealSense D435 camera, PSM-Net, Stereo-Net, GWC-Net and our TSFE-Net.

pixels with disparity error larger than 3 (Thres3). We also
record GPU memory and run-time for each model.

B. QUALITATIVE RESULTS
In this section, we compare our TSFE-Net with other
state-of-the-art networks. In experiment, the Stereo-Net code
downloads from [34] and we use 8X multi-model in exper-
iment. As is shown in Table 1, our TSFE-Net runs at a
faster speed and achieves better accuracy than PSM-Net.
Although Stereo-Net is faster than our TSFE-Net in speed,
TSFE-Net outperforms it by 1.885 pixel in average EPE.
The group number is set to 40 for GWC-Net. Our model
accuracy is close to GWC-Net, however, the run-time drops
from 0.452 to 0.181 seconds. Figure 6 illustrates some exam-
ples of the disparity maps estimated by PSM-Net, Stereo-
Net, and GWC-Net. Columns from left to right: left image
of input, disparity maps of RealSenseD435 camera’s output,
PSM-Net [27]’s output, Stereo-Net [28]’s output, GWC-Net
[29]’s output, and our network’s output. Our TSFE-Net yields

more robust results, particularly in thin texture regions. As is
indicated in the red rectangle in Figure 6, TSFE-Net recon-
structs clear edge of bag. Besides, it has more accurate recon-
struction for wire and other models have the conglutination
phenomenon in the orange rectangle.

In Figure 7, we carried out experimental analysis of the low
texture and plain colors region. We use standard measuring
instrument with eight squares in the laboratory. The color
of each square is same but varies in depth by 1mm. The
experimental results show that our model is more hierarchical
and smooth. Camera’s output has many invalid value. The
output of PSM-Net has a lot of mutation values. The result
of GWC-Net is uneven on the surface of these squares.

As shown in Table 2, we study the effects of our feature
extraction layer with convolution and deconvolution by com-
paring with Cascade-Net(our baseline model) based on fea-
ture extraction layer of PSM-Net. From the first to the second
stage for Cascade-Net, the number of disparity hypothesis
is 48, 24, and the corresponding disparity interval is set to
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FIGURE 7. The experimental results of standard measurement instrument on different models.

TABLE 2. Comparison of our feature extraction layer and Cascade-Net based on PSM-Net feature extraction layer. Our feature extraction layer is
implemented based on convolution and deconvolution. Accuracy and speed metrics are used for evaluations on RealSense D435 dataset.

FIGURE 8. Comparison between two different feature extraction layers. From left to right: left image of input, disparity maps of
RealSenseD435 camera’s output, Cascade-Net’s output, and our network’s output.

3 and 1 due to the depth field of RealSense D435 camera.
The other settings of the experiment are same except for
the feature extraction layer. And the spatial resolution of
feature maps is set to 1/4, 1/2 and gradually increases to 1 of
original input size. For these two networks, we only input
original image(1layer_raw). The experimental results show
the network based on our feature extraction layer improves
the model’s accuracy by 0.09 pixel in average EPE and
model’s speed by 0.06 seconds in time. In Figure 8, columns
from left to right: left image of input, disparity maps of
RealSenseD435 camera’s output, Cascade-Net [23]’s output
based on PSM-Net feature extraction, and ours output. The
visualization results indicate our feature extraction layer out-
performs Cascade-Net especially in thin texture region. For
example, our output has continuous edge of box on the top

row, however camera’s and Cascade-Net’s edge are irregular.
On the bottom row, our output is closer to the real input in the
edge of stairs. And Cascade-Net’s top edge losses details of
stairs.

C. QUANTITATIVE RESULTS
We evaluate the model on a larger number of test images
to prove the effectiveness of the proposed method. Test sce-
narios include bedrooms, staircases, standard measurement
props, and so on. Our method achieves 0.335 pixel in aver-
age EPE. It is worth noticing that, in the bedroom scene,
our towelling is accurately predicted. In the fourth column,
we also correctly output the stair rails and our prediction
result is better than RealSense D435 camera. More visual-
ization results are shown in Figure 9. Test scenarios include
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FIGURE 9. Disparity visualization results on the test dataset. From top to bottom: left image of input, disparity maps of RealSenseD435 camera’s
output, disparity maps of our TSFE-Net’s output.

TABLE 3. Comparison of ablation experiment results.

FIGURE 10. The design of 1layer_raw and 1layer_LCN.

office, bedrooms, standard measurement props, and stair-
cases. From top to bottom, input left images, disparity maps
of RealSense D435 camera’s output, and TSFE-Net’ output.

D. ABLATION EXPERIMENTS
In order to analyze the effect of the two-stream feature
extraction layer designed in our network, we conduct exper-
iments with different input and procession. Our ablation
experiments include: (1) feeding the original image into the
network with only one feature extraction layer(1layer_raw),
as shown in the Figure 10(i); (2) feeding LCN image after
local contrast normalization process into the network with
only one feature extraction layer(1layer_LCN), as shown

FIGURE 11. The design of 1layer_{raw,LCN} and TSFE-Net.

in the Figure 10(ii); (3) feeding original image and LCN
image into the network using one and the same feature
extraction(1layer_{raw,LCN}), as shown in the Figure 11(i);
(4) feeding original image and LCN image into different
two-stream feature extraction layers(TSFE-Net), as shown in
the Figure 11(ii). As is shown in Table 3, the evaluation error
of TSFE-Net is minimal. The results show that the design of
two-stream feature extraction layer is effective and accurate.

V. CONCLUSION
In this work, we present two-stream feature extraction
networks(TSFE-Net), the depth estimation method based
on deep learning for active stereo systems. Firstly, we use
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two stream feature extraction layers to learn information of
original image and LCN image which solve illumination
effects and reserve original details. Secondly, we improve
the Cascade-Net’s feature extraction layer to reduce compu-
tation. Experimental results show that our network has better
accuracy and faster speed based on convolutional layer and
the deconvolutional layer than Cascade-Net. Thirdly, we con-
struct a supervised network for dataset captured by RealSense
D435 camera. Our experiments show that our TSFE-Net can
predict depth with a subpixel precision and has real-time
output with a runtime cost of 6 frame using a NVIDIATITAN
Xp for 704*1024 input image. In the following research,
we will continue to explore new methods to improve the edge
and accuracy of the output.

REFERENCES
[1] S. O. Escolano, C. Rhemann, S. R. Fanello, D. Kim, and S. Izadi, ‘‘Holo-

portation: Virtual 3D teleportation in real-time,’’ in Proc. 29th Annu. Symp.
User Interface Softw. Technol., Oct. 2016, pp. 741–754.

[2] S. Schuon, C. Theobalt, J. Davis, and S. Thrun, ‘‘High-quality scanning
using time-of-flight depth superresolution,’’ in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2008, pp. 1–7.

[3] M. A. A. Neil, R. Juskaitis, and T. Wilson, ‘‘Method of obtaining optical
sectioning by using structured light in a conventional microscope,’’ Opt.
Lett., vol. 22, no. 24, p. 1905, 1997.

[4] K.-J. Yoon and I.-S. Kweon, ‘‘Locally adaptive support-weight approach
for visual correspondence search,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005, pp. 924–931.

[5] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, ‘‘Fast cost-
volume filtering for visual correspondence and beyond,’’ in Proc. CVPR,
Jun. 2011, pp. 504–511.

[6] M. Bleyer, C. Rhemann, and C. Rother, ‘‘PatchMatch stereo–stereo match-
ing with slanted support windows,’’ in Proc. Brit. Mach. Vis. Conf., 2011,
pp. 1–11.

[7] J. Lu, H. Yang, D. Min, and M. N. Do, ‘‘Patch match filter: Efficient
edge-aware filtering meets randomized search for fast correspondence
field estimation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 1854–1861.

[8] H. Hirschmuller, ‘‘Stereo processing by semiglobal matching and mutual
information,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 328–341, Feb. 2008.

[9] M. Bleyer and M. Gelautz, ‘‘Simple but effective tree structures for
dynamic programming-based stereo matching,’’ in Proc. 3rd Int. Conf.
Comput. Vis. Theory Appl., 2008, pp. 415–422.

[10] H. Hirschmuller, ‘‘Accurate and efficient stereo processing by semi-global
matching and mutual information,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005, pp. 807–814.

[11] P. F. Felzenszwalb and D. P. Huttenlocher, ‘‘Efficient belief propagation
for early vision,’’ Int. J. Comput. Vis., vol. 70, no. 1, pp. 41–54, Oct. 2006.

[12] F. Besse, C. Rother, A. Fitzgibbon, and J. Kautz, ‘‘PMBP: PatchMatch
belief propagation for correspondence field estimation,’’ Int. J. Comput.
Vis., vol. 110, no. 1, pp. 2–13, Oct. 2014.

[13] Y. Zhang and T. Chen, ‘‘Efficient inference for fully-connected CRFs
with stationarity,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 582–589.

[14] Y. Li, D. Min, M. S. Brown, M. N. Do, and J. Lu, ‘‘SPM-BP: Sped-up
PatchMatch belief propagation for continuous MRFs,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4006–4014.

[15] V. E. Seferidis, ‘‘General approach to block-matching motion estimation,’’
Opt. Eng., vol. 32, no. 7, pp. 1464–1474, 1993.

[16] H. Sakoe, Dynamic Programming Algorithm Optimization for Spoken
Word Recognition. San Mateo, CA, USA: Morgan Kaufmann, 1990.

[17] J. S. Yedidia, W. T. Freeman, and Y. Weiss, ‘‘Generalized belief propaga-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst., Denver, CO, USA, vol. 13,
2001, pp. 689–695.

[18] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, ‘‘A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 4040–4048.

[19] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
‘‘FlowNet 2.0: Evolution of optical flow estimation with deep networks,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2462–2470.

[20] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, ‘‘End-to-end learning of geometry and context
for deep stereo regression,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 66–75.

[21] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, ‘‘Cascade residual
learning: A two-stage convolutional neural network for stereo matching,’’
in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017,
pp. 887–895.

[22] Y. Zhang, S. Khamis, C. Rhemann, J. Valentin, A. Kowdle, V. Tankovich,
M. Schoenberg, S. Izadi, T. Funkhouser, and S. Fanello, ‘‘Activestereonet:
End-to-end self-supervised learning for active stereo systems,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 784–801.

[23] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, ‘‘Cascade cost
volume for high-resolution multi-view stereo and stereo matching,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 2495–2504.

[24] N. Xu, N. Ahuja, and R. Bansal, ‘‘Object segmentation using graph cuts
based active contours,’’ Comput. Vis. Image Understand., vol. 107, no. 3,
pp. 210–224, Sep. 2007.

[25] D. Scharstein, R. Szeliski, and R. Zabih, ‘‘A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,’’ in Proc. IEEE
Workshop Stereo Multi-Baseline Vis. (SMBV), 2001, pp. 7–42.

[26] J. Zbontar and Y. LeCun, ‘‘Computing the stereo matching cost with a
convolutional neural network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 1592–1599.

[27] J.-R. Chang and Y.-S. Chen, ‘‘Pyramid stereo matching network,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5410–5418.

[28] S. Khamis, S. Fanello, C. Rhemann, A. Kowdle, J. Valentin, and S. Izadi,
‘‘StereoNet: Guided hierarchical refinement for real-time edge-aware
depth prediction,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 573–590.

[29] X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, ‘‘Group-wise correlation
stereo network,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 3273–3282.

[30] S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich,
P. Davidson, and S. Izadi, ‘‘UltraStereo: Efficient learning-based matching
for active stereo systems,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 6535–6544.

[31] Q. Du, R. Liu, B. Guan, Y. Pan, and S. Sun, ‘‘Stereo-matching network for
structured light,’’ IEEE Signal Process. Lett., vol. 26, no. 1, pp. 164–168,
Jan. 2019.

[32] F. Li, Q. Li, T. Zhang, Y. Niu, and G. Shi, ‘‘Depth acquisition with the
combination of structured light and deep learning stereo matching,’’ Signal
Process., Image Commun., vol. 75, pp. 111–117, Jul. 2019.

[33] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/abs/
1412.6980

[34] X. Li. (2018). Stereonet: Guided Hierarchical Refinement for Real-Time
Edge-Aware Depth Prediction. [Online]. Available: https://github.com/
meteorshowers/StereoNet-ActiveStereoNet

HAOJIE ZENG received the B.S. degree from
the Department of Physical Science and Infor-
mation Technology, Liaocheng University, China,
in 2014. She is currently a Graduate Student with
Shanghai Normal University, China. Her research
interest includes deep reconstruction, includ-
ing passive stereo matching and active stereo
matching.

VOLUME 9, 2021 33961



H. Zeng et al.: TSFE-Net: Two-Stream Feature Extraction Networks for Active Stereo Matching

BIN WANG received the Ph.D. degree from the
Department of Automation, Shanghai Jiao Tong
University, China, in 2014. She is currently an
Associate Professor with Shanghai Normal Uni-
versity, China. Her research interests include com-
puter vision, machine learning, image processing,
and urban computing.

XIAOPING ZHOU received the Ph.D. degree
in information and communication engineering
from the University of Shanghai, Shanghai, China,
in 2011. From 2011 to 2013, he was a Postdoc-
toral Fellow with the Communication Laboratory,
Shanghai Jiao Tong University, China. He is cur-
rently a Full Professor with Shanghai Normal Uni-
versity, Shanghai. His current research interests
include mobile communication systems, image
processing, parameter estimation, and electrostatic
discharge.

XIAOJING SUN is currently a Graduate Stu-
dent with Shanghai Normal University, China. Her
research interest includes computer vision.

LONGXIANG HUANG received the Ph.D. degree
from the Department of Automation, Shanghai
Jiao Tong University, China, in 2017. He joined
Shenzhen Guangjian Technology Company Ltd.,
as an Algorithm Leader, in April 2018. His
research interests include 3D reconstruction and
robot navigation.

QIAN ZHANG received the Ph.D. degree from
Shanghai University, China. She is currently an
Associate Professor with Shanghai Normal Uni-
versity, China. Her research interest includes video
processing.

YANG WANG received the Ph.D. degree from the
Chinese Academy of Sciences (CAS). He joined
the College of Information, Mechanical and Elec-
trical Engineering, Shanghai Normal University,
as an Assistant Professor, in 2017. He served as
a Technical Advisor in public data security for
the government. He has published several research
articles in reputed journals. His current research
interests include big data, compressive sensing,
next-generation optical processors, electric system
modeling, and performance analysis.

33962 VOLUME 9, 2021


