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ABSTRACT Identifying the sources of spreading dynamics on networks has drawn extensive attention in
recent years, where a variety of epidemic models have been adopted to simulate the propagation dynamics
among network nodes, such as the Susceptible-Infectious (SI) model. The objective is to identify the most
possible source of infection based on the observed state transition events (e.g., from susceptible to infectious)
on a small set of monitored nodes. Most existing studies assumed that once a monitored node is infected,
it will be immediately observed. However, in reality, it is likely that for many infectious diseases, a newly
infected person becomes infectious without showing any disease symptoms. In this case, the state transition
cannot be observed until symptoms arise after a time period (i.e., the incubation period). Accordingly, in this
paper, we focus on investigating the source identification problem of asymptomatic spread on complex
networks by monitoring only a small number of network nodes. Specifically, we adopt a continuous-time
SI model with a contagious incubation period to simulate the asymptomatic spread on networks, where the
length of the incubation period is assumed to be an independent and identically distributed exponential
distribution. In doing so, we formulate the source identification problem as a likelihood maximization
problem and solve it using the Monte Carlo approximation and importance sampling. Finally, we validate
the performance of our method on both synthetic and real-world networks with different experimental
settings. The results show that our method can achieve higher identification accuracy than several benchmark
methods.

INDEX TERMS Source identification, asymptomatic spread, incubation period, susceptible-infectious
model, Monte Carlo approximation.

I. INTRODUCTION
Understanding and control the spreading dynamics on net-
works has attracted a considerable number of studies in the
field of complex networks for many years [1]–[4]. A great
deal of research has been focusing on investigating the prop-
erties of various spreading dynamics on networks, such as the
propagation of worms on computer networks [5], the spread
of rumors on social networks [6]–[9], and the epidemic of
infectious diseases on human contact networks [10]–[14].
Evidence has shown that the spread of malicious informa-
tion or diseases on networks can cause immeasurable losses.
To prevent and control a harmful spread on networks, one
of the most effective ways is to identify the possible sources
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of the propagation (i.e., the origin of a spread). If the origin
could be identified in the early stage, it will have far-reaching
applications in developing intervention and control strategies
to curtailing the spread, and reducing the potential losses
incurred. For example, finding the rumor-monger may reduce
disinformation in a social network [15]–[17]; identifying
patient zeros may help control an epidemic [18], [19]; locat-
ing the source of a computer worm can help improve the
security of computer networks [20]. In this paper, we aim
to address the problem of estimating the epidemic origin on
networks.

In recent years, extensive methods have been pro-
posed to solve the problem of source identification on
networks [17]–[25]. Given a network and the observed con-
figurations, the object is to determine the most probable
source of propagation on the network. Early studies focused
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on identifying the propagation sources on tree-like regular
networks [22]. Then, the problem was generalized to esti-
mate the propagation sources in complex networks [19], [24].
Along this line, by analyzing the properties of network struc-
ture, a set of graph-centrality measures have been proposed,
such as the distance centrality or the spectral centrality [22].
However, relying on structural information alone cannot
reflect the characteristics of spreading dynamics on networks,
let alone estimate the source of spreading dynamics.

Another challenge of source identification lies in the
stochastic nature of spreading dynamics on networks, where
different initial conditions can lead to the same observed con-
figuration. Previous work used discrete-time sequential prop-
agation models such as the independent cascade model [26].
However, it is difficult to reflect real-world situations. Later
on, various epidemic models were used to simulate the
spreading dynamics, such as the Susceptible-Infectious (SI)
model, the Susceptible-Infectious-Recovered (SIR) model,
and the Susceptible-Infectious-Susceptible (SIS) model [15],
[20]–[22], most of which assumed that a newly infected per-
son will immediately become infectious. However, in social
networks, users may hesitate to believe a confusing message
after receiving it, and will not forward it immediately [8], [9].
Accordingly, the Susceptible-Exposed-Infectious-Recovered
(SEIR) model was introduced to involve the latent period,
that is, the period from the time of infection to the time of
becoming infectious [27].

In reality, for many infectious diseases, infected
individuals do not necessarily have symptoms when they
are infectious (namely, asymptomatic spread). For exam-
ple, a person infected by the coronavirus disease 2019
(COVID-19) may be infectious before they develop symp-
toms [28]–[31]. In other words, it is difficult to determine
when the person was infected due to the uncertainty of
the incubation period, which is defined as the time period
betweenwhen an individual gets infected andwhen the symp-
toms start. Concerning the epidemic source identification,
when a node in the network has symptoms, it may have been
infected for a long time and may have led to new infections
in the network. This will greatly increase the difficulty of the
problem. In this paper, we focus on investigating the source
identification problem of asymptomatic spread on networks
with partially observed propagation traces, which record the
time when symptoms appeared on a small set of monitored
nodes.

Specifically, we use the continuous-time SI model with
contagious incubation periods to simulate the asymptomatic
spread on networks. Then, we propose a novel source iden-
tification method to estimate the source nodes based on par-
tially observed state changes of the censored node. The main
contributions of this paper are summarized as follows:

1) We present a source identification problem for the
asymptomatic spread on networks, taking into consid-
eration the uncertainty of the contagious incubation
period. So far as we know, this is the first work to
identify the epidemic origin of asymptomatic spread.

2) We adopt the continuous-time SI model with varying
incubation periods, the length of which depends on
the personal physical condition and follows an expo-
nential distribution. Moreover, the propagation sources
are estimated based only on the observations about the
onset of symptoms of a small number of nodes.

3) We present a Source Identification of Asymptomatic
Spread (SIAS) method that casts the source identifi-
cation problem as a maximum likelihood estimation
problem, which maximizes the likelihood of observed
propagation traces under the propagation model.
Specifically, we propose an efficient importance sam-
pling method to approximate the objective function.

4) We conduct a series of simulations on both synthetic
and real-world networks with different settings to eval-
uate the properties and performance of the proposed
SIAS method.

The remainder of this paper is organized as fol-
lows. In Section II, we introduce the related work about
source identification on networks. In Section III, we for-
mulate the source identification problem based on the
Susceptible-Infectious model with asymptomatic spread.
In Section IV, we present the SIAS method in detail. Then,
we carry out experiments to evaluate the performance of the
proposed SIAS method in Section V. Finally, we conclude
this work in Section VI.

II. RELATED WORK
In the past decades, a variety of methods have been pro-
posed to identify the propagation sources by maximi-
zing the likelihood of the observed traces [17], [21], [24],
[32], [33]. Most early studies focus on spreading dynamics
on tree-like networks, which is simulated using the traditional
epidemic models [15], [20], [22]. For example, Shah and
Zaman proposed a rumor centrality metric and proved that
the node with the largest rumor centrality can maximize the
likelihood of the observed data [20], [22]. Accordingly, Dong
et al. further proposed a local rumor center method to identify
propagation sources, which reduced the seeking scale for the
origin of spread [15]. Zhu and Ying proposed a novel Jor-
dan center method for the Susceptible-Infectious-Recovered
(SIR) model and proved that the source node is more likely
to be at the Jordan center of the network [34].

Later on, researchers extended the source identi-
fication problems from tree-like networks to general
networks [18], [19], [24], and temporal networks [35]–[37].
Early studies tried to estimate the propagation origin based
on a complete steady-state snapshot at a given time. Taking
the estimation of an epidemic origin as an example, we can
only observe which nodes got infected rather than when
they did so. In doing so, the information about the nodes to
which the spread did not reach cannot be fully explored [18].
In this case, many researchers tried to identify the sources by
injecting a set of sensors in networks in advance such that
the specific state changes of the sensor nodes and the corre-
sponding time of infection can be observed [23], [38]–[40].
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The source identification method based on partial observa-
tions of sensor nodes was first proposed by Pinto et al. [38].
In their study, the authors have assumed the propagation time
for each edge follows a Gaussian distribution. Then, the prop-
agation origin can be identified based on the differences
in time of infection among those sensor nodes. Recently,
Yang et al. extended the Gaussian estimation method to a
direction-induced search-based Gaussian estimator, which
can identify propagation sources in general networks with
high accuracy [25]. Along this line, many other researchers
have tried to estimate the origin based on propagation traces
among network nodes [41]–[43]. Usually, only a small frac-
tion of network nodes are monitored and, if infected, their
infection time can be observed [44]–[46]. The challenge lies
in that we need to unroll the incomplete traces into the past
to pinpoint the source.

The spreading dynamics on networks directly determine
the difficulty of the source identification problem. Many
existing studies used epidemic models to simulate the
spreading dynamics on networks, such as the Susceptible-
Infectious-Recovered (SIR) model and the Susceptible-
Infectious-Susceptible (SIS) model [18], [47]. Further,
the latent period was considered by the epidemic models,
i.e., the time interval between when an individual is infected
and when he or she becomes infectious [48], [49]. While for
some diseases, it takes a while for an individual to develop
symptoms after infection [28]–[31]. In this case, the conta-
gious incubation period was considered to model the epi-
demic dynamics [10], [12], [50]. For example, Dhar et al.
studied the role of the contagious incubation period based on
the SIS model with infectious incubated state [50]. Yu et al.
also extended the SIS model and proposed a corresponding
epidemic model with the contagious incubation period on
directed and heterogeneous networks [12]. Further, Zhu et al.
proposed a generalized epidemic model on complex hetero-
geneous networks based on the SIR model with the incuba-
tion period, and studied how the heterogeneous connectivity
patterns and the underlying network structures affect the
disease propagation [51]. In this paper, we aim to tackle the
source identification problem for the asymptomatic spread
on networks, using the SI model with a varying incubation
period.

III. PROBLEM STATEMENT
In this section, we first introduce a continuous-time SI model
with the incubation period to characterize the asymptomatic
spreading on networks. Then, we formulate the source iden-
tification problem to be a likelihood maximization problem
based on partially observed propagation traces on network
nodes.

A. ASYMPTOMATIC SPREAD ON NETWORKS
Let G = {V, E} be a directed network, where V is defined as
a set of nodes and E = {(i, j)|i, j ∈ V} is defined as a set of
edges between nodes i and j. In this paper, we focus on the
asymptomatic spread on G using the Susceptible-Infectious

(SI) model, where a newly infected node may become infec-
tious without showing any symptoms. Therefore, each node
in G should be in any of the following three states: (i) Sus-
ceptible (denoted as S), nodes that have not been infected;
(ii) Infectious but asymptomatic (denoted as A), nodes that
are infectious but asymptomatic; and (iii) Infectious and
symptomatic (denoted as I ), nodes that are contagious and
symptomatic.

FIGURE 1. An example of the infection process on a directed graph under
the Susceptible-Infectious model with asymptomatic spread. Two
snapshots are taken recording the states of nodes during the epidemic
spreading. Nodes in the S-state, A-state, and I-state are colored with
white, blue, and red, respectively. Initially, the node 0 is infectious but
asymptomatic (A-state), and all other nodes are in S-state. (a) After a
period of transmission, nodes 1, 3 and 4 are infected by the source node
0. All of them become infectious while nodes 1 and 4 are asymptomatic
(A-state). (b) After the incubation period, node 0 and node 4 change to be
I-state. Meanwhile, nodes 7 and 9 are infected and change to A-state;
Nodes 5 and 8 have passed a short incubation period and become I-state.

Figure 1 demonstrates the process of asymptomatic spread-
ing on a network. Initially, all nodes except for the source
node s are in S-state. Starting from the source node s, an epi-
demic propagates along its out-going edges to its direct neigh-
bors and further spread to other nodes in G. When a node i is
infected, its state will change from S to A. Then, it will take a
time period ϕi (i.e., the incubation period) to develop disease
symptoms. After the incubation period ϕi, the node enters
I -state. We cannot determine whether a node is infected or
not before it enters I -state. Note that an infectious node can
infect multiple neighboring nodes, but it must be infected by
one of its neighboring nodes.

The force of infection along each edge (i, j) is described
by τij, which represents the time of transmission from i to j.
In this paper, we assume that τij is randomly drawn from
a probability density function f (τij;αij) parameterized by a
transmission rate αij. Moreover, because a node cannot be
infected by another node infected later in time, we assume
that the force of infection τij is independent and non-negative,
that is, if τij < 0, f (τij;αij) = 0. With respect to the
incubation period, we assume that ϕi is randomly drawn from
a probability density function g(ϕi;βi) parameterized by a
transition rateβi. Similarly, we assume the {ϕi} is independent
and non-negative, that is, if ϕi < 0, g(ϕi;βi) = 0.

A temporal trace tI = (t I1, · · · , t
I
N ) will be observed after

the propagation process, which records when the symptoms
appear on each node. Here, t Ii ∈ [0,∞] and∞ denotes the
corresponding node is not infected during the observation
window. However, in many real-world scenarios, due to the
large network size, we cannot record the states of all network
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nodes. In this paper, we assume that only a limited number
of sensors can be placed to observe when the nodes develop
symptoms. Accordingly, we represent the observable set of
nodes in the networks as O, and the other nodes as H.
Meanwhile, the time of infection of all nodes is denoted
by an N-dimensional vector tA = (tA1 , · · · , t

A
N ), which is

unobservable as well. The goal of this paper is to estimate
the source of an epidemic spreading on G from the partially
observable traces of nodes in O.

B. SOURCE IDENTIFICATION OF ASYMPTOMATIC SPREAD
Given the times of the subset of nodesO in the network when
the symptoms of the nodes become observable, i.e., {t Ii }i∈O,
our goal is to find the source node s and its infection time tAs ,
which maximize the likelihood of the observed data. Thus,
we aim to solve

s∗ = argmax
s∈V

max
tAs ∈

(
−∞,mini∈O t Ii

) p ({t Ii }i∈O |tAs ) . (1)

where we assume tAs < mini∈O t Ii and p
({
t Ii
}
i∈O |t

A
s
)
is

defined as below.
According to the conditional independence relation pro-

posed in the continuous-time model, the complete likelihood
of the infection process for both observed and hidden times
can be given as:

p(tI , tA|tAs ) =
∏

i∈O∪H
p(t Ii |t

A
i ) p (t

A
i |{t

A
j }j∈πi ), (2)

where πi is the set of parents of node i in the directed graph
and the likelihood of the incubation period ϕi = t Ii − tAi ,
i.e., p(t Ii |t

A
i ), is defined with a probability density function

g(ϕi;βi). Furthermore, the likelihood of the infection times
can be written as below, as is given in [41]:

p
(
tAi |
{
tAj
}
j∈πi

)
=

∏
j∈πi

S
(
tAi − t

A
j ;αij

)
×

∑
l∈πi

H
(
tAi − t

A
l ;αil

)
,

where S
(
τij;αij

)
= 1 − F

(
τij;αij

)
is the survival function

which represents the probability that node i has not been
infected by node j at time tAi .F

(
τij;αij

)
=
∫ τij
0 f

(
τij;αij

)
dt is

the cumulative distribution function computed with the prob-
ability density function f (τij;αij), and H

(
τij;αij

)
=

f (τij;αij)
S(τij;αij)

is the hazard function, represented as the instantaneous infec-
tion rate.

For the probability density functions, to make our method
more suitable for real world propagation data [41], [52],
we here focus on the exponential distributions for modeling
the delays f (τij;αij) and f (ϕi;βi). In this case,

f
(
τij;αij

)
=

1
αij
e
−
τij
αij =

1
αij
e
−
tAi −t

A
j

αij ,

f (ϕi;βi) =
1
βi
e−

ϕi
βi =

1
βi
e−

tIi −t
A
i

βi .

where the transmission rates {αij} and transition rates {βi}
control the length of propagation delays and conversion
delays respectively.

Unfortunately, to use Eq. 2, the state transition times of all
the nodes in the network need to be fully observed. As we
can only observe the times of the subset of nodes in the
networkwhen the symptoms of the nodes become observable,
the likelihood of incomplete propagation data is computed as:

p({t Ii }i∈O|t
A
s ) =

∫
�

∏
i∈O∪H

p(t Ii |t
A
i ) p (t

A
i |{t

A
j }j∈πi )

×

∏
j∈H

dt Ij
∏

i∈O∪H
dtAi , (3)

which marginalizes out the times of all hidden nodes H
and all hidden infection times over a product space � :=
[tAs ,∞)|H|. However, the computation of the incomplete like-
lihood involves high dimensional integration. In the next
section, we will address this difficult problem with a novel
importance sampling method.

IV. METHOD
As stated above, to solve the problem of source identification,
there are two remaining difficulties. First, how to approxi-
mate the high dimensional integration in the objective func-
tion. We address this problem by an approximation algorithm
based on importance sampling to simplify the calculation.
Second, the maximization over the infection time of the
source node in Eq. 1 is a non-convex problem. To solve this
problem, we utilize the piece-wise structure of the objective
function and optimize the objective function with efficient
algorithms.

A. APPROXIMATION OF MULTIPLE INTEGRALS
With incomplete observation, it is difficult to directly calcu-
late the likelihood function in Eq. 3 due to multiple integrals.
Thus, we consider Monte Carlo approximation methods to
sample from the posterior distribution of latent variables
given the source time tAs and the observed times {ti}i∈O.
However, it is still difficult to sample directly from this
distribution, so we use importance sampling to approximate
the likelihood value [44].

More specifically, we first introduce a set of auxiliary
random variables {ηIi }i∈O, which corresponds to the observed
times, and with its arbitrary joint probability distribution
q({ηIi }i∈O). The auxiliary variables will be used in the impor-
tance sampling. Given the auxiliary distribution, the objective
function becomes:

p({t Ii }i∈O|t
A
s ) =

∫
�

∏
i∈O∪H

p(t Ii |t
A
i )p(t

A
i |{t

A
j }j∈πi )

×q({ηIi }i∈O)
∏
j∈H

dt Ij
∏

i∈O∪H
dtAi

∏
i∈O

dηIi . (4)

Then, we use importance sampling on the auxiliary and
hidden variables by introducing the proposal distribution
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q̃({ηIi }i∈O, {t
A
i }i∈O∪H, {t

I
i }i∈H), which gives:

p({t Ii }i∈O|t
A
s )

=

∫
�

∏
i∈O∪H p(t Ii |t

A
i )p(t

A
i |{t

A
j }j∈πi )

q̃({ηIi }i∈O, {t
A
i }i∈O∪H, {t

I
i }i∈H)

q({ηIi }i∈O)

×̃q({ηIi }i∈O, {t
A
i }i∈O∪H, {t

I
i }i∈H)

×

∏
j∈H

dt Ij
∏

i∈O∪H
dtAi

∏
i∈O

dηIi

≈
1
L

L∑
l=1

p({t Ii }i∈O, {(t
I
i )
l
}i∈H |{(tAi )

l
}i∈O∪H )

q̃({(ηIi )
l}i∈O, {(tAi )

l}i∈O∪H, {(t Ii )
l}i∈H)

p({(tAi )
l
}i∈O∪H |tAs )q({(η

I
i )
l
}i∈O)

, φL(tAs ), (5)

where we draw L samples from the proposal distribution
q̃({ηIi }i∈O, {t

A
i }i∈O∪H, {t

I
i }i∈H) to approximate the multiple

integrals. Here we define the proposal distribution with the
generative process of the epidemic spreading. In particu-
lar, the proposal distribution q̃({ηIi }i∈O, {t

A
i }i∈O∪H, {t

I
i }i∈H)

will be p({ηIi }i∈O, {t
A
i }i∈O∪H, {t Ii }i∈H|t

A
s ), the distribution

of the auxiliary and hidden variables under the epidemic
spreading process with s as the source node. In addition,
the auxiliary distribution q({ηIi }i∈O) is chosen to be equal
to p({ηIi }i∈O|{t

A
i }i∈O), which greatly simplifies the objective

function in Eq. 5.
Finally, with the proposal distribution and auxiliary distri-

butions proposed above, we can further simplify the objective
function as follows:

φL(tAs ) =
1
L

L∑
l=1

p({t Ii }i∈O, {(t
I
i )
l
}i∈H |{(tAi )

l
}i∈O∪H )

p({(ηIi )
l}i∈O, {(t Ii )

l}i∈H)|{(tAi )
l}i∈O∪H

×p({(ηIi )
l
}i∈O|{(t

A
i )
l
}i∈O)

=
1
L

L∑
l=1

∏
i∈O

p
(
t Ii |(t

A
i )
l
)
. (6)

It is worth mentioning that as the proposal distribution is
defined with the generative process of the epidemic spread-
ing, we sample L sets of infection times in an efficient
way, which is independent of the actual value of tAs and
only depends on the real source node s. More specifically,
to sample the infection times {(tAi )

l
}i∈O∪H, we first sample

transmission times {(τij)l}(i,j)∈E for each edge in the networks,
which is independent of the choice of source nodes. Then,
for each potential source node s, we utilize the shortest-path
first property [53] under this model, which means that the
infection propagate through the shortest path, to effectively
calculate {(tAi )

l
}i∈O∪H with different source node infection

times tAs . Let Qi(s) be the set of directed paths from source
node s to a node i, where each path q ∈ Qi(s) contains a
sequence of directed edges (j, n), and we assume the infection
time of the source node to be tAs , thus we can calculate (tAi )

l

as follows:

(tAi )
l
= gi({(τjn)l}(j,n)∈E |s)+ tAs
= min

q∈Qi(s)

∑
(j,n)∈q

(τjn)l + tAs , (7)

where gi(·) is the value of shortest-path from source node s to
node i.

B. MAXIMIZING THE OBJECTIVE FUNCTION
The objective function, given by Eq. 1, consists of two layers
of maximization. In the outer layer, we only need to rank the
maximum likelihood values corresponding to all candidate
source nodes. The node with the largest value is estimated as
the source node s∗. The outer layer maximization is straight-
forward, however, it involves the inner layer maximization,
which requires calculating the likelihood value of each can-
didate source node at its optimal starting time tAs . To this end,
we utilize the Monte Carlo approximation and aim to find the
optimal value tAs to maximize φL(tAs ). That is,

max
tAs ∈

(
−∞,mini∈O t Ii

)φL(tAs ), (8)

Although the inner maximization is a one-dimensional
problem, defined in Eq. 6, the objective function is piecewise
continuous with respect to tAs . The reason is that as the value
of the start time tAs increases, the value of the asymptomatic
infection time (tAi )

l sampled by an observation node i will
exceed its observed infection time t Ii , which is inconsistent
with the concept of the non-negative incubation times men-
tioned above. But by using the characteristics of the objective
function, we can effectively find the maximum value in each
of its continuous pieces.

To solve the inner layer maximization problem, we first
need to find all the endpoint tAsi of each continuous piece in the
approximated likelihood function φL(tAs ). With the starting
time tAs of the candidate source node increasing, when the
infection time (tAi )

l of any observation node i is equal to its
observed infection time t Ii , the starting time tAs corresponding
to the current source node is the change point. More specif-
ically, it can be seen from Eq. 6 that the objective function
φL(tAs ) can be mainly composed of one part: p(t Ii |(t

A
i )
l). The

change of tAs will affect the difference between the asymp-
tomatic infection time (tAi )

l and the observation time t Ii of
the observed node i. When the asymptomatic infection time
(tAi )

l of the observed node i obtained by sampling is equal to
t Ii , the current tAs is the change point. We set tAs = 0 at the
beginning and computing the asymptomatic infection time
(tAi )

l for each observed node i ∈ O and realization l through
sampling and the shortest path characteristics. Then we can
find the change points by computing the time difference
t Ii − (tAi )

l , i ∈ O, l = 1, . . . ,L with the starting time tAs
increasing. If the time difference is equal to zero, we record
the current change point tAsi . Once the time difference of an
observation node is negative, the node will be ignored in the
subsequent process and the related time difference will no
longer be calculated, since the time difference will never be
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greater than zero. After that, the inner maximization prob-
lem is transformed into finding the maximum values for the
continuous pieces. Moreover, within each continuous piece,
the objective function is a monotonic increasing function
with respect to tAs , as φL(t

A
s )
′ > 0 in each piece. Thus,

we can get the maximum value of each continuous piece at
the right endpoint. Finally, we can obtain the maximum value
of the objective function by comparing the maximum values
calculated for each piece.

We summarize the above algorithm in Algorithm 1.

Algorithm 1 SIAS: Source Identification of Asymptomatic
Spread

Require: G, tI , {αij} (i,j) ∈ E , {βi}i ∈ V ,L
Ensure: s∗, tAs∗
Sample L sets of transmission times {τij} (i,j) ∈ E
Compute estimated infection times (t̂Ai∈V )

l , l = 1, . . . ,L
assuming tAs = 0 for each candidate source node s using
Eq. 7
Compute change points: t Ii − (t̂Ai )

l , i ∈ O ∩ t Ii ≥ (t̂Ai )
l ,

l = 1, . . . ,L, for each candidate source node s
for i ∈ V do
t∗i = argmaxtAi φL(t

A
i ) (the maximum value of each

continuous piece is at the right end change point)
end for
s∗ = argmaxi∈VφL(t∗i )

C. COMPUTATIONAL COMPLEXITY
As is summarized in Algorithm 1, implementing the learning
algorithm involves two main steps: 1) sample transmission
times, compute estimated infection times and change points;
2) optimize the inner layer of maximization for each candi-
date source node and then obtain the optimal source node.

For the first step, the cost for sampling L sets of the
transmission times {τij}(i,j)∈E is O(L × |E |). To obtain the L
sets of estimated infection times (t̂Ai∈V )

l when tAs = 0 for each
candidate source node s using Eq. 7, we need to apply the
Dijkstra algorithm for each source node s ∈ V to calculate
the shortest path. As the complexity of Dijkstra algorithm
is O(|V|2) in general, the complexity to obtain the estimated
infection times is thus O(L × |V|3). In addition, to compute
the change points for each candidate source node whenever
a sample of an observed node i reaches the condition that
t Ii = (tAi )

l , the complexity is O(|V| × L × |O|). For the sec-
ond step, to calculate t∗i = argmaxtAi φL(t

A
i ) corresponding

to each candidate source node i, we need to calculate the
value of φL(tAi ) at each change point. According to Eq. 6,
the complexity for calculating φL(tAi ) each time isO(L×|O|),
and we need to compare the maximum values for each piece,
thus the complexity for each candidate node becomesO(L2×
|O|2+|O|×L). As there are |V| candidate nodes i, the com-
plexity becomes O(|V| × (L2 × |O|2 + |O| × L)). At last,
we need to compare the values φL(t∗i ) for all candidate nodes
i and obtain the optimal source node, and the corresponding

complexity isO(|V|). As the set of observed nodesO is a sub-
set of V , the worst-case complexity for our algorithm is thus
O(L2 × |V|3).

V. EXPERIMENTS
In this section, we conducted a series of simulation exper-
iments to evaluate the performance of our algorithm and
studied the influence of different parameters involved in
the source node identification process on the experimental
results. First, we investigated the accuracy of our method
under infection processes with different transmission rates
and transition rates. Then, we studied the impact of observer
selection strategies for locating the source using our method.
Finally, we evaluated the performance for source identifi-
cation using both synthetic and real network data sets, and
compared it with other benchmark methods. Except when it
is explicitly mentioned, the transmission rates and transition
rates are set by drawing samples from uniform distribution
α ∼ U (0, 100) and β ∼ U (0, 100) [41]. And in the exper-
iments about studying the characteristics of the algorithm,
we first randomly generated 10 scale-free networks of 1024
nodes and 2000 edges using the SNAP platform [54] as
real networks are mostly scale-free. Then, in each setting,
the simulations of the infection process were carried out from
ten different random sources for each network respectively.
In addition, we only considered the source nodes that trig-
gered at least 200 nodes to be infected as we are interested
in detecting vital source nodes. In all the following experi-
ments, we set the sample size to be 500, and evaluated the
method with observed infected nodes in different proportions
as only partial observations are available in real situations.
The results showed that our approach can discover the true
source of the spread with high accuracy.

A. IMPACT OF TRANSMISSION RATES
We compared the accuracy of our source identification
method under different transmission rates α when setting the
value range of transition rates as β ∼ U (0, 100) to study the
influence of the transmission rate on the experimental results.
Here we set the transmission rates α of different edges by
drawing samples from α ∼ U (0, 20), α ∼ U (40, 60), and
α ∼ U (80, 100) respectively.

Figure 2 showed the impact of transmission rates α on
the accuracy of our source identification method. We used
the success probability (SP) and top-10 success probabil-
ity (Top-10) to measure accuracy. We defined the success
probability as the probability of finding the true source in
all cases, and the top-10 success probability as the proba-
bility that the true source is among the top-10 nodes ranked
according to the likelihood estimation. It can be observed that
our method achieves high accuracy for source identification
and the accuracy increases with the transmission rates α.
As the propagation delays {τij} along edges increase with the
transmission rates {αij}, the infection spreads more slowly
with larger values of transmission rates, which increases the
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FIGURE 2. The impact of transmission rates α on the performance of our method in terms of (a) the Success Probability (SP) and (b) the
TOP-10 Success Probability (Top-10 SP).

FIGURE 3. The impact of transition rates β on the performance of our method in terms of (a) the Success Probability (SP) and (b) the
TOP-10 Success Probability (Top-10 SP).

gap between the infection time of different nodes, reducing
the difficulty of identifying the source node.

B. IMPACT OF TRANSITION RATES
To study the impact of transition rates β on our method,
we compared the experimental results of different transition
rates when the transmission rates α is not limited. We set
the transition rates β of different nodes in the networks by
drawing samples from β ∼ U (0, 20), β ∼ U (40, 60),
and β ∼ U (80, 100) respectively. It can be observed from
Figure 3 that our method can achieve higher accuracy with
smaller values of transition rates β. The reason is that the
length of the incubation period is related to transition rates
β. As the transition rates {βi} increase, the incubation periods
{ϕi} of the nodes in the network become longer, which makes
it more difficult to accurately determine the relationship
between the observed infection time t Ii and the true infection
time tAi of the sensor nodes in the networks, and there are
more possible candidate source nodes. When there are more

candidate source nodes, the source of propagation cannot be
accurately identified.

C. IMPACT OF OBSERVER SELECTION STRATEGIES
We further evaluated the performance of our method when
the observed nodes are chosen with different strategies to
investigate the impact of observer selection strategies on our
algorithm. In real situations, as the only limited number of
sensors can be placed to get the time when the nodes show
symptoms, we need to select observation nodes to make
better use of the sensors. Here we adopted three widely used
metrics to measure node importance: 1) degree centrality,
the degree of nodes [55] in the networks; 2) PageRank score,
calculated with PageRank algorithm [56]; 3) closeness cen-
trality, the inverse of the average distance to all other nodes
in the networks [55]. Accordingly, to manifest the effect of
considering node importance, we compared the two strategies
for each metric: 1) the nodes with highest centrality values
as observers, and 2) the nodes with lowest centrality values
as observers. Generally, selecting nodes with high centrality
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FIGURE 4. The impact of different observer selection strategies on the performance of our method in terms of three metrics for measure node
importance: degree centrility, pagerank score and closeness centrality.

values as sensor nodes may contain more infection informa-
tion. However, the nodes with high centrality value may be
connected to each other, which will induce some redundant
observers to decrease the accuracy of the algorithm. For this
reason, we not only selected nodes with high centrality values

as observation nodes for experiments, but also tested the
performance of the method when the observation nodes have
low centrality values.

Figure 4 showed that the accuracy of our approach under
different node selection strategies for the three metrics.
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The results identified that our algorithm performs better when
the nodes with the highest centrality values are chosen as
observers than the ones with the lowest centrality values.
Therefore, considering nodes with high centrality values
when selecting observer nodes can achieve better perfor-
mance. As the number of observers increases, the overlap
of the node sets involved in the two different strategies is
also increasing, which makes the difference between the two
strategies gradually decrease, and then disappears when all
the nodes in the network are selected as observers.

FIGURE 5. Coverage rates of different observer selection strategies with
different metrics. The coverage rate is defined as the proportion of all
observers and their neighbors in the entire network.

The reasons behind this can be explained as follows. When
the observers are close to the true source, the uncertainty of
the accumulated delay along the propagation path will be
smaller, and the accuracy of identifying the true source will
be higher. In other words, selecting the observers close to the
true source can achieve higher accuracy. As there is no prior
information of the true source, if the observers cover more
nodes in a network or there are more neighbors around the
observers, the more likely that the distance between the true
source and its nearest observer is shorter, which will improve
the accuracy of source identification. Therefore, we used the
coverage rate to measure the coverage states of observers in
a network, which is defined as the proportion of all observers
and their neighbors in the entire network. Figure 5 showed
the coverage rates of different observer selection strategies
with different metrics. As anticipated, we observed that the
coverage rates are higher when the nodes with the highest
degree centrality, PageRank score, and closeness centrality
are chosen as observers than the ones with the lowest degree
centrality, PageRank score, and closeness centrality.

D. EXPERIMENTS ON DIFFERENT NETWORKS
1) SYNTHETIC NETWORKS
We generated three typical types of synthetic networks
with Kronecker graph approach [57]: (i) core-periphery

networks (parameter matrix: [0.9 0.5; 0.5 0.3]), which
mimic the real world networks [42], (ii) random net-
works ([0.5 0.5; 0.5 0.5]), typically used in studies of
physics and graph theory [58], and (iii) hierarchical networks
([0.9 0.1; 0.1 0.9]) [59]. In order to verify the effectiveness
of the algorithm, we generated networks of 1024 nodes and
2000 edges for each type of Kronecker network.

Figure 6 showed the performance of our method on
synthetic networks. It can be observed that our algorithm
achieves high accuracy for source identification and performs
obviously better in hierarchical networks than the other two
types of networks. We investigated the temporal traces left
by the infection processes and found that in most cases the
sets of infected nodes caused by different source nodes did
not overlap much in hierarchical networks, as compared with
the other two types of networks. This is due to the structure
of hierarchical networks, where infection cannot propagate
far from current branches. As a result, the likelihood values
of many nodes equal zero, which narrows down the range of
candidate source nodes. Besides, the performance on random
networks is better than that on core-periphery networks. This
is also due to the difference in the network structure. The
core-periphery networks entail densely-connected core nodes
and sparsely-connected periphery nodes, while the edges in
the random networks are uniformly generated. Therefore,
the network core has more available propagation paths, which
brings difficulties for the identification of source nodes in
core-periphery networks.

2) REAL NETWORKS
Specifically, the experiments are carried out in the following
six real-world networks, which have been widely used for the
research of source identification in complex networks:
• Enron email network [60]: the email communication
network described the email connection of employees
in the Enron Corporation.

• Doctor friendship network [61]: the network captured
innovation spread among physicians in Illinois, Peoria,
Bloomington, Quincy, and Galesburg.

• USAir network [62]: the network detailed the US air
transportation system.

• Food web network [63]: the network was formed by the
food web in Florida Bay during the dry season.

• Email network [64]: the data of this e-mail network was
collected from the relationship between members of the
University Rovira i Virgili (Tarragona).

• Facebook-like social network [65]: the network orig-
inated from an online community for students at the
University of California, Irvine.

The basic topological features of the six real networks are
shown in Table 1.
Figure 7 showed the performance of our method on real

networks. We observed that the performance is apparently
better in the Email andUSAir network than in other networks.
The Email network is divided into multiple different com-
munities, and the final set of infected nodes is different for
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FIGURE 6. The performance of our method on synthetic networks in terms of (a) the Success Probability (SP) and (b) the TOP-10 Success Probability
(Top-10 SP).

FIGURE 7. The performance of our method on real networks in terms of (a) the Success Probability (SP) and (b) the TOP-10 Success Probability
(Top-10 SP).

different propagation source nodes. Therefore, except for the
true source node, the maximum likelihood estimates of other
candidate source nodes are all equal to zero, which makes it
possible to identify the propagation source more accurately.
The situation on the USAir network is similar, in an air
transportation system, major airports in different areas are
interconnected to facilitate long-distance travel. Meanwhile,
small airports within an area are interconnected locally and
they are also connected to their nearby major airport. Due
to the structure of the USAir network, the infection cannot
easily propagate to remote areas, and in most cases, the sets
of infected nodes caused by different source nodes cannot
overlap much. Thus, the likelihood values of many nodes

are equal to zero, and the true source can be easily located
through the final infection networks. For the other four real
networks, we calculated the respective network character-
istics as shown in Table 1, and found that the networks
with larger average degree achieved lower accuracy when
the network scale is comparable. The reason behind this is
that, as the average degree of nodes increases, there will be
more available propagation paths, which brings difficulties
for source node identification.

Besides, the performance suggested the law of diminish-
ing returns, that is, as the proportion of observation nodes
increases, when it exceeds a certain value, there are progres-
sively smaller rises in the accuracy. In fact, with the number of
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TABLE 1. The basic topological features of real networks. | V | is the number of nodes, | E | is the number directed edges, 〈k〉 is the average degree, and
〈d 〉 is the average shortest path length.

FIGURE 8. The performance comparison of our methods with different transition rates and the existing method for traditional Susceptible-Infectious
(SI) model in terms of (a) the Success Probability (SP) and (b) the TOP-10 Success Probability (Top-10 SP). The simulations are carried out with
transition rates β = 100.

the observers increasing, there will be more redundant infor-
mation provided by nearby observers. Thus, our algorithm
can guarantee the accuracy of the results with only a part of
nodes observed, given a limited budget for sensor placement.

E. PERFORMANCE COMPARISON
The key contribution of our paper is to consider the
contagious incubation period in the Susceptible-Infectious
infection processes with the asymptomatic spread for
source identification. For these situations, directly adopting
the existing method based on the traditional Susceptible-
Infectious propagation model would give a bad performance
as the infection times are not accurate. To demonstrate the
difference, we set the same transition rates β = 100
for all nodes in the networks for the simulations of the
infection process to study the duration of incubation peri-
ods as below. We evaluated the accuracy of our method
given correct values of transition rates and compared it with
two states of the art methods, Agaskar’s method [23] and
Pinto’s method [38], and two baseline methods: 1) existing
method for the traditional Susceptible-Infectious propaga-
tion model without consideration of contagious incubation
period [44], and 2) our method given smaller values of
transition rates (β = 1, 0.01). The first baseline can be
regarded as a special case of our method when β approaches
zero since the length of the incubation period approaches

zero. Agaskar and Lu [23] proposed a fast Monte Carlo
method for source identification. They assumed propagation
follows the Susceptible-Infected propagation model based on
geodesic distances on a randomly-weighted version of the
graph and used the Monte Carlo method to approximate the
gap between the observed infection time and the sampled
infection time of sensor nodes. The node which can minimize
the gap was considered as the propagation source node.When
sampling the observed infection time, the random weight
variable wij of the edge and the infection probability λij are
involved. We set the infection probability λij of all edges to
0.4, which is the same as their work. Pinto’s method [38]
similarly calculated the gap between the observed delays and
the deterministic delays of sensors. The node, which can
minimize the distance of sensor nodes, was considered as the
propagation origin. They assumed that all propagation delays
in the network follow the sameGaussian distribution. In order
to ensure that the propagation delay is non-negative, the mean
must be greater than the standard deviation.We followed their
experimental settings, setµ/σ = 4, and tookµ as the average
of the delays of all edges.

Referring to Figure 8, our method given correct val-
ues of transition rates (β = 100) achieves best per-
formance and the baseline method with smaller transition
rates β = 1 gives lower accuracy. When the transition
rate β equals 0.01, the performance is apparently worse
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and very close to that of the method for the traditional
Susceptible-Infectious infection process which gives the low-
est accuracy. The results are consistent with the fact that
the traditional Susceptible-Infectious propagation model is
a special case of the SI model with a contagious incubation
period when the duration of the incubation period approaches
zero. The low performance of the state-of-the-art methods
may be explained as follows. First of all, the propagation
model and influence parameters considered in the methods
are too simple. Second, in both cases, the network struc-
ture used to verify the algorithm is special and small in
scale, such as square networks [23] and spatial (geograph-
ical) networks [38], which makes the source identification
problem easier. Therefore, our method is more general than
the existing method for the traditional SI model and can
achieve much better performance in situations with longer
incubation periods, such as COVID-19 and SARS with days
of the incubation period.

VI. CONCLUSION
In this paper, we proposed to solve the single source identi-
fication problem based on the Susceptible-Infectious model
with a contagious incubation period. To the best of our
knowledge, we are the first group to investigate the source
detection problem for epidemic dynamics with a contagious
incubation period. In particular, we use the continuous-time
Susceptible-Infectious model with a contagious incubation
period to simulate the epidemic dynamics and assume only
partial infection information can be observed, which often
occurs in real situations. Accordingly, we have presented a
source identification method that maximizes the likelihood of
observed infection information under the propagation model.
Then, we derive an efficient importance sampling approach
to approximate the likelihood function and an effective opti-
mal process. Simulations on several synthetic and real-world
networks indicate that our method can identify sources of
propagation with high accuracy in different situations, and
outperform benchmark methods without considering conta-
gious incubation periods for disease propagation with the
asymptomatic spread.

Meanwhile, there are still some limitations and our
work opens some interesting future work. For instance,
it would be useful to extend our method to consider
the presence of multiple propagation sources in the net-
work. Also, the source identification problem based on
other epidemic models with contagious incubation period
such as the Susceptible-Infectious-Recovered model and
the Susceptible-Infectious-Susceptible model can be inves-
tigated. Moreover, the network is static in this paper, our
method can be extended to support temporal networks.
Finally, other issues such as scalability may be further
explored.
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