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ABSTRACT In the immediate aftermath of large-scale disasters, emergency logistics services play important
roles in saving lives and reducing losses. Efficient relief logistics scheduling depends on the accurate
transport time information for available routes. However, this information cannot be obtained precisely
until a vehicle uses the road. Considering the correlation between information acquisition and logistics
operations, this paper focuses on a multiperiod online decision-making problem to simulate the information
acquiring process. This problem can be referenced for emergency resource scheduling scenarios in which
previous decisions impact knowledge for future logistics plans. A multi-trip cumulative capacitated vehicle
routing problem with uncertain transportation time is investigated as the basic model. The tradeoff between
transportation efficiency and the unknown transport time discovery rate is considered in a multiobjective
evolutionary algorithm (MOEA). A memetic algorithm (MA) and a robust optimization (RO) -MA for
single-period post-disaster emergency logistics are also proposed to solve the problem for comparison.
In these algorithms, evolutionary operators that benefit solution fixing and variation are proposed. In the
experiments, a real-world instance is employed. A simulative experimental environment is established.
Dynamic information gained within the process of logistics scheduling is highlighted via multi-period online
optimization. Different scenarios corresponding to estimates in emergency situations are provided to validate
the performance of the algorithms. The experimental results show that the hybrid strategy, MOEA+MA, can
obtain the best result in more than half of the considered cases which demonstrates the necessary balance
between obtaining information and transportation efficiency.

INDEX TERMS Emergency service, uncertain environment, humanitarian logistics, Pareto optimization,
robustness, multiphase scheduling.

I. INTRODUCTION
Natural and man-made disasters cause tremendous losses in
lives and economies. Large scale disasters such as regional
conflicts, earthquakes, hurricanes, and tsunamis also create
victims who must be rescued and citizens who are evacu-
ated from their homes. Organized by local governments or
humanitarian organizations, emergency logistics for water,
food or daily needs have a significant role in reducing the
suffering of survivors over time. In the emergency logistics of
post-disaster relief, the transportation infrastructure may be
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seriously damaged. The roads between local relief distribu-
tion centers (or local warehouses) and affected areas are full
of uncertainties and hazard which makes the scheduling of
emergency logistics different from traditional deterministic
transportation planning [1].

Usually, teams of trucks are scheduled to provide relief
commodity transportations. Multiple distribution centers [2]
are considered in this scenario. Because of the flexible
demand in affected areas and the limited capacity of each
vehicle, some commodities cannot be unloaded in one place
and some needs of any affected area cannot be satisfied
with the arrival of a single truck. Considering this applica-
tion backgrounds, a multi-trip cumulative capacitated vehicle
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routing problem (mt-CCVRP) [3], [4] is investigated in this
paper. The scheduling of all available vehicles in logistics
can be represented via route and action sequences. The final
objective of emergency logistics is to reduce the suffering of
the affected people by delivery commodities as quickly as
possible.

Post-disaster emergency relief actions are usually con-
ducted in an uncertain and unstable environment. Resource
scheduling and planning are complicated by unknown sit-
uations that may interfere with well-organized planning by
changing various parameters, e.g., demand amount, trans-
portation time, and vehicle availability. In these environ-
ments, decision makers should react when the current
situation differs from the previous situation. Unexecuted
routes and task schedules can be changed at any time if neces-
sary. Therefore, the optimal scheduling framework, which is
based on a simple online optimization methodology with an
‘‘optimal decision, implementation, and observation’’ loop is
proposed. A loop is a period in the following part of this paper.
At the end of a period, the data related to the current situation,
e.g., vehicle location, commodity storage, demand in affected
areas, and transportation time, are collected. Subsequently,
a new period is started when the optimizer and decision mak-
ers making routing plans or plan variations. Afterward, part
of future routing will be changed. In some related research,
similar frameworks are referred to as ‘‘rolling horizons’’ or
‘‘multiphase frameworks’’ [5]–[8].

Decision makers need accurate information as early as
possible to issue appropriate command (or routing) changes.
Time is one of the key types of information in the uncer-
tain logistics of disaster relief. The transportation time costs
around affected areas are the most uncertain factor after a
disaster such as an earthquake striking a mountain area. The
exact transportation time can be obtained only after a vehicle
passes along a road. Vehicle routing is decided within the
scheduling process; thus, plans made in previous schedul-
ing periods can affect the knowledge in future scheduling
processes. More specifically, updated information about the
transportation time in a disaster region is collected by vehicles
that are also scheduled for commodity transportation. Exe-
cuted scheduling commands correspond to vehicle passing
routes and acquiring transportation times, which also means
more exact transportation times can be utilized in subsequent
periods. This paper focuses on the problem of correlated
vehicle routing and information updating.

Our work concentrates on how better or worse results could
be obtained with existing solutions. Three optimization algo-
rithms, i.e., memetic algorithm for single-period post-disaster
emergency logistics (MA_SP_PDEL), multiobjective evolu-
tionary algorithm (MOEA), and robust optimization based on
memetic algorithm (RO_MA), are employed with different
objective. MA_SP_PDEL and RO_MA are single-objective
optimization methods that focus on the benefits of transporta-
tion on affected people in addition to RO plus the uncertainty
about transportation time. By contrast, MOEA considers
the mission based on two objective functions. The first is

the objective function of MA_SP_PDEL. The second is the
new road discovery rate based on vehicle routing to support
scheduling in subsequent periods.

The situation considered in this paper is realistic: decisions
must be made with limit knowledge of the model parameters,
and scheduling must be adjusted when new information is
obtained. A simulative online experimental environment is
established. Initially, all transportation times are roughly esti-
mated. Some come from historical information before a dis-
aster or remote sensing from the air. The true transportation
time collection procedure is embedded to simulate the real-
world application in which the decision maker and scheduler
must adjust the routing if a shorter option is discovered.

The performance of different algorithms in five different
scenarios corresponding to estimations in emergency situa-
tions is studied to reveal some findings in this newly designed
emergency logistics scheduling environment. MOEA+MA,
a hybrid strategy that changes the optimization method from
MOEA to MA_SP_PDEL in the last period of scheduling,
outperforms single-objective optimization methods in real-
istic estimation scenarios. The balance between information
gaining (IG) and transportation efficiency (TE) is shown to
be unavoidable. Although the objective function value does
not demonstrate the advantage of RO_MA, the indirect IG
capability is still worth considering.

The contributions of this paper are listed as follows:

i A multiperiod online scheduling problem for post-
disaster logistics with unknown transportation time is
proposed. The framework for solving the problem with
interactive IG is investigated.

ii Three optimization algorithms with different objec-
tive functions are employed to solve the problem. The
objective function of road transportation time discovery
is modeled and utilized in the MOEA.

iii Easy-to-implement simulative environments are
designed such that single-period optimization methods
can be tested impartially. A real-world instance that
combines five different initial estimations of trans-
portation time is considered in the numerical experi-
ments to illustrate the performance of the algorithms.

The remainder of this paper is organized as follows.
Section II reviews the related literature. In Section III, the
mathematical models for single and multiple scheduling peri-
ods are provided. Optimization algorithms are introduced
in detail in Section IV. A simulative experimental environ-
ment and test instances are constructed in Section V, and the
corresponding experimental results are analyzed in Section
VI. Section VII concludes the primary findings and present
potential directions for future research.

II. RELATED WORK
Dynamic optimization, stochastic programming, and robust
optimization are three widely used methods to address var-
ious challenges. The dynamic nature is a key characteristic
of large-scale disasters [9], [10], Yi and Özdamar designed
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an integrated evacuation and logistics support model with
multiperiod coordination approach that can adjust to infor-
mation updating [11]. Sheu proposed a demand forecasting
method to respond to demand dynamics over time. Data
fusion has also been employed to address multiple sources
of information acquisition [10]. Najafi et al. [12] empha-
sized the capability of re-routing vehicles at any moment
if necessary in their dynamic dispatching and routing algo-
rithm. Fang et al. [13] considered sliding time window ser-
vices and group information updates for drug distribution
with time-varying demands. Liu et al. [14] employed a robust
model predictive control approach to address the challenge of
adjusting distribution plan. A rolling horizon-based frame-
work was also proposed to take advantage of the updated
information. A common feature in these works is the infor-
mation input or update during the vehicle dispatch process.
Similarly, the problem investigated in this paper also accounts
for knowledge that decision makers must consider to avoid
suboptimal scheduling. However, in the problem solved in
this paper, the information update is related to the executed
scheduling which was not addressed in previous studies.
Our work actively considers the problem. Information acqui-
sition is accomplished by previous scheduling rather than
prediction.

The second method for handling the uncertainty of model
parameters is stochastic programming. Garrido et al. [15]
proposed a spatiotemporal stochastic process model to sim-
ulate the impacts of floods in emergency logistics and con-
sidered the probability of uncertain demand in affected
areas. Rennemo et al. [16] presented a three-stages loca-
tion and routing problem that includes stochastic elements,
such as demand, vehicle fleet capacity and infrastructure
state. Alem et al. [17] employed stochastic mixed-integer
programming to support planning in the prepositioning stage
and post-disaster transportation stage. Additionally, different
risk measures have been highlighted to show the reliability
of solutions. A progressive hedging algorithm was applied
by Hu et al. [6] to solve a multistage stochastic programming
model that considered uncertain and dynamic road capacity.
Wang et al. [18] investigated a time-dependent speed green
vehicle routing problem. In these studies, the probability or
distribution of a specific scenario or an uncertain parameter
must be provided which renders these methods less popular
than dynamic optimization approaches and robust optimiza-
tion approaches. For this reason, stochastic programming is
not considered in this paper.

Robust optimization approaches have received consid-
erable attention in this decade as an increasing num-
ber of researchers have concentrated on the uncertain
nature of disaster scenarios. Zokaee et al. [19] proposed
a robust counterpart of the relief chain for interval data
uncertainty. Najafi. et al. [20] investigated a multiobjective
robust optimization model for logistics in various situations.
Bozorgi-Amiri et al. [21] combined robust optimization and
stochastic programming to address challenges caused by
three sources of uncertainty in disaster relief logistics.

Ben-Tal et al. [5] initially applied an affinely adjustable
robust counterpart approach to overcome demand uncertainty
in traffic assignment problems. Dynamic adjustments to the
realizations of uncertainty are considered in the proposed
framework. This paper inspired us to consider the multistage
perspective of logistics scheduling under uncertainty and to
employ adjustable decisions when part of the uncertain data
is realized. Recently transportation time uncertainty [7], [22]
has attracted attention as a fundamental factor after a dis-
aster. In [22], a tractable robust optimization formulation
and a coaxial box uncertainty set were proposed. A recent
review paper from Govindan et al. [23] provided a survey
on the uncertainty of supply chain network design, which is
helpful for a better understanding of these studies. Unknown
transportation time can be considered an uncertainty; so, the
robust optimization method is attempted in this research as a
comparison.

‘‘Online (or real-time) optimization’’ is a more appropri-
ate term that describe the methodology employed in this
paper. Wilson et al. [24] investigated a real-time scheduling
problem for mass casualty instance response operations and
considered the communication between optimization and the
environment. Two types of dynamics affecting the solution
space and the value of the objective function were discussed.
A rolling-horizon approach was employed in relief distribu-
tion scheduling by Lu. et al. [8]. State estimation and predic-
tion mechanics were applied in each horizon to mitigate the
drawbacks of a lack of information. Jagtenberg et al. [25]
has benchmarked the problem of ambulance dispatching in
the scenario of continuously arriving emergency calls, and an
offline model in which all the events that may occur in the
future are known in advance was utilized as the lower bound
of scheduling performance. In all the above studies, decisions
are made within the IG procedure, and schedule fixing is
also investigated. Intuitive but efficient, the rolling-horizon
method is referenced in this paper and is referred to as
multiperiods decision making. The affections of nonoptimal
decisions that are based on imperfect information in future
scheduling are highlighted in this paper.

The time linkage feature, which was proposed by
Bosman [26], describes the aforementioned concerns from
the perspective of optimization and is one of the typical fea-
tures of the problems investigated in this paper. As discussed
in the literature, previous decisions that have an influence on
future optimizations are the focus of this feature, and some
related studies show that a large number of ‘‘scheduling and
resource allocation’’ optimizations in dynamic environments
have these features [27], [28]. The unknown transportation
time is the core factor that influences the implementation
of emergency logistics scheduling. The collection of infor-
mation about transportation time is controlled by the previ-
ous scheduling decisions. Nonetheless, the problems in this
paper do not fully belong to dynamic time-linkage problems
because: (1) although the problem is solved online by col-
lecting real data, it is basically an uncertain optimization
problem that is converted to a static optimization problem
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when all the unknown transportation times are discovered;
(2) no prediction technology is involved, but the discovery
of unknown information is highly affected by the previous
decisions which can be considered a kind of estimation; and
(3) the risk of inability to authentically evaluate the perfor-
mance of any solution when optimizing is high because all the
evaluations are based on estimations and current knowledge
about the environment.

III. PROBLEM DESCRIPTION AND MODELLING
This section provides mathematical details about emergency
logistics situations and objectives. Since real-time simula-
tions are time-consuming, a multiperiod online optimization
structure with an information obtaining process is presented
for computational research and experiments.

In the single-period model, the mt-CCVRP is investigated
in the situation of post-disaster relief in the scenario of uncer-
tain transportation time. For simplicity, homogeneous vehi-
cles are available and only one type of commodity remains to
be transported from local warehouses to affected areas. Two
initial vehicle statuses are considered, free and traveling, cor-
responding to the vehicle staying at its final visited location in
the previous scheduling window and the vehicle moving from
one location to another. When free, a vehicle can execute new
commands immediately, while when traveling, the vehicle
must first reach the target location before executing the new
schedule. The objective of the proposedmodel is to reduce the
accumulative loss of affected areas so that people can receive
supplies as quickly as possible. This objective is referred to as
the transportation effectiveness in the reminder of this paper.
The model is based on the following assumptions:

i Vehicles can only load the commodity from ware-
houses, and unload the commodity in an affected area;

ii Each warehouse has a commodity storage capacity,
and no additional commodity will be transported from
outside areas during the emergency logistics process;

iii Each vehicle can visit any location adjacent to its cur-
rent location;

iv The connection between any two locations is known in
advance, but the transportation times are unknown;

v The punishments of the losses caused by unsatisfactory
commodity shortages in affected areas are based on the
shortage and waiting times.

The indices, parameters, and decision variables considered
in this paper are presented in TABLE 1.

The mt-CCVRP for post-disaster logistics is formulated as
follows:

min f =
m∑
j=1

Lossj (1)

Subject to:

Lossj = lossj(e)+ lossj(l) (2)

lossj(e) =
∫ momj

0
Rem_demj (t)

·

(
Rem_demj (t)

demj

)2

· d (t) (3)

TABLE 1. Notations and descriptions.

lossj(l) =
∫ T

momj
urgj

· Rem_demj (t) ·
(
Rem_demj (t)

demj

)2

· d (t)

(4)

Rem_demj (t)

=



demj
t = 0

max

{(
demj−

∑
Rec_momj,q≤t

Rec_amoj,q

)
,0

}
t > 0

(5)

The objective function aims to minimize the accumulative
loss for all the affected areas caused by the shortage and
latency of the commodity. The loss of each affected area can
be calculated by constraints (2) to (5). Each affected area
has an urgency coefficient (urgj > 1) and the correspond-
ing moment (T > momj > 0). These two parameters are
determined according to the situation of the affected areas
in advance. Commodity shortages lead to more serious con-
sequences if beyond that moment. The fairness of supply is
considered bymultiplying the square of the ratio of remaining
demand quantity to initial demand quantity.

Fairness is a key factor in the evaluation of commodity
distribution in almost all aspects of resource scheduling in
disaster relief and humanitarian aid. Tzeng et al. [29] pro-
posed a tri-objective optimization model for relief delivery
and set the minimization of unfair distribution as the third
objective function. Bayram et al. [30] performed shelter
location and evacuation planning in consideration of fairness
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among evacuees. Hung et al. [31] comprehensively modeled
the humanitarian objectives in disaster response, and fairness
received equal concentration as lifesaving effectiveness and
human suffering.

As shown in (3) and (4), the unsatisfied demands are multi-
plied by the square of the fraction of unsatisfied demands vs.
total demands in an area which can be viewed as the degree
of dissatisfaction. The higher the degree is, the higher the
objective value gaining it would contribute. The nonlinear
influence measurement (quadratic) reduces the tolerance of
the minority of affected areas to a much higher degree.

FIGURE 1. Graphical illustration of the calculation of accumulative loss
based on an example affected area. The left Y-axis represents the vehicle
unloading amount (black stick), and the right Y-axis corresponds to
unsatisfied demands (line chart). The shadow divided by the two colors
corresponds to the difference in the unit cost of a shortage.

Moments and quantities of commodities that affect areas
receiving supply are determined by the vehicle routes
and unloading amounts in these areas. For example,
Figure 1 reveals the change in the remaining demand in an
affected area. In this figure, vehicles arrive in the affected area
with moments that do not need to be the same. The shadow
area below the curve can be viewed as the accumulative effect
of the shortage of the emergency commodity.

The calculation of Rec_momj,q and Rec_amoj,q depends
on detailed vehicle scheduling. Scheduling commands can
be formulated as target location visiting and loading
sequences for each vehicle, i.e., {(visitv,1, loadv,1), (visitv,2,
loadv,2). . . (visitv,p, loadv,p)}, where loadv,p is the amount of
commodity loaded or unloaded during its p – th mission, and
visitv,p is the location of the p – th mission. For example,
vehicle Va is assigned to load γ units of the commodity at
its initial location (warehouse i) and unload half of the γ
units of the commodity at location j after passing through
location m and unload the remaining commodity at location
k after passing through location v. The scheduling of Va can
be formulated as: {(i, γ ), (m, 0), (j, −0.5× γ ), (v, 0), and (k ,
−0.5× γ )}. The tuple of {location, amount} is referred to as
a mission.

The transportation time is considered the only factor in the
vehicle arrival time, and loading (unloading) time is omitted
in this problem. Due to the uncertainty of transportation time
in the optimization processes, tab cannot be used before any
implementation of scheduling but can be applied when used

in the previous logistics process. In practice, both tab and its
estimation, t ′ab, should be employed.

To calculate the changing moment of remaining demand in
Figure 1, the action time of missions based on scheduling can
be obtained by (6) and (7), corresponding to vehicles with free
and traveling initial status. The variable is labeled timev,p,
which means the occurrence time of the p – th mission of
vehicle v.

timev,p =

{
0 p = 1
timev,(p−1) + tab p > 1

∀v ∈ Vf (6)

timev,p =

{
tOri,Tar − dv p = 1
timev,(p−1) + tab p > 1

∀v ∈ Vt (7)

where a is the location that the vehicle visited at its (p - 1) - th
target location and b corresponds to the p – th location.
Ori and Tar are the original location and target location,
respectively, of the traveling vehicle; and dv is the duration of
traveling from Ori to Tar in the previous scheduling period.
The remaining time from Ori to Tar cannot be obtained if
tOri,Tar is not revealed by previous scheduling. The difference
in arrival time at the first location of the two types of vehicles
can be obtained and will affect the following arrival time.

After collecting all the arrival times of vehicles,Rec_momj,
the sequence of commodity arrival times, can be obtained
after sorting all the missions located at j.

The loading of each mission is constrained by the remain-
ing capacity of the vehicle and the remaining storage of the
warehouse. The remaining storage of warehouses is calcu-
lated by (8).

Rem_stoi (t)

=


stori −

∑
v∈Vf ,visitv,1=i

loadv,1 t = 0

Rem_stoi (0)−
∑

visitv,p=i,timev,p≤t
loadv,p t ≥ 0

(8)

Free vehicles starting from a warehouse can collect com-
modities in the first time step. In equation (8), the change in
the remaining storage occurs after a vehicle is loaded at the
warehouse. Rem_stoi(T ) is stori in the next period.
loadv,p is one of the decision variables. In the follow-

ing sections, its representation and decision processes are
provided in detail. Three natural constraints are considered:
1) the vehicle cannot overload at the warehouse; 2) the
warehouse cannot provide a quantity of the commodity that
exceeds its capacity, so Rem_stoi(t) > 0 for any t > 0; and
3) the amount unloaded at an affected area cannot exceed the
current commodity carrying capacity.

The traditional optimization framework is unsatisfactory
because the whole plan is generated before implementation
since new information about the environment is not taken into
account. The optimal plan might be shown to be unreachable
as expected, or suboptimal. Scheduling modifications com-
monly occur in disaster relief; therefore, a new optimization
framework for multiperiod scheduling is proposed for the
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post-disaster emergency logistics problem. First, four basic
assumptions are presented:

i Any scheduling commands can be changed or canceled
before execution;

ii The real transportation time of a road between two con-
nected locations will be discovered when any vehicle
passes it;

iii Any affected area that receives a surplus commodity
will be changed to temporary relief distribution centers
with properties that are identical to those of a ware-
house;

iv Any vehicle whose schedule is stopped before the end
of the last routing will have a traveling initial status in
the next period.

The above four assumptions guarantee the connection,
reasonability and necessity of the following interactive opti-
mization process. Figure 2 shows the operation of the optimal
scheduling process:

FIGURE 2. Multiperiod online optimization structure with information
obtaining.

In this process, the initial knowledge of the optimal
scheduling method is equivalent to the estimation of the prob-
lem parameters, i.e., transportation time. The terminal criteria
can be time related such as the terminal moment reached,
or progress related such as all commodities being transported
to the affected area.

Decision making in the setup of logistics scheduling plan-
ning and plans variation is the core of optimization. As the
insights of uncertain transportation time become compre-
hensive, more accurate decisions can be made and involve
scheduling by plan variation.

IV. OPTIMIZATION ALGORITHMS
Three optimization algorithms are introduced in this section.
Two single-objective optimization algorithms focus on
improving TE, while the multiobjective algorithm also con-
siders the promotion of IG when constructing plans. The
multi-objective method benefits future scheduling for less
uncertainty in each round of scheduling. In a solution (or a
scheduling plan), it is expected that more information can be
found without considerable loss in TE. The multi-objective
evolutionary algorithm is designed to address this trade-off,
which can simultaneously optimize these two objective func-
tions. The two single-objective methods are single-period

methods inwhich new plans aremade based on the current sit-
uation and knowledge. The memetic algorithm addresses the
transportation efficiencymaximization only and the unknown
transportation time is not considered when generating the
optimal solution. The robust optimization shares the same
objective function with the memetic algorithm, but the trans-
portation time uncertainty is considered in the optimizing
process. A solution that achieves better performance in aver-
age cases is expected.

In this section, solution representation, decoding method,
solution evaluation, and evolutionary operators are com-
monly used in these three algorithms. Therefore, they are
presented independently first. The objective function of IG
and bicriteria decisions is explained in subsection E within
MOEA. The frameworks of these algorithms are not the main
contribution of this paper, so we only briefly present them.

A. SOLUTION REPRESENTATION
The scheduling commands of all the vehicles available are
employed directly as the solution representation. A two-
dimensional array is used. The array consists of a fixed
number of vehicle mission lists; for each list, the number of
locations assigned to visit is decided by the algorithm. There
is a limitation of this direct representation: it is difficult to
obtain valid loading and unloading amounts as mentioned in
Section III. Therefore, when constructing a chromosome of
a solution, varied coding is used to obtain a feasible solution
while sacrificing the preciseness of commodity amount con-
trol. The chromosome does not directly represent the amount
but code the behavior of vehicles at each location. The values
{−1, 0, and 1} represent the discrete coding of the behav-
ior that corresponds to {unloading, passing, and loading},
respectively. The amount control at each location is realized
by the repetition of successivemissions belonging to the same
vehicle. Figure 3 shows an example of chromosomes. In this
example, Vehicle A loads as much of the commodity as it can
at a1, unloads the entire amount at a3 and then reload at a4.
Vehicle B unload the commodity at b2 and b3. The amount
that is unloaded at b2 is two times that unloaded at b3. Vehicle
N loads at n1 and n2 if n1 does not have sufficient commodity
to fulfil N.

B. DECODING AND SOLUTION IMPROVEMENTS
Although it is easy to address volume constraints and no
continuous variables are involved, we should still consider
other constraints. Four rules are applied to satisfy such con-
straints when decoding a chromosome: (i) repetition of mis-
sions should be performed after unloading; (ii) vehicles shall
load as much of the commodity as possible at warehouses
with loading assignment and shall not take any commodity
from the warehouse when all the stored commodity has been
collected by other earlier arriving vehicles; (iii) the repe-
tition of missions should not be separated by the passing
mission at the same location; and (iv) the unloading missions
between any two successive loading missions will share the
commodity taken by the vehicle with the ratio of repetition
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FIGURE 3. Chromosome representation.

counts. However, if only one location is associated with
unloading, the repetitionwill becomemeaningless and should
be replaced by a single unloading mission. When calculating
the objective function value, a newly designed operator is
employed to fix the chromosome to satisfy the constraints.
Algorithm 1 defines the process of this fixing operator, which
is named Rule_based_decoding.
Line 1 initializes the solution with the problem parame-

ters. The initial status of each vehicle is considered. Line 3
adjusts the order of unloading to generate a better chromo-
some without evaluation. Line 4 removes the inappropriate
location repetition using the above rules. Line 5 generates
the solution directly and returns a modified chromosome in
which some loading missions with amounts approaching zero
are removed. If there is no chromosome change in the process
of solution generation, the solution and the fixed chromosome
are outputted. Otherwise, the next iteration is conducted to
further modify the chromosome.

Algorithm 1 Rule_Based_Decoding
Begin
1. Sln.initialize(Par);
2. Ch_fixed:= Ch_original;
3. Ch_fixed.unloading_migration();
4. Ch_fixed.remove_illegal_location_repetition();
5. Ch_fixed2= Sln.solution_generation(Ch_fixed, Par);
6. if (Ch_fixed2 != Ch_fixed) then
7. Ch_fixed:= Ch_fixed2;
8. Goto Line 3;
9. end if
10. returnCh_fixed, Sln;
End

For each vehicle, all the missions can be separated into
numbers of transportation cycles that contain one and only
one loading mission for vehicles with free initial status (for
vehicles with traveling initial status, the unloading missions
before the first loading mission form the first transportation
cycle). Figure 4 illustrates the mission separation results for
two vehicles. As a vehicle with free initial status, vehicle
A has two transportation cycles. The first cycle loads from
a1 and unloads all the commodity at a3. The second cycle
loads from a4 which is adjacent to a3 and unloads at a6. The
other vehicle must visit b1 with its load to finish the previous
routing, and unloads at b2 and b3 as its first cycle.
The earlier the commodity arrives in the affected areas

the better the results that rescue can achieve. Within each

FIGURE 4. Mission cycle separation of two example vehicles in
chromosome.

FIGURE 5. Heuristic adjustment based on common sense.

cycle, the unloading behaviors at the same location should
be assigned successively when the vehicle first reaches the
location because the time cost of unloading is omitted and
the adjustment has no influence on other affected areas. Thus,
the commodity or vehicles’ route planning is obtained. This
adjustment is realized byLine 3 in Rule_based_decoding and
is shown in Figure 5. A vehicle visits na+1 na+2 na+3 sequen-
tially. The unloading at the same place, na+1 and na+3, should
occur at the first visit. Therefore, the adjustment makes the
routing more efficient. The revisit of na+5 belongs to the next
mission cycle, so the adjustments do not affect it.

At Line 5 in Rule_based_decoding, the feasible loading
and unloading amounts of each mission are decided to con-
struct a feasible solution. According to the estimation and cur-
rent knowledge of transportation time (TTE&CK), the moment
that each vehicle arrives at a warehouse to load the commod-
ity can be calculated. Sorted by the arrival time, vehicles are
filled if the remaining amount of commodity in thewarehouse
is larger than the remaining capacity of the vehicle upon
arrival. However, not all loading missions can be satisfied
due to the limited supply of warehouses. Hence, there is
a moment corresponding to the last vehicle taking all the
remaining commodity from a warehouse (usually the vehicle
is not full), and a vehicle arriving at this warehouse later than
the moment will not receive any commodity. If more than one
vehicle simultaneously arrives at the warehouse, a sharing
strategy is employed and the vehicles obtain the same amount
of commodity if they are not overloaded. After loading, the
unloading amount of each unloading mission can be calcu-
lated based on the commodity carried by the vehicle in each
transportation cycle. The carried commodity will be unloaded
within the cycle, and the amount follows the fourth rule.

These amount control operations will be revealed as the
amount elements of the solution, so there is no possibility
that a warehouse will supply an amount of the commodity
that exceeds its storage capacity or that any vehicle will
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unload an excessive amount of the commodity at an affected
area. Meanwhile, the amount control of this decoding pro-
cess will make some loading and unloading missions invalid
because the amount is zero. These ‘‘Zero missions’’ will be
transformed to passing missions in which the chromosome
will change in behavior. Ch_fix2 corresponds to this changed
chromosome.

C. SOLUTION EVALUATION
When calculating the objective function value, the arrival
time of each mission should be obtained with TTE&CK. The
mission will be omitted if the arrival time exceeds the ref-
erence terminal time (RTT) which is one of the problem
parameters. Then, the commodity receiving moment and
amount can be obtained and the loss at each affected area
can be calculated. RTT is used to replace T when applying
this optimization algorithm to solve multiperiod scheduling
problems with predefined time intervals, such as the concept
of horizons in [8].

The value of the objective function can be easily obtained
for a feasible solution. The number of missions for each
vehicle cannot be limited because the motiveless mission
at the end of some vehicles does not influence the calcu-
lation of the objective function. The uncontrolled length of
mission lists is harmful to the optimal solution searching in
evolutionary computation methods. Therefore, transportation
costs are employed in the evaluation of chromosomes. The
following equation is employed to calculate the fitness value
of a chromosome.

Fit =
m∑
j=1

Lossj + α ×
|V |∑
v=1

mission_countv (9)

where the mission_count of each vehicle is the number of
locations assigned to be visited according to the solution.
The coefficient α is a parameter that controls the tolerance
of the number of missions and must be determined by deci-
sion makers in advance. The fitness evaluation of a chromo-
some (labeled fitness_evaluation) involves three major steps:
(i) rule based decoding; (ii) objective function calculation;
and (iii) fitness function value calculation.

D. EVOLUTIONARY OPERATORS
The random walk method is applied to randomly initialize
a chromosome, which is labeled initialization. The mission
count of each vehicle is randomly determined according to a
uniform distribution in the range from 8 to 13. Along with
the problem parameters, the start location of each vehicle
is known and is set to be the current location of the first
mission. The next location to visit is randomly selected from
the neighbors of the current location with equal probability.
To allow repetition, each location includes itself as a virtual
neighbor. At warehouse locations, the probability of loading
is 0.8 and at affected areas, the probability of unloading is 0.5.
If locations in the mission list are repeated in affected areas,
the behaviors in both missions are assigned to be unloading.

A set of chromosomes is selected randomly from the pop-
ulation to conduct crossover. Child chromosomes are gen-
erated via single-point crossover until the number of child
chromosomes is the same as the population size. The operator
takes two parents and generates two children for each single
point crossover. A crossover point is randomly generated,
and the vehicles whose ID is larger than the crossover point
exchange mission lists. The feasibility of vehicle route con-
nections can be guaranteed by the set of feasible chromo-
somes.

Four types of mutation operators are considered in this
paper. In the first operator, two vehicles with more than one
mission are randomly selected, and two cutting points are also
randomly selected. The missions after the cutting points are
exchanged and connected to the other vehicle’s mission list.
Concerning the location connectivity in the mission lists, the
shortest paths found according to TTE&CK are used in the con-
nection, and in themissions of the connection path, the behav-
iors are set to be passing. In the second operator, the arrival
time for each mission is calculated based on TTE&CK. The
mission is removed if a previous location visit falls behind
RTT, which has no influence on the vehicle routes before the
terminal time. In the third operator, for each vehicle, a head
address and tail address are randomly selected first. Missions
within the two addresses are removed and the shortest path
is used to connect the remaining missions similar to the
operation in the first mutation operator. The fourth muta-
tion operator changes the number of passing missions to be
unloaded in affected areas to be unloadedwith the probability
of 0.5 to increase the number of unloading missions.

Two different strategies are employed to improve chromo-
somes with limited fitness, which is labeled local_search.
The first strategy removes passing missions between two
operating missions, while the second strategy randomly adds
missions for vehicles that can complete all their missions
before the RTT.

The first strategy (which can be referred to as ‘‘mis-
sion_simplify’’) operates on a specific vehicle. All the loading
and unloading missions besides the first mission are reserved,
as with their original permutation. These missions are then
connected by the shortest path as the connection operation
in the first mutation operator. Useless traveling can be elimi-
nated by this strategy, whichmakes the routes of vehicles con-
cise. However, the variation of routes does not always lead to
improvement in chromosomes because other vehicles can be
affected. In contrast, the second strategy (which can be called
‘‘mission_add’’) adds missions to vehicles that have time
to conduct more transportation. The random walk method,
which is similar to the initialization operator, is employed to
add a random number of missions in the range of [1, 5].

Some of the vehicles are not considered by mis-
sion_simplify to reduce computational costs. Only 10% of
vehicles are randomly selected and tested to improve the orig-
inal chromosomes. The best candidate solution is employed
in each iteration to modify the chromosome. If no vehi-
cle whose chromosome can be improved is identified, the
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mission_add strategy is applied 3 times to modify the chro-
mosome without reducing the fitness.

E. MOEA FOR SINGLE-PERIOD POST-DISASTER
EMERGENCY LOGISTICS
Discovering more information is a naive but effective idea
that makes the subsequent optimization more reasonable due
to better knowledge about the problem parameters. However,
the task of transportation time discovery also depends on
the scheduling of vehicles. The scheduling of vehicles will
reduce the efficiency of commodity transportation in some
cases. Therefore, evolutionary multi-objective optimization
and bi-criterial decisions from the Pareto solution set address
the trade-off between transportation efficiency and trans-
portation time discovery so that a more practical scheduling
plan can be obtained to improve the global performance in
multiperiod post-disaster emergency logistics.

In this model, the number of roads first used by the vehi-
cle can be viewed as a measure of discovery. Nevertheless,
without knowledge of the transportation time, the measure
of discovery cannot precisely reveal the IG in the following
implementation, because the accomplishment of missions is
not guaranteed, especially for missions located at the bottom
of mission lists. The moment of discovering any transporta-
tion time is expected to be as early as possible. Hence, these
moments should be included in the measure of discovery.

Road Rab connecting locations a and b is discovered after
the end of any pair of missions from a to b (or along the other
direction). Consequently, the arrival time of the later mission
can be saved and associated withRab. The earliest arrival time
associated with the road is the moment of discovery and is
labeledDiscoab. For some roads without anymission pair, the
moment is set to a large value. All Discoij value smaller than
RTT are accumulated by score with the following equation.

score =

∑
Discij<RTT

e−
Discoij
RTT

unknown
(10)

The normalization of the discovery measure is divided by
the maximum number of unknown roads (labeled unknown).
Therefore, the score cannot exceed the range of [0, 1).
Considering the consistency of the objective functions, the

two objective functions for logistics are defined as:

min f1 =
m∑
j=1

Lossj + α ×
|v|∑
v=1

mission_countv

min f2 = e− score (11)

where e is the base of the natural log. The conflict of these
two objectives is shown in the Appendix A.

A multiobjective evolutionary algorithm that is based on
NSGA-II [32] is employed to simultaneously minimize the
loss in affected areas and maximize the transportation time
discovery within the current period. NSGA-II is shown to be
efficient for themultiobjective location-routing problem [33].
A dynamic solution selection strategy,in which the higher the
unknown transportation time is, the higher the preference of
selecting a solution is expected to discover more information.
The ratio of discovered roads versus all the roads, i.e., Rknown,
is determined according to the current knowledge. The inter-
val of [0, 1] is divided into three regions by two predefined
bounds, i.e., upper bound, U_b, and lower bound, L_b. For
case 1, in which Rknown is higher than U_b, the solution with
the minimum value of objective function 1 is selected; for
case 2, in which Rknown it is lower than L_b, the solution
with minimum the value of objective function 2 is selected;
for case 3 in which Rknown falls between U_b and L_b, the
solution whose cosine distance in the objective space between
itself and the preference point is the smallest is selected. The
calculation of the cosine distance follows the equations (12)
and (13), as shown at the bottom of the page.
where Extr_point1 corresponds to the solution in the Pareto
set with the minimum value of objective function 1, similar to
Extr_point2. Both are 2-dimentional vectors in the objective
space. Ideal_point= (z∗1, z

∗

2), and z
∗
i is the minimum value of

objective function i within all the solutions in the Pareto set.
Figure 6 clearly illustrates the selection preference.

F. MEMETIC ALGORITHM FOR SINGLE-PERIOD
POST-DISASTER EMERGENCY LOGISTICS
For each period of vehicle routing scheduling, the transporta-
tion time of some roads can change due to the difference
between the estimated data and the real data. After the ter-
minal moment set for single period optimization, the next
round of optimization is initialized. Form the perspective
of satisfying commodity shortages, routings are meaningful
if they can be completed before the terminal moment or if
they have no benefits to transportation, as they could not
be executed. Each period of vehicle routing scheduling is
performed to solve a ‘‘subproblem’’ divided by time.

MA_SP_PDEL is started by population initialization.
In each iteration, chromosomes in the Population and Off-
spring population, chromosomes generated in the previous
iteration and current iteration respectively, are mass selected
by Binary tournament selection. A portion of chromosomes
in the selected Population can be improved by the local
search operator. Some randomly selected chromosomes are

Pref _point =
Rknown − L_b
U_b− L_b

× Extra_point1 +
U_b− Rknown
U_b− L_b

× Extra_point2 (12)

cossolu =
(Pref _point − Ideal_point) · (Solu_point − Ideal_point)
‖Pref _point − Ideal_point‖2 + ‖Solu_point − Ideal_point‖2

(13)
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FIGURE 6. Dynamic solution selection with preference point.

used to generate offspring that will be stored in Offspring
population and some of them will be modified by one of
four mutation operators. When the iteration time limitation
is reached, the best individual in the Population can be iden-
tified and will be decoded before outputting.

Some additional explanations of operations in
MA_SP_PDEL are now considered. In the Binary tour-
nament selection operator, two chromosome sets are first
combined into a larger chromosome set named MIX. Then,
in each iteration of tournament selection, two chromosomes
with different indices are randomly selected from MIX to
compare their fitness. The chromosome with a higher fit-
ness value is removed until the number of chromosomes
in MIX equals P_size. The best chromosome is reserved
since none of the comparisons cause it to be discarded. The
1% of chromosomes with the best performance are selected
in Top_selection to conduct the local search operator to
minimize the evaluation times and maintain gene diversity
in the populations. The candidate parent chromosomes for
crossover are selected randomly from the population in Ran-
dom_selection with the number being Pc×P_size.

G. ROBUST OPTIMIZATION FOR SINGLE-PERIOD
POST-DISASTER EMERGENCY LOGISTICS
Robust optimization is a commonly used method to address
optimization problems with uncertain parameters. In this
paper, RO based on scenarios is introduced as a competitor
to evaluate the performance of the other algorithms. The
methodology of RO is embedded in a memetic algorithm
labeled RO_MA.

Scenarios are randomly generated based on TTE&CK.
Noise following a normal distribution, i.e.,N(0, 0.2), is added
to TTE&CK,which is still unknown, to form different scenar-
ios. The transportation times are set as the lower bound if they
are smaller than the lower bound. To ensure a fair comparison,
the evaluation times of different algorithms should be similar.
As a result, the product of the number of scenarios and the

maximum number of iterations in RO_MA should approxi-
mate the maximum number of iterations in other algorithms.

The fitness evaluation in RO_MA is the average objective
function value of accumulative loss under different scenar-
ios with a penalty for the number of missions. In the rule
based decoding process, only TTE&CK is used to generate
a feasible solution and the performance of this solution is
evaluated based on all the scenarios. Except for the objective
function evaluation, all the operations are the same as those
in MA_SP_PDEL and are based on TTE&CK.

V. SIMULATIVE EXPERIMENTAL ENVIRONMENTS
Simulative experiments are necessary to verify the perfor-
mance of an optimization method before real-world appli-
cations, especially for emergency logistics scheduling. The
interaction between scheduling, real-world implementation,
and uncertain transportation time confirmation is modeled
by a simulative experimental environment proposed in this
paper. The mechanics of the information update are the major
difference between the experiments in this paper and other
existing studies [4], [14], [24], [25].

In terms of post-disaster emergency logistics, situations
related to infrastructures are reported on time. We compress
the simulation of implementations to be momentary, which
means that given a pause condition, the circumstances of
warehouses, affected areas, vehicles, and transportation times
of part of newly utilized roads, in addition to the timeline,
are provided instantaneously. The implementation of optimal
scheduling plans can be completed within seconds, but the
generation of the optimal scheduling plan takes several tens
of minutes. Hence, the interactive optimization process is
formulated as a loop of {optimization, implementation, and
information update}, and the loop represents one period of
multiperiod scheduling. The following procedures describe
the simplified interactive experimental environment:

Step 1 : Initialize the knowledge for the optimal scheduling
method;

Step 2 : Generate an optimal scheduling plan based on the
current knowledge;

Step 3 : Implement the optimal scheduling plan and collect
the unknown information based on pause conditions;

Step 4 : Update the vehicle status, knowledge of transporta-
tion time, and demand & supply quantity;

Step 5 : If the terminal condition is satisfied, then stop this
process; otherwise, go to Step 2;

Step 6 : Calculate the objective function value according to
all the executed schedules.

Step 3 is critical for the continuation of multiperiod opti-
mization. In real applications, the pause conditions can be
decided by the optimal scheduling methods or decision mak-
ers after observing the implementation of the current plan.
However, real-time observations cannot be realized in these
experiments and the pause condition must be decided by the
optimization algorithms or set in advance. A time break is an
intuitive pause condition that assigns the operation duration
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of the current optimal scheduling plan. The statuses of vehi-
cles in the next period of optimization are also decided. The
vehicles can remain at their terminal location according to
the plan or travel on their route to the next location. If any
vehicle passes a road during this time, the transportation time
of the road is known for the next period of optimization.
Moreover, the demand and supply quantities are updated to
avoid infeasible solutions being generated because of param-
eter inconformity.

At the end of the experiment, in Step 6, all the executed
logistics scheduling commands are saved as log data and the
defined quantity of the commodity is received in the affected
areas. The objective function value is calculated based on
these log data for the model in a single scheduling period.

RTT is a significant parameter in the optimizations. A sim-
ple strategy is used to automatically decide RTT in each
period of optimization. RTT is set to the remaining time of the
logistics process when the proportion of the number of cur-
rent unknown roads versus the number of all the roads is lower
than a threshold, which means that the amount of unknown
information is sufficiently small that the complete schedule
should be made; otherwise, RTT equals RTT_def, a prede-
fined parameter whose influence is discussed in the follow-
ing experiments. Concerning the different tested instances,
a fixed threshold in RTT decisions is unrealistic because not
all unknown roads must be visited. The threshold cannot
be reached for some algorithms that do not aim to discover
information. Thus, a fuzzy threshold is employed to replace
the fixed threshold such that the probability of deciding that
the next period of optimization is the terminal optimization is
linearly related to the proportion. The relation of the prob-
ability and the proportion is represented by the following
function.

Prob.

=


1 Prop. < L_bound
1− Prop.−L_bound

U_bound−L_bound L_bound≤Prob.≤U_bound

0 Prop. < U_bound
(14)

where U_bound and L_bound are two parameters that reveal
the tolerance of decision makers and are set to 0.2 and 0.05,
respectively, in the following experiments.

VI. EXPERIMENTS
A. TEST INSTANCES
The CHICHI earthquake that occurred on Sep. 21, 1999 in
Taiwan, China, was employed as a practical case to verify
the performance of the algorithms and the proposed opti-
mization model. Such real-world cases are widely used in
research on humanitarian logistics and disaster relief oper-
ations research [8], [10], [34]–[39]. Specifically, most of the
data stem from numerical experiments in [34]. The demanded
commodity was a homogeneous necessity of life stored
at 4 local warehouses for emergency response. Twenty-nine
school campuses in different counties were used as shelters to

provide the emergency supply for victims and were regarded
as affected areas that demanded the commodity. In this paper,
the demand amount of these affected areas is estimated
according to the number of people serviced at each location.
The urgency degree and correspondingmoment are generated
randomly within the range of [1, 11] and [5, 25] and both
obey a uniform distribution. The amount of storage at each
warehouse is set to 99999 units. Ninety-two homogeneous
trucks, eachwith a capacity of 2000 units, are applied to trans-
port the commodity. The real transportation time between two
connected locations is estimated based on the direct distance
calculated according to the longitude and latitude data. The
terminal time of emergency logistics is set to 150 time units.

Moreover, the initial estimation of transportation time
is generated based on 5 different considerations. The
first 3 types of estimated data are generated with knowledge
of TTR. Disturbance is randomly added to TTR in different
ways: in the first scenario, noisy data obeying the standard
normal distribution, i.e., N(0, 1), are added to simulate a
precise estimation. If any transportation time is shorter than
the lower bound, i.e., 0.1 unit, it will be regenerated until it
is higher than the lower bound. In the second scenario, the
absolute value of N(0, 1) is added to simulate a conservative
estimation; in the third scenario, the negative absolute value
of N(0, 1) is added to simulate the usage of transportation
time before the disaster, which evidently has better condi-
tions. Similar to the first scenario, none of the transportation
times can be lower than the lower bound. As the TTRs of
different scenarios are the same, the lower bounds of the
objective function values are the same, and the results can
be contrasted to analyze the different algorithms in different
scenarios.

The last two types of estimation are not based on any
information about TTR so that the behaviors of different
algorithms can be investigated. The first is the same value
estimation, in which all the connected roads are given the
same value higher than the lower bound. The second is
random estimation, in which all the transportation times are
generated according to a uniform distributionwithin the range
of [2, 8].

An example solution is partly represented in Appendix B,
complete instance related data is demonstrated in supplemen-
tary data.

B. SETTINGS OF TESTED ALGORITHMS
According to primary experiments, population size is set to
100 and the terminal iteration time is 1000, which is prac-
tical for real-worlds applications. In RO_MA, the terminal
iteration time is reduced to 20 since the number of randomly
generated scenarios is 50.

MOEA+MA, is a hybrid strategy that selects an algorithm
in the current scheduling period according to the proportion
of unknown roads as previously described. If the proportion
is smaller than 20%, MA_SP_PDEL is employed; otherwise,
MOEA is applied to discover more information. The reason
the hybrid strategy is used is that the performance of MOEA
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FIGURE 7. Boxplots of three algorithms’ performance in five scenarios.

declines sharply with the decrease in the proportion and
information discovery is less valuable compared to the effi-
ciency of logistics in this situation. Hence, a single-objective
optimization method is more suitable for the following logis-
tics scheduling. In MOEA, the population size and terminal
iteration time are the same as those in MA_SP_PDEL. U_b
and L_b are set to 0.9 and 0.1, respectively, in multicriteria
decision-making.

The three other parameters are the same for all the
algorithms. Pm = 0.25, Pc = 0.9 and α = 100. The
above algorithm parameters are selected by test experiments.
On different synthetic instances, RTT_def varies within {20,
30, 40} and the influence is revealed by the variance of the
global objective function values.

The algorithms are coded by C++ in Visual Studio 2019.
The experiments are conducted using a computer with OS
=Windows 10 professional, CPU = Intel Core i7-8550U @
3.8 GHz, and RAM = 16 GB.

C. EXPERIMENTAL RESULTS AND DISCUSSIONS
Each algorithm is tested 10 times in each scenario with dif-
ferent RTT_def values to observe the stability of results of the
algorithms with random mechanics.

Figure 7, consisting of 5 subfigures corresponding to the
different scenarios, shows a boxplot of objective values (accu-
mulative_loss). Each subfigure shares the same legend in
the subfigure of scenario conservative. Table 2 reports the
numerical results of these experiments, including the average
objective value and its standard derivation. Average compu-
tational times for the first period of each algorithm is also
included.

For most cases, the higher the value of RTT_def is, the bet-
ter the results are. However, the sensitivity of the algorithms
is vary. RO_MA shows less sensitivity, while MA_SP_PDEL
does not. The stability does not appear to be influenced by
RTT_def.

The realistic scenarios lead to better results while the
results of scenario 0/1 are worse than random. Comparedwith
the conservative scenario, the optimistic scenario achieves
better performance. The random scenario does not result in
worse performance than scenarios with more information
about real transportation time which exceeds our expecta-
tions.

Figure 8 provides more information about the transporta-
tion time discovering and the progress of logistics. The sub-
figures on the left side show the fraction of transportation
time discovered at each decision moment, and the subfigures
on the right side show the fraction of commodity satisfaction
among all affected areas. Discovery stops when the algorithm
has sufficient knowledge to complete the remaining logis-
tics scheduling. Not all independent runs result in the same
number of decision periods because random factors are con-
sidered. Figure 8 (a) and (b) correspond to the accurate sce-
nario and that with RTT_def = 30, while the remaining two
subfigures correspond to the random scenario and that with
RTT_def = 40.

The boxplots in Figure 7 indicate that MOEA+MA
outperforms the other two algorithms in realistic cases,
which have transportation times estimated based on real
data, but in other cases, it does not. In the realistic case,
MOEA finds a better trade-off and guarantees a better
result.
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TABLE 2. Statistics of the objective values corresponding to Figure 7.

TABLE 3. Demonstration of a partial solution.

FIGURE 8. Progress of information discovery and commodity delivery.

However, in the unrealistic case, MOEA focuses exces-
sively on information discovery, and the critical transporta-
tion at the beginning is omitted. In Figure 8, MOEA and
RO_MA show similar progress in information discovery. The
best performance in all cases indicates a strong capability of

discovery, which is worth investigating and improving in the
future.

VII. CONCLUSION AND FUTURE WORK
In this paper, an emergency logistics scheduling problem
with transportation time uncertainty is modeled and the issue
of dynamic IG controlled by vehicle routing is explicitly
considered. An interactive online optimization experimental
environment inspired by real-world operations in disaster
relief is established. Three population-based evolutionary
algorithms concentrating on transportation efficiency, infor-
mation discovery, and average performance are developed.
The experimental results for 5 synthetic scenarios, indicate
that MOEA+MA obtained the best results in more than
half of the cases based on consideration of both delivery
efficiency and information discovery. The effects of infor-
mation discovery are demonstrated. Meanwhile, RTT_def
has a strong influence on the final objective value, and a
higher RTT_def is expected. Concerning information dis-
covery efficiency, we should not ignore the performance
of RO_MA.

The practical value of this paper is the significance
of information gained in scheduling for the scenario of
post-disaster relief. In addition, the experimental simula-
tion environment represents an interactive research direction
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for transportation scheduling with uncertain or unknown
components.

The investigation of the relationship between logistics
operations and unknown information discovery is the core
contribution of this paper. However, this is just the beginning
of research on such features in scheduling under uncertainties
in which only two conflicting objectives and few optimization
methodologies are involved. More real-world applications
are believed to contain such features. For these two reasons,
our future research will focus on the following two aspects:
(1) theoretical analysis based on easy-to-implement problems
and (2) application in other scopes such as emergency medi-
cation services dispatching.

APPENDIX A
OBJECTIVE FUNCTION CONFLICT ANALYSIS
The conflict of the two objectives proposed in Section VI E
can be understood by means of an intuitive small instance,
as shown in Figure 9. A vehicle full of commodity tends
to support affected area D1 from local warehouse S. Two
path ways connect these two locations. One is the direct
connection and the other passes a location with no demand.
According to the estimation of uncertainty TT, reaching D1
directly and returning in the same way is the best choice for
logistics efficiency if all the TTs are currently unknown. If we
select the other path in the first return, the TT of D1-D2-Swill
be discovered while the supply arriving in the second cycle
of transportation will be extended, which will yield a higher
accumulative loss.

FIGURE 9. A small instance illustrates the existence of conflicts between
objectives.

For more complicated cases, we cannot easily find this
relationship. Thus, a specially designed MA_SP_PDEL is
employed in its first period to demonstrate the trajectory of
the best chromosome in each generation. Notably, this imple-
mentation is not involved in the following experiments. The
experiments are divided into two phases. In the first phase, f1
is the objective function for the optimization started from a set
of random initialized chromosomes. In the second phase, the
objective function is changed to f2 with the best chromosome
starting from its final position in optimization phase one.
The chromosome with the lowest objective value is marked
in the objective space. In the first phase, the population is

FIGURE 10. Conflict relationship illustration of accurate scenario with
RTT_def = 30.

FIGURE 11. Trajectories of the best chromosome generated by
MA_SP_PDEL in each scheduling period.

randomly generated as described in Section VI D. However,
in the second phase, the population is generated by the
mutation operator based on the best chromosome in the last
generation of phase one. Figure 10 contains the trajectory
of the best chromosome in these two phases and the Pareto
front obtained by MOEA. The conflicting relationship can be
observed in the objective space, where pursuing the optimal
solution in one objective will sacrifice the other. MOEA can
find a chromosome with better performance in both objec-
tives, but the diversity of chromosomes in the Pareto front is
unsatisfactory.

The conflict is not clear in the following peri-
ods. In the accurate scenario with RTT_def = 40,
MA_SP_PDEL is observed in its conventional experi-
ments in Section VI. The best chromosome is selected
to generate scheduling commands. In Figure. 11, as the
period count increases, the trajectory shows less correlation
between objectives. Therefore, the multiobjective optimiza-
tion method is affected, and the Pareto front cannot be
constructed.
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APPENDIX B
SOLUTION REPRESENTATION EXAMPLE
TABLE 3 provides a partial solution outputted by optimizer.
Since the number of vehicles is too many, only 6 vehicle
routes are contained. Each period of scheduling will generate
a solution for optimal vehicle scheduling.

First 3 vehicles are with free initial status, and the
last 3 vehicles are with traveling initial status. The vehi-
cle 86 is traveling from #12 to #14 with 2000 unit commodity
and the duration of this travel is 5.0 time unit. The vehi-
cle 87 is traveling from #9 to #1 with 2000 unit commodity
and the duration of this travel is 7.7 time unit. The vehi-
cle 91 is traveling from #9 to #21 with 2000 unit commodity
and the duration of this travel is 6.8 time unit.

The chromosome of these 6 vehicles is:
Vehicle 1: [0, 1]; [12, 0]; [13, 0]; [18, 0]; [29, 0]; [30, 0];

[31, −1]; [32, −1]; [32, −1]
Vehicle 2: [0, 1]; [8, 0]; [7, −1]; [7, −1]; [7, −1]; [6, −1];

[6, −1]; [5, −1]; [6, 0]; [7, 0]; [1, 1]; [8, −1]. . .
Vehicle 3: [0, 1]; [12, −1]; [12, −1]; [12, −1]; [13, −1];

[18, 0]; [28, 0]; [27, −1]; [27, −1]; [24, −1];
Vehicle 86: [14, −1]; [15, −1]; [14, 0];
Vehicle 87: [1, 0]; [11, 0]; [12, 0]; [13, −1]; [12, 0]; [11,

0]; [1, 1]; [7, −1]; [7, −1]; [8, −1] . . .
Vehicle 91: [21, −1]; [9, 0]; [1, 1]; [7, −1]; [6, −1]; [6,
−1];
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