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ABSTRACT Successful prediction of student performance has significant impact to many stakeholders,
including students, teachers and educational institutes. In this domain, it is equally important to have
accurate and explainable predictions, where accuracy refers to the correctness of the predicted value, and
explainability refers to the understandability of the prediction made. In this systematic review, we investigate
explainablemodels of student performance prediction from 2015 to 2020.We analyze and synthesize primary
studies, and group them based on nine dimensions. Our analysis revealed the need for more studies on
explainable student performance prediction models, where both accuracy and explainability are properly
quantified and evaluated.

INDEX TERMS Explainable artificial intelligence, explainable machine learning, student performance
models, systematic literature review.

I. INTRODUCTION
Predicting students’ performance in a certain course [1], [2]
or an entire program [3] is an important task to many
stakeholders; including students themselves, teachers, and
academic institutes. Applications of student performance
prediction has proven to be useful to predict at-risk stu-
dents [4] and dropout rates [5]. Additionally, it is used to build
early warning systems [6] and customized recommendation
systems [7] to improve the students’ learning experience.

Figure 1, inspired by [8], visualizes the potential stakehold-
ers who will benefit from a student performance prediction
model. The figure depicts four main stakeholders; students
(i.e., the affected users by the model), academic advisors
(i.e., the end users of the model), regularity bodies, and
AI/ML system builders. For these stakeholders, a model with
high prediction accuracy is key to its success. For example,
a model that can predict whether a student will pass or fail
a certain course with a 90% accuracy can be used within a
system that recommends courses to students [9]. However,
high accuracy is not the only factor critical to the success of
such models. In this setting, it is important to trust the model,
where trust here means that the stakeholders can understand
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the reasons behind system predictions. Thus, in the education
domain, it is equally important to have accurate predictions
as well as explainable ones.

The interest on eXplainable Artificial Intelligence (XAI)
and explainable machine learning goes back to the 60’s [10].
The advances in both machine learning and deep learning
shifted the focus from explainable models (i.e., white-box
models) to more deep and black-box models, which solved
many challenging problems and unleashed the potential to
many more interesting applications [11]. However, the recent
release of the General Data Protection Regulation (GDPR)
re-emphasized the importance of explainable and trustworthy
AI [12]. The regulation gives individuals the right to obtain
explanations of predictions made by a model. This inherently
means that black-box models and deep learning ones cannot
be utilized in areas where the decision affect individuals,
unless these decisions can be explained!

Going back to the education sector, explainable models
are of significant value to many stakeholders. Consider the
task of student performance prediction as an example. In this
task, at least four different stakeholders will benefit from an
explainable model, and the benefits to each group varies.
Decision made by a prediction algorithm in this case will
affect students directly, especially if a recommendation sys-
tem is built on top of such predictors. Students in this case
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FIGURE 1. Four potential stakeholders (users) of an explainable model in the student performance
prediction domain. The potential stakeholders are: 1) students who represent the affected users by the
model, 2) advisors who are the primary end users of the model, 3) regularity bodies which may include
other users in the educational institute such as the scientific departments or college heads, and 4) AI
system builders who train and evaluate the prediction model.

will benefit greatly if the model explained the factors behind
the decision made. For example, if it was predicted that
student x will fail a certain course, an explainable model will
justify this prediction and explain the factors behind it, in a
language understandable by the student. Advisors are another
group of beneficiaries, where they can use the predictions of
a system to recommend courses to students based on their
strengths. In this case, justifying the reasons behind these
predictions will enable advisors to trust the model, and thus
follow its predictions. Additionally, insights obtained from
such explainable models can help regularity bodies and man-
agement at various levels to make improvements to current
program plans. Lastly, AI system builders would be able to
ensure the quality of the trained model, if they can actually
’look’ inside it and verify the correctness of the inferred
patterns.

Given the importance of explainable student performance
prediction models, the objective of this systematic review is
to study and synthesize recent work in this domain. Specifi-
cally, we review articles published between 2015 and 2020,
that utilizes explainable machine learning models in student
performance prediction. The main contributions of this work
are summarized below:
• Draw attention to the importance of developing/
employing explainable models to educational data min-
ing in general, and student performance prediction in
specific.

• Investigate and synthesize recent studies on explainable
student performance prediction models.

• Identify state-of-the-art in explainable student perfor-
mance prediction models.

• Highlight existing limitations and potential directions
for future work.

The rest of this paper is organized as follows. Section II
describes the literature review, which includes a back-
ground section and a related work section. Section III
describes the research goal, questions, and methodology.
Sections IV and V discuss the results and the limita-
tions of the work. Finally, Section VI provides concluding
remarks.

II. LITERATURE REVIEW
A. BACKGROUND
This section provides background and defines the key termi-
nologies that will be used throughout the systematic review.
To be consistent with existing work, we synthesized recent
systematic reviews that cover two main topics: student per-
formance prediction models, and eXplainable Artificial Intel-
ligence. The next subsections define the main terminologies
in each topic respectively.

1) STUDENT PERFORMANCE MODELS
To be consistent with existing work, we utilized terminolo-
gies and taxonomy similar to [13], [14]. Five dimensions
are used to categories student performance models. The first
three dimensions describe the general context of the problem,
which are: education level, performance level, and problem
type. The next two dimensions describe the input to the
model, which are: predictors and predictors type. Detailed
description of each dimension is provided next.
• Educational Level: This dimension categories research
on student performance prediction based on the context
of the data, which may include 1) specific performance
level data, such as the course or program name, and
2) student level, which may range from K-12 up to
graduate students.

• Performance Level: This dimension categories
research on student performance prediction based on
the level of predicted performance. In general, predicted
performance can be at an assessment level, at a course
level or at a program level. For example, a study that
aims at predicting a student’s grade at the end of the
course, is labeled as course-level performance. Simi-
larly, a study that aims at predicting students who will
drop out of the college is labeled as a program-level
performance.

• Problem Type: This dimension denotes the type of
the prediction problem, which can either be classifica-
tion or regression. Classification problems are further
divided into two subcategories; binary and multi-way
classifications.
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FIGURE 2. Taxonomy of the different dimensions used to categorized explainable models of student performance.

• Predictors: This dimension includes broad grouping of
student performance predictors (input) which are: course
data and student data. Course data can be further divided
into pre-course data and current course data. Student
data can be further divided into demographic data, per-
sonality metrics and engagement levels.

• Predictors’ Type: This dimension refers to the type of
input used which can be numerical, categorical, textual
or time series.

2) EXPLAINABLE MODELS
When it comes to XAI, many terms are used interchange-
ably such as transparency, interpretability, and understand-
ability to denote explainability [15]. In fact, synthesizing
available literature reveals that there is no one common and
clear definition of explainability in the machine learning
context [15], [16]. Machine learning models are often cat-
egorized as either white-box or black-box, to indicate the
transparency of the learned models [17]. In this context,
black-boxmodels refer tomodels that are either very complex
functions or proprietary functions [17]. Deep learningmodels
are classic examples of black-boxmodels.White-boxmodels,
on the other hand, refer to models that can be understood
by a human. Rule-based models are classic examples of this
category.

In this work, we follow the terminologies and taxonomy
provided in [8], [14]. We use the term explainability and add
the following four dimensions, in addition to the dimensions
identified in the previous subsection, to categorize work in
explainable student performance models:

• Method: This refers to the machine learning method
used to predict student performance. Methods are cat-
egorized into broad areas: rule-learning based algo-
rithms, decision-tree based algorithms, deep learning

algorithms, and other machine-learning based
algorithms.

• Stage: This dimension identifies the stage at which
explanation occurs. There are two stages at which expla-
nation can occur; ante-hoc and post-hoc.
– Ante-hoc denotes explanations that occur dur-

ing the training of a machine learning model.
In other words, this refers to machine learning mod-
els that are explainable in their original format.
Rule-based models are examples of ante-hoc mod-
els. In literature, these models are often denoted
as white-box models, interpretable or transparent
models [17].

– Post-hoc denotes explanation that occurs on top of
a black-box machine learning model. Figure 3 illus-
trates the difference between ante-hoc and post-hoc
stages.

• Scope: This dimension refers to the scope of the expla-
nation, where it can either be global or local.
– Global denotes explanations at the model-level.

That is, the explanation covers the complete model.
All ante-hoc models are global, as they provide a
complete explanation of the learned model.

– Local denotes instance-level explainability. For
example, LIME [18] is a local method of explain-
ability which is used on top of black-box models to
provide explanations at an instance level.

• Explainable Output Type: This dimensions refers to
the explainable output. The output can either be numer-
ical, rule-based, textual, visual or mixed.

Synthesizing studies in student performance prediction
models and XAI resulted in a total of nine dimensions, which
will be used to categorize primary studies in explainable stu-
dent performance models. Figure 2 illustrates the taxonomy
containing all dimensions.
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FIGURE 3. Different stages at which explanation occurs; (a) represents an ante-hoc stage, where explanation occurs during training (the learned model is
explainable), (b) represents a black-box model with no explanation, (c) represents the post-hoc explanation where a model is built on top of a black-box
model to explain the results.

B. RELATED WORK
In this section, we summarize secondary studies (review
papers) on grade prediction models that were published in the
last five years. Systematic reviews of educational data mining
in general, as in [19], [20] as well as informal literature
reviews as in [21] are excluded from this summary. Ideally,
relevant review papers should cover explainable grade predic-
tion models. However, a keyword search on two databases,
Science Digital Library and Google Scholar, revealed no
systematic review papers highlighting models’ explainabil-
ity. Consequently, discussion of related work in this section
covers systematic review articles of student performance pre-
diction models in general. Table 1 lists the search string for
each data source and the number of articles identified in
total, as well as per year. Additionally, forward and backward
snowballing techniques were conducted in order to identify
additional secondary studies.

TABLE 1. Database search strings for secondary studies.

Overall, there is a total of twelve identified systematic
review articles in the last five years. Eleven of them were
identified through database search, and one by backward
snowballing. Nine of the eleven were identified by Web of
Science and Two by Google Scholar. Figure 4a visualizes
the distribution of search results per source and over years.
The year 2019 has the most share of identified records, yet
it is important to note that the number of identified records
of 2020 might change as this search was conducted on
August 2020.

The twelve identified articles are then screened, and
only systematic articles that met the following criteria were
selected:
• The article focuses on machine learning models
• The article is at least six pages
• The article is not a duplicate (or shorter version) of
another selected article

Six out of the twelve articles, namely [22]–[27] were
eliminated because they did not meet the first criteria. One
article, [28], was eliminated because it did not meet the sec-
ond criteria. Another article was eliminated, [28], because
it was a shorter version of another article [29]. Eventually,
four out of the twelve articles have met the above criteria
and were considered as relevant secondary studies. The list of
all secondary studies, decisions and justifications is available
here.1

Table 2 provides a summary of eligible secondary stud-
ies, chronologically ordered. The table compares secondary
studies in terms of: the focus of the review (reflected by the
research question), the years covered, and the size (number
of) primary studies. Reference [30] focused on identifying
the factors and methods used in the higher education context,
where the number of primary studies was 36. Reference [13]
had the largest size of primary studies (357) where the objec-
tive was to synthesize current state of the art in predicting
student performance, which covered predictors and methods.
Reference [31] had 23 primary studies and focused on the
main predictors andmethods used in studies of at-risk student
identification. Reference [29] focused on the predictors and
predicted value, while highlighting the importance of big
data. This study reviewed 59 primary articles.

Similar to our objective, all the above work analyzed the
primary studies in terms of the utilized method. However,
none of the secondary studies reviewed the primary studies in
terms of themodels’ explainability. In this work, our objective
is to focus on explainable models, where we compare and
analyze primary studies that meet the inclusion criteria spec-
ified in section III. We drew upon these similar reviews when
formulating our methodology, including search keywords,
inclusion and exclusion criteria. Additionally, we have used
the same terminologies and definitions articulated by [13].

III. MATERIAL AND METHOD
We adopted the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) methodology [32].
The PRISMA methodology aims to facilitate a transpar-
ent reporting of systematic reviews by providing a detailed
checklist and a flow diagram for authors to follow. In this

1https://tinyurl.com/yaa54eb2
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TABLE 2. Summary of secondary studies. The table summarizes relevant secondary studies in terms of the focus of the study (reflected by the research
question), the years covered and the size of the study (i.e., the number of primary studies).

section, we describe in details the research questions and
methodology.

A. RESEARCH QUESTIONS
The goal of this work is to synthesize studies that proposed
explainable student performance prediction models. Specifi-
cally, we investigate the following research questions:
• RQ1:What are the student performance measures to be
predicted?

• RQ2: What are the predictors used to train an explain-
able model?

• RQ3: What are the explainable machine learning meth-
ods used to predict students’ performance?

• RQ4:What are the evaluation metrics used to assess the
explainability of the models?

• RQ5:What are the methods that meet both requirements
of high accuracy and explainability?

B. RESEARCH METHODOLOGY
The strategy we used to find relevant researches and scien-
tific papers started with analyzing the research questions and
deciding the search terms. Then, by setting the period from
2015 to 2020, we applied the search terms in Web of Science
and Google Scholar. Table 3 lists the search string for the
two databases, and Figure 4b visualizes the number of articles
retrieved by each database, each year.

1) INCLUSION AND EXCLUSION CRITERIA
Identifying the primary studies to be included in this study
is not an easy task. This is mainly because the problem of
predicting students’ performance in general, as well as identi-
fying key factors affecting students’ performance in specific,

TABLE 3. Database Search strings for primary studies.

is multidisciplinary. It has attracted scientists from various
fields, ranging from education [33] to machine learning. This
lead us to define some constraints to screen eligible studies.
Following is a list of the inclusion and exclusion criteria
adopted in this work.
• Inclusion Criteria:

1) Peer-reviewed articles, published between 2015 to
2020

2) Articles on explainable machine-learning based
student performance prediction models

• Exclusion Criteria:
1) Not student performance prediction articles
2) Not machine-learning based articles
3) Machine-learning based articles with no emphasis

on explainability of the model
4) Articles not written in English

Screening was done on two stages: title/abstract screening,
and full-text screening. The same inclusion/exclusion criteria
were applied at these stages.

2) BACKWARD AND FORWARD SNOWBALLING
To ensure that our study captures the most number of relevant
articles, we applied backward and forward snowballing [34].
This process started after we searched and screened primary
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FIGURE 4. Distribution of search results per data source, for secondary
and primary studies.

articles. For all the eligible primary articles, we conducted
a 1-iteration backward and forward snowballing. Backward
snowballing refers to the approach where We check the arti-
cles’ related work section and references to identify new pri-
mary articles. 1-iteration backward snowballing means that
we do this process one time (for all the identified primary
articles). 2-iteration backward snowballing means that we
repeat this process for the second batch of identified primary
studies. The reason for not doing 2-iterations, is that we did
not find any new articles when we checked the references
of the 1-iteration batch. Forward snowballing, on the other
hand, refers to the process of checking who cited the primary
articles. Similarly to backward snowballing, we performed
1-iteration forward snowballing.

3) DATA EXTRACTION
We built a data extraction form, to facilitate synthesizing pri-
mary studies. The form included all the dimensions described
in Section II-A and visualized in Figure 2.

4) QUALITY ASSESSMENT
To assess the quality of our study, details of the search results
and screening, is available here.2 The form includes the
following: search results and screening for secondary stud-
ies (related work), search results and screening for primary
studies, and data extraction for primary articles. The forms

2https://tinyurl.com/yaa54eb2

include justification to each decision made for each article,
during the title/abstract screening and full-text screening.

IV. RESULTS
The PRISMA flow diagram, detailing article identification
and screening process is detailed in Figure 5. Our keyword
search in the two databases resulted in a total of 48 articles,
and 12 articles were identified through snowballing.
The distribution of articles found per year is visualized
in Figure 4b. After removing duplicates, we had a total
of 56 articles identified. We then applied screening based on
title and abstract only, and excluded 9 articles at this stage.
Three of the articles were not about student performance
prediction models, one was not machine-learning based, and
the rest were not focusing on explainable machine-learning
models. The initial screening resulted in a total of 47 articles
to be assessed for eligibility.

Out of the 47 assessed articles, 32 were excluded with
reasons. Three of them were excluded because we could
not access them during the time of writing, though through
our institute, we have access to most digital libraries and
databases. Two of the articles were rejected because they are
not machine-learning based student performance prediction
models. The remaining articles (total of 27) were rejected
because they do not focus on explainable machine-learning
models. This resulted in a total of 15 articles that were
included in the study.

Data from the eligible articles were extracted given the
dimensions in Figure 2. The extracted data is available here.3

Figures 6 to 8 visualize the distribution of data for each
dimension. The context of the problem can be summarised
using the following dimensions: education level (Figure 6a),
performance level (Figure 6b) and problem type (Figure 6c).
Distribution of the data extracted for these dimensions is
visualized in Figure 6. From the figure we can conclude that
most of the articles focused on higher education, with (93%),
and only few articles studied the problem of explainable
student performance models in K-12. Figure 6c shows that
almost half of the articles aimed to solve a multi-class classi-
fication problem. This was followed by binary classification,
where 30% of the articles treated the student performance
prediction problem as a binary classifier. Only 13% of the
reviewed articles tackled the student performance prediction
as a regression problem. For example, studies that predict
whether an undergraduate student will fail or pass a course,
a.k.a., at risk students, is categorized as educational level
- higher education, performance level - course level, and
problem type - binary classification. Similarly, studies that
predicts the letter grade at the end of an undergraduate course
is categorized as educational level - higher education, per-
formance level - course level, and problem type - multi-class
classification.

The next two dimensions provide further technical details
on the input to the model. This includes predictors and

3https://tinyurl.com/yaa54eb2
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FIGURE 5. PRISMA flow diagram for systematic search and study selections.

FIGURE 6. Distribution of primary studies by the general problem context dimensions. This includes educational level, performance level, and
problem type.

FIGURE 7. Distribution of primary studies by the input to the model. This includes predictors and predictors’ type.

predictor type. Figure 7 visualizes the distribution of data for
each dimension. Figure 7a illustrates that the majority of the
primary studies (40%) uses a combination of mixed predic-
tors. Mixed predictors means that the study used more than
one data source to predict student performance. The majority
of these studies utilized socio-economic data (80%) along
with pre-course performance measures (67%). Additionally,
30% of the studies included e-learning analytic and other
data sources as well. Figure 7b visualizes the distribution of
different predictors used in studies marked as mixed predic-
tors. For studies that only included one predictor, e-learning

analytic was the most common predictor (26%), followed
by pre-course performance (20%) and course performance
data (13%). As for predictor type, in Figure 7c, themajority of
papers used both numerical and categorical predictors (33%),
this is followed by 26% for both categorical and numerical
types. Lastly, only 13% of the primary studies utilized textual
data for student performance prediction.

Table 4 categorizes the context of the primary studies,
in light of the general problem dimensions. The study by [35]
used a collection of e-learning data, pre-course data and
socio-economics to predict at-risk students (pass/fail). In this
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FIGURE 8. Distribution of primary studies by the stage, scope and output of the explainable model.

TABLE 4. Categorization of primary studies in terms of the five student performance model dimensions; i.e., problem type, educational level,
performance level, predictors and predictors’ type.

work, some of the predictors (e.g., gender) are categori-
cal, while others are originally numerical but were catego-
rized (discretized) in the pre-processing phase. All numerical
predictors were categorized into four quartiles. Similarly,
the studies by [36] and [37] built an early warning sys-
tem to identify at-risk students. Unlike the previous study,
the authors utilize both numerical and categorical predictors’
type. The study by [38] built a model that can predict student
performance in a course as either good or bad, given their
performance in previous courses. Performance in previous
courses was categorized as either good or bad, where good
indicates a B grade or higher, and bad indicate a C+ grade
or lower. Additionally, the study by [39] builds an early
detection system of at-risk students. In this study, students are
predicted to either have satisfactory or poor performance, and
prediction was based on socio-economic data and pre-course
data. All these studies have tackled the student performance
prediction problem as a binary classification task.

The majority of primary studies, on the other hand, have
tackled this problem as a multi-class classification problem.

In this setting, the model predicts one of three or more
outputs. For example, the study by [40] predicts student
performance in a four-way scale (A, B, C and D). The
study utilizes student comments collected after each lesson
to build the classifier. Similarly, the work by [41] predicts
student performance in a five-way scale; excellent, good,
average, sufficient, and at-risk, where the input to the model
are numerical attributes. In the study by [42], course-level
performance is categorized into four-way scale, which are:
perfect, excellent, good and sufficient. The work by [43] cate-
gorizes course-level performance as one of three classes: high
performance, medium performance and low performance.
The study by [44] predicts conventional letter grades from
C up to A+. The predictors were a mix of socio-economic
data and pre-course data, and the predictors’ type was cat-
egorical. Additionally, in multi-class classification, one pri-
mary paper has studied the performance at a program-level,
using categorical pre-course data [45]. Another study by [46]
focused on course-level performance on K-12 grades using
socio-economic and environmental data.
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FIGURE 9. Distribution of primary studies, over year of publication, by the stage, method and output of the explainable model.

TABLE 5. Categorization of primary studies in terms of the four explainable model dimensions; i.e., stage, scope, method, explainable output type.

A third group of primary studies focused on predicting
numerical grades. Both studies in this category proposed
models for course-level student performance prediction in a
higher education setting. Both studies used numerical input,
where one utilized e-learning analytic [47] and the other
one [48] used pre-course performance data for prediction.

The remaining dimensions focus on the explain-
able machine learning models employed. This includes:
method, stage, scope and explainable output, as defined in
section II-A. In general, the methods used in order are: deci-
sion tree algorithms (53%), rule learning based algorithms
(33%), deep learning algorithms (6%) and other machine
learning based algorithms (6%). Figure 8 illustrates summary
statistics on stage, scope and explained output. The majority
of models in this field adopt the ante-hoc approach, where the
learned model itself is explainable. Additionally, 80% of the
studies adopts global scope, where explanations occur at the
model level and not the instance-level.Moreover, themajority
of studies (66%) adopted the rule based explainable output
with probabilities. In this approach, the output of the model
is a list of rules with probabilities, that the model uses to
make predictions. Figure 9 visualizes the distribution of the
three metrics (stage, method and explainable output) over
time. From the distributions, we can observe the following.
Ante-hoc models are more commonly used than post-hoc

models, yet the gap in usage decreased over time (observe
the gap in year 2016 and 2019). This might indicate that an
increase in the usage of post-hoc models might be observed
in the coming few years. This is especially true if larger
datasets are used, which require deeper and more complex
models. In this case, adopting a post-hoc approach on top
of a black-box model can achieve the goal of explainability.
This observation is supported by Figure 9b where we observe
adopting deep learning models in the later years (2019), and
the peek for decision tree models was in 2016, and decreased
after that. The distribution of explainable output is almost
uniform over time, except with two peeks caused by rule
based output with probabilities.

Table 5 summarizes the context of the primary studies,
in light of the explainable models dimensions. It is inter-
esting to observe the relationship between stage, method,
and explained output, given the primary studies. Figure 10
depicts this observed relationship. The thickness of lines
denote the number of time a primary study followed this
approach. For example, the figure shows that all rule learning
based algorithms were ante-hoc. This means that all rule
based algorithms are explainable in nature. This does not
apply to all decision tree algorithms. A decision tree algo-
rithm can be ante-hoc, as in [45], where the learned decision
tree is explainable. It can also be post-hoc, as in [44], where
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FIGURE 10. Visualization of the relationships between stage, method and
explainable output. The thickness of lines is relative to the number of
time a primary paper used this approach.

the learned tree is too complex, and it requires another model
on top of it to extract rules from the tree. It is also interesting
to observe that the most commonly used explainable output,
in this setting, is rules with probability. This is justifiable,
as rules are easy to interpret and understand, and probability
provide another layer of confidence to the model.

Given the above analysis, we now answer the research
questions listed in Section III-A.

RQ1: What are the student performance measures to be
predicted?

There are a variety of student performance measures to
be predicted. In general, student performance models can
be grouped by the problem type, educational level and per-
formance level. As our analysis shows, multi-class classi-
fication is most common in this area of research, followed
by binary classification, then regression. The majority of
studies focused on higher education context, and course level
performance. This means that the most common student per-
formance measures to be predicted are expected categorical
performance of a certain course, in a higher educational
institute.

RQ2:What are the predictors used to train an explainable
model?

Mostly, a combination of socio-economic features and
pre-course performance features. Although the use of
e-learning analytic has increased over the past few years,
in student performance prediction. This data source of
e-learning analytic is not fully utilized in explainable student
performance models.

RQ3:What are the explainable machine learning methods
used to predict students’ performance?

The most commonly used algorithms are: decision tree
and rule based learning algorithms. Table 6 lists the methods
used in all the general method category. It is important to
note that deep learning models are being utilized in student
performance prediction. However, the explainability of these
models are not being considered. This highlights an impor-
tant research gap that needs to be explored and investigated
thoroughly.

RQ4: What are the evaluation metrics used to assess the
explainability of the models?

TABLE 6. Categorization of primary studies in terms of the method used.

None of the primary studies that were included in this
systematic literature review has utilized any evaluationmetric
to assess the explainability of the model. This reveals a crit-
ical shortcoming to existing research in explainable student
performance prediction models. For more on explainability
evaluation metrics, we refer the reader to [50] and ]citecar-
valho2019machine.

RQ5: What are the methods that meet both requirements
of high accuracy and explainability?

Because none of the studies used a quantifiable metric to
measure explainability, this question could not be answered.

V. THREATS TO VALIDITY
The systematic review described in this work followed the
PRISMAmethodology [32], to ensure comprehensive report-
ing of identifying, selecting and critically evaluating relevant
work. Coverage of all relevant work is one potential threat
to validity for this review. We have used a comprehensive
set of keywords to minimize the number of left out relevant
work. We have also searched the two key data sources in this
field, which are Web of Science and Google Scholar [51].
Additionally, we did backward and forward snowballing to
incorporate anywork that might have not been included either
because of the search terms or data sources.

A second threat to validity includes our explicit use of
‘‘interpretable’’ related words in the search string. This is
justified because our objective is to capture all work that
utilizes either interpretable or explainable models. However,
we are aware of many relevant work that utilizes interpretable
models, such as decision trees or rule-based models, without
explicitly using the terms interpretable or white-box models.
Examples of such work include [52]. This being said, it is
important to note here that we are mainly interested in papers
that used such models, and evaluated the interpretability of
these models, in which case such terms would appear in the
paper.

Another possible threat to validity is article screening and
eligibility assessment. This process was conducted indepen-
dently by the two authors of this work, where the predefined
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inclusion and exclusion criteria were followed. The result of
the screening and eligibility assessment can be viewed here.4

Finally, the analysis derived from this systematic review
applies to white and black-box models applied in the student
performance prediction context, and cannot be generalized to
other domains or fields.

VI. CONCLUSION
The main objective of this systematic review is to identify
state-of-the-art in explainable student performance models.
To achieve this objective, we first defined five research
questions which highlighted four main aspects of the mod-
els. These aspects are: the student performance measure to
be predicted (the output), the predictors used (the input),
the explainable methods used (the model), and the evaluation
metrics used to assess the performance of the models. Then,
we systematically reviewed the literature and synthesized
existing work from the past five years. The results of our syn-
thesis revealed that most of the studies in explainable student
performance models focused on predicting student outcomes
per course, usually as a multi-class problem. The analysis
also revealed that socio-economic features and pre-course
performance are the top predictors used in current studies.
Additionally, decision trees and rule based learning algo-
rithms were the common machine learning methods used in
such studies.

These findings highlight the gaps in research in the area
of explainable student performance models. State of the art
explainable models have been utilized in many domains [17].
However, they are yet to be explored in educational data
mining. In the context of explainable student performance
models, there is a lack of studies that adapt state of the
art explainable methods and utilize rich predictors such as
e-learning analytics to predict student performance in dif-
ferent levels. Additionally, another key limitation is con-
cerned with the lack of adopting evaluation metrics for model
explainability. The results of our synthesis revealed that none
of the existing studies have utilized evaluation metrics to
assess the explainability of the proposed models. This makes
it difficult to compare explainability level of different models.
In such studies, assessing the explainability level is as impor-
tant as evaluating the prediction accuracy of the model. This
current limitation can be overcame by investigating state of
the art metrics in this area and use them to evaluate current
models. To conclude, this study sheds light on the impor-
tance of explainable models in the educational setting, and
highlights main limitations in existing literature and potential
future work.
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