IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 6, 2021, accepted February 18, 2021, date of publication February 23, 2021, date of current version March 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3061609

Empirical Evaluation of Attacks Against
IEEE 802.11 Enterprise Networks:

The AWID3 Dataset

EFSTRATIOS CHATZOGLOU“', GEORGIOS KAMBOURAKIS 2, AND CONSTANTINOS KOLIAS?

! Department of Information and Communication Systems Engineering, University of the Aegean, 83200 Samos, Greece

2European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
3Depa.rtment of Computer Science, University of Idaho, Idaho Falls, ID 83402, USA

Corresponding author: Georgios Kambourakis (gkamb@aegean.gr; georgios.kampourakis @ec.europa.eu)

ABSTRACT This work serves two key objectives. First, it markedly supplements and extends the
well-known AWID corpus by capturing and studying traces of a wide variety of attacks hurled in the IEEE
802.1X Extensible Authentication Protocol (EAP) environment. Second, given that all the 802.11-oriented
attacks have been carried out when the defenses introduced by Protected Management Frames (PMF) were
operative, it offers the first to our knowledge full-fledged empirical study regarding the robustness of the
IEEE 802.11w amendment, which is mandatory for WPA3 certified devices. Under both the aforementioned
settings, the dataset, and study at hand are novel and are anticipated to be of significant aid towards designing
and evaluating intrusion detection systems. Moreover, in an effort to deliver a well-rounded dataset of greater
lifespan, and under the prism of an attacker escalating their assault from the wireless MAC layer to higher
ones, we have additionally included several assaults that are common to IEEE 802.3 networks. Since the
corpus is publicly offered in the form of raw cleartext pcap files, future research can straightforwardly exploit

any subset of features, depending on the particular application scenario.

INDEX TERMS IEEE 802.11, PMF, 802.11w, WPA2, WPA3, wireless security, attacks, dataset.

I. INTRODUCTION
With the proliferation of smart portable devices like smart-
phones, tablets, and IoT devices, WiFi (IEEE 802.11) has
been established as the dominant technology for connecting
digital devices in Wireless Local Area Networks (WLAN).
Actually, this trend came simply to reinforce the already
strong penetration of WiFi in home, office, enterprise, con-
nected vehicles, and even mission-critical settings. Naturally,
the security of WiFi-based networks, as well as the 802.11
protocol itself, lies in the epicenter of systematic academic
and industry-laden research. Yet, despite more than 20 years
of continuous amendments and remediating measures, vul-
nerabilities discovered even for the newest versions of the
protocol attest that the security of this wireless technology
is a non-trivial subject that still continues to be an open and
challenging problem.

External protection mechanisms should therefore be
considered as imperative components of 802.11 wireless

The associate editor coordinating the review of this manuscript and

approving it for publication was Tai-hoon Kim

34188 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

networks for defending against known or unknown exploits.
Being one of such mechanisms, the conventional intrusion
detection processes tend to focus their inspection onto higher-
layers. Thus, corresponding systems disregard attacks that
are initiated from lower-layers, including the attacks that are
native to the 802.11, which reside at the link layer of the OSI
protocol stack. Towards contributing to the development of
robust detection protection mechanisms, our previous efforts
resulted in the contribution of AWID, a corpus containing
normal and malicious traffic. Spurred by the wide adoption
of that dataset as a benchmark tool for intrusion detection in
wireless networks, this work presents its extension with sev-
eral new features. The main differences between the newest
version of the AWID dataset are summarized as follows:

1) The data are offered in pcap format, along with their
Pairwise Master Key (PMK) and TLS keys. This for-
mat provides the flexibility for custom-tailored fea-
ture extraction depending on the specific needs of
researchers.

2) Newly discovered 802.11-specific attacks are added,
including the Krack and KrOOk ones.

VOLUME 9, 2021

https://orcid.org/0000-0001-6507-5052
https://orcid.org/0000-0001-6348-5031
https://orcid.org/0000-0003-0117-8102

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

3) The main focus is on enterprise versions of the pro-
tocol, which typically offer stronger security mech-
anisms, including the use of Protected Management
Frames (PMF) introduced with the 802.11w amend-
ment, and support for alternative network architectures.

4) Multilayer attack scenarios are embraced; in particular,
a set of attacks included in the dataset gets initiated at
the link layer by taking advantage of 802.11 vulnerabil-
ities but unfolds across multiple protocols that operate
in multiple layers.

5) Detailed documentation of each scenario along with
empirical observations about the effect of attacks in
real-life equipment. For the latter point, the concentra-
tion is on PMF robustness.

The remainder of the paper is structured as follows. The
next section categorizes and portrays the attacks included in
the dataset. Section III details on the testbed and the data
collection procedure, while section IV evaluates empirically
specific attacks included in the dataset. Key observations
regarding the resilience of PMF are given in section V. The
next to last section addresses the related work, while the last
one concludes and provides pointers to future work.

Il. DESCRIPTION OF ATTACKS

This section categorizes the attacks implemented during the
creation of the dataset' and succinctly describes each one of
them. Details on each attack are given later in section I1I-B.

As already mentioned, differently to the original AWID
dataset [1], and in addition to the inclusion of some modern
attacks, the present corpus includes a number of assaults that
abuse vulnerabilities of higher-layer protocols. Nevertheless,
each attack in the dataset is initiated from 802.11, and the
main focus is the attack escalation factor, and in a parallel
dimention, the delivery of a more well-rounded dataset of
increased lifespan. Simply put, the following scenerio is an
exemplar of such escalation dynamics: We assumed that first,
the aggressor had successfully carried out, say, a classic
Evil_Twin attack against the 802.11 network and managed
to steal the credentials of a given STA. This allows them to
gain access to the wired network and potentially escalate their
attacks to other protocols, e.g., perform a SQL injection.

As with AWID, physical (PHY) layer attacks are con-
sidered out of scope of this work. AWID [1] classified the
various attacks in three categories. Given that IEEE 802.1X
Extensible Authentication Protocol (EAP) does not suffer
from significant (and publicly known) key cracking and key
retrieving attacks as WEP [2] does, this work classifies the
various attacks in four categories, namely (a) 802.11 specific,
(b) attacks against the local area network, (c) attacks initiated
from the local area network but aimed against an external
target, and (d) multi-layer attacks abusing vulnerabilities of
multiple protocols.

IThe dataset, coined “AWID3 ", is publicly available on the AWID website
at http://icsdweb.aegean.gr/awid/.

VOLUME 9, 2021

A. 802.11 SPECIFIC ATTACKS

This category embraces attacks that are solely exercised in
the MAC layer of 802.11. We consider two kinds of assaults;
Denial of Service (DoS) and Key reinstallation. The first
typically aim at disrupting the connection between the basic
building blocks of an 802.11 network, namely the Station
(STA) and Access Point (AP), by either assaulting specific
devices or stressing the resources of the network and con-
nected devices. Most of these attacks are well-known and
are included in the dataset for the sake of completeness. On
the other hand, a key reinstallation assault has the purpose
of reinstalling an already in use pairwise or group key in
the device. As a rule, most attacks in this category exploit
unprotected management frames of 802.11.

o Deauthentication: It is one of the most widespread and
straightforward attacks in 802.11 as it can be easily
mounted even by a script kiddie, and its results are
immediate. That is, in the absence of IEEE 802.11w [3],
if an STA receives a deauthentication frame (0x000c)
stemming from the AP, it must disconnect. Therefore, in
such an attack incident, the source MAC address of the
deauthentication frame is normally spoofed. When the
attack ends, the STA will immediately try to reconnect
to the preferred AP, typically to that being closer and has
the strongest signal. Therefore, this attack is often used
as a stepping stone for launching more advanced ones,
including Evil_Twin. Even more, the aggressor can send
unprotected spoofed deauthentication frames, targeting
the broadcast MAC address of a specific AP. This would
disconnect all STAs from the network. On the bright
side, as indicated by empirical observations discussed
more extensively in section V, most manufacturers dis-
card the latter type of frame; thus this attack variant will
probably fail in newer devices.

o Disassociation: A disassociation frame is indented to
disassociate the STA from the AP or vice-versa. This
can occur for several reasons, including roaming, i.e.,
when the STA is about to be associated with another AP.
This attack is quite similar to the deauthentication one
and can exploit the broadcast MAC address of the AP
as well; the main difference is that the attacker transmits
spoofed unprotected frames of a different type, namely
the disassociation frames (0x000a) instead. Moreover,
the DoS effects of receiving this type of frames are,
in theory, expected to be short lived in comparison to
deauthentication. A mix of both deauthentication and
dissassociation attacks, namely the Amok as described
by the MDK tool, has been included as well.

o (Re)Association: The association process between the
STA and AP takes place after successful open authen-
tication. It involves the exchange of a pair of association
request/response frames (0x0000/0x0001), where the
response stemming from the AP designates a success
or failure, and if successful, a unique Association Iden-
tifier (AID). Regarding reassociation request/response
frames (0x0002/0x0003), they are used when an STA

34189

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

is already associated with an AP and wishes to associate
with another in the same Extended Service Set (ESS).
Generally, in the presence of PMF, it can be argued
that the (re)association request flooding attack works
similarly to the deauthentication/disassociation one.
Rogue AP: The attacker mounts an Evil_Twin, which is
one of the cardinal assaults against 802.11. That is, they
deploy a rogue AP in WPA2-PSK authentication mode
with PMF disabled. The phony AP operates on the same
channel and masquerades itself under the same MAC
address and SSID as the target one. If that AP emits a
stronger signal than the legitimate, an STA may be lured
into connecting to the rogue AP.

Krack: This exploit was introduced by the authors in [4].
It takes advantage of the fact that retransmissions of
either the first or the third message of the 4-way hand-
shake should occur if the AP does not receive message
two or four, respectively. Based on this, the attacker
acting as a man-in-the-middle (MitM) [5], blocks mes-
sage four from reaching the AP, thus making the AP
willingly re-transmit the same message toward the STA.
This, however, would induce a reinstallation of the
same Pairwise Transient Key (PTK) / Group Transient
Key (GTK) / Integrity Group Temporal Key (IGTK)
at the STA side, meaning that as the STA sends its
next data frame, the data WPA2-confidentiality protocol
will reuse the nonces transmitted during the original
4-way handshake. On top of that, the authors pinpointed
that devices running wpa_supplicant v2.4 and v2.5 and
unpatched versions of at least Android 6.0 and Android
Wear 2.0 reinstalled an all-zero key. Windows and iOS
do not accept retransmissions of message 3, so they were
unaffected. This vulnerability has also been documented
in CVE-2017-13077 to CVE-2017-13081.

KrOOk: This vulnerability was exposed by ESET
researchers [6], [7] and formally defined as
CVE-2019-15126. It is related to Krack, applies to
WPA?2 as well, but the attacker is not required to be
authenticated and associated to the wireless network.
The vulnerability is rooted in the fact that as soon as
an STA is disassociated, the TK is cleared in memory,
i.e., set to all-zero. While this is normal, the researchers
observed that all data frames left in the Wireless Net-
work Controller’s (WNIC) egress queue might be then
transmitted while encapsulated with this static all-zero
key. The attacker may take advantage of this situation by
either causing a disassociation or by just passively eaves-
dropping on the wireless medium for data frames trans-
mitted after legitimate disassociation events. In the first
case, by recurrently inflicting disassociations, which in
turn automatically leads to reassociations, the attacker
can capture more data frames of this kind. KrOOk affects
unpatched devices with chips by Broadcom and Cypress.
The same vulnerability was also exposed for Qualcomm
and MediaTek Wi-Fi chips, but in this case, the buffered
frames were unencrypted even though the encryption

34190

flag was set to 1 [8]. This vulnerability has been doc-
umented in CVE-2020-3702.

B. ATTACKS AGAINST LOCAL NODES

The present category includes well-known attacks composed
of a limited number of steps. They mainly take effect at a
higher-layer, say, the application layer, but are initiated by
a wireless malicious or compromised node and are targeted
against benign nodes in the local network

o SSH brute force: A legacy SSH brute force attack exer-
cised against a RADIUS server.

o Botnet: The attacker uses a ready to deploy a piece of the
malware and devises a way to infect with it a number of
STAs. If the victim executes such a file, it will connect
back to a command and control (C2) server owned by the
botherder and become a bot. The attacking behaviors do
not include attempts of the bots against external targets.

e Malware: This attack also uses a file containing mali-
cious code. In this case, however, the code aims at
exploiting a certain vulnerability of the OS or the app
that is targeting to, with the ultimate purpose of enabling
another assault, including ransomware or installing a
backdoor.

C. ATTACKS AGAINST EXTERNAL NODES

This category similarly encompasses customary attacks com-
prised by a limited number of steps and initiated by malicious
or compromised local clients. However, in this case, the
assault target lies outside the intranet.

o SQOL injection: This attack is realized after having the
aggressor insert a malformed SQL query instead of
the expected input in a web form of the target. The
vulnerability lies in the fact that the web application
does not validate the format and structure of user inputs.
Thus, the malicious inputs carry interpretable SQL code
to the backend database, where they get executed with
the aim to extract extraneous information or corrupt
the database. SQL injection attempts can be identified
by examining the data portion of HTTP POST request
messages or the querystring in HTTP GET request
messages.

o SSDP amplification: This reflection/amplification vol-
umetric Distributed DoS (DDoS) attack utilizes the
Simple Service Discovery Protocol (SSDP) that com-
prises the basis of Universal Plug and Play (UPnP).
It potentially entangles any device that responds to
UPnP requests, typically those carrying the ‘“‘generic”
ST query types ssdp:rootdevice or sspd:all. Put simply,
the attacker recruits the STAs of the WLAN to send an
upsurge of SSDP packets to each SSDP-enabled device,
designating as source IP address that of the victim. Then,
every device responds to the victim with a much larger
packet, eventually resulting in DoS.

D. MULTI-LAYER ATTACKS
This class refers to multi-step attacks that manipulate mech-
anisms from at least two alternative layers. This highlights

VOLUME 9, 2021

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

MS Azure (DVWA) Internet

&% =

FreelPA (Fedora 33)

A

EJ’ (:)
Mitmproxy

Monitor Node ((
L]
AD (MS Server 2019)
! ¢g
E‘:\LI Freeradius (Ubuntu 20.04 Server) ((.

Mobile STAs

.))

L~
B % s n = -.
. | Linux STAs
Windows STAs m
Attacker

FIGURE 1. High-level view of the testbed network topology. The mitmproxy run as a service on the
monitor node. The network traffic flow for disparate categories of machines is shown in different

color.

on the fact that corporate users cannot mindlessly trust the
medium that connects them to the internet. In this setting, the
following two scenarios are considered.

o Evil_Twin: A variant of the Rogue AP attack. In this
case, the rogue AP is deployed in open authentication
mode operating on the same channel and SSID as the
target one. The equipment of an unaware user may auto-
matically connect to the benign posing AP. After that,
the user is redirected to a specific web page that looks
identical to a legitimate Wi-Fi’s captive portal webpage.
This would enable the aggressor to stealthily steal the
user’s login credentials. This attack scenario mandates
DNS spoofing as well.

o Website_spoofing: The assailant clones the front web-
page of a popular website, say, Instagram. Then, they
perform ARP and DNS spoofing to redirect the users to
their fake webpage instead of the original one.

IIl. DATASET

This section details the dataset created in regard to the used
methodology, its structure, and contents. As already pointed
out, the current dataset attempts to complement the original
AWID regarding enterprise networks and update it with the
inclusion of new and multi-layered attacks. To this direction,
the main protocols used in this dataset were IEEE 802.1X
EAP [9], 802.11w [3], and IEEE 802.11ac-2013, also known
as Wi-Fi 5.

A. TESTBED

For the purposes of data gathering, and as depicted in figure 1,
we created a physical lab that realistically emulates a typical
enterprise infrastructure. In total, we utilized 16 different
physical devices and VMs. From them, ten were used as

VOLUME 9, 2021

client STAs, while one more laptop STA was operated by
the mobile attacker. Two of the client STAs were running
Ubuntu 20.04 desktop, five more had MS Windows 10 Pro
or Enterprise, and the rest three were Samsung S20 FE on
Android v10, Samsung Note 4 on Android 6.0.1, and iPhone
6s on i0S v14.2. All STAs received their last OS update on
the 4th of Dec. 2020 and were locked from installing future
updates. Another three devices were acting as an MS Win-
dows Server 2019, a Fedora 33 Server, and a Ubuntu 20.04
Server. The rest of the three devices were the AP, the monitor
node, and a dockerized version of the Damn Vulnerable Web
Application (DVWA) residing in MS Azure. The role and
hardware configuration of all the above-mentioned machines
are summarized in table 1.

Specifically, to enable 802.1X EAP authentication meth-
ods, a RADIUS server running FreeRADIUS [10] in v.3.0.20
was installed on an Ubuntu 20.04 Server VM, and new certifi-
cates for each client STA and the RADIUS server have been
created. As summarized in table 2, regarding 802.1X authen-
tication, different methods were used, namely EAP-TLS,
EAP-TTLS/PAP, EAP-PAP, EAP-TTLS/MSCHAPv2, and
EAP-PEAP/MSCHAPv2. If present, the “/” separates
between the server and client side authentication method,
respectively. It is to be noted that these authentication meth-
ods were the same for each STA, for the whole duration of
the dataset recording process.

The AP was an ASUS RT-AC68U in v3.0.0.4.384.810492
operating at 5GHz. PMF was enabled in the AP as

2Newest firmware versions up to v3.0.0.4.386.40558 caused increased
CPU usage in the AP, even with a single STA connected to it. This strange
behavior was also confirmed by relevant forums [11], [12].

34191

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

~ @ \ ‘-,
= | 23S f BB s g|3e|g %

= dal s Bl E R YRR ERI I R

0 2% F 5 F KT 0K g SEl2|n|a|e

R A e R R R] Sl5(818 |8

- sd| < <4< 5| &5 g 5| & | & | @ |4

9 FRE I zgle e Elalg g

a QRS2 EE5a 20 gElL|8g |88 |«

eelo [kl aR 2R Y% EE s 32

32%%%&%%< I8l e B<|8|8 8|2 | Z

=
. wl o 3] = sllslelela =<
> 2 B&RFZ (=08 EF S S8 |%F |
-_— 2 = vl il il B N B il R Bl - o g N
- R R A I I B I A I Y R A I I I N I S N W]
2 ESleleRielgelelgleleilele|glgle®
= T EEEEE |8 EEEEE|E |8 8|2
PV F 5| ldaldalaltaledaalala|alal
Qg EZ|2EFZEF |22
[~ S1]

] < < < R R R

[aly Bz 2 = I]

- BEEREN-IE - g BIE|8|2 |82

~ s |2 a a

g & 512 a2 o . |m 2|le|(n 8|2

£ = MERCERCIEEE MR AR 23

£ Sle | =

£ O ZloBe2F @ Blae|[BS|S|2lclels
R NS R < | O = =T = A =]

BB | 2 EEEE s BB B|E|Z 2E

E.-«% O 0|0 Olexl8zld|s @2 2228 |2

S Zlz ezl e |eRERE2IR @ 55512 5]
—_ S| 5|55 |5RaEalE| 222l 8 |88 ;
C = & 5333 3cnlzm3| e8| |2

s A I MR E R A A - N =R =
A A R B R = R R S IR R
A e R e R] A R S A R A A R
£ O
[AR >

c | @ |2 ~ |2

X 9 sz E sk g5
a el a | = ||
R=21 8828 8¢ o
N © & Sgl s s S5 <
"0: K S| ol (% = | '
- |5 2l g |2 S |9 <
¢ 8 < ESEEQCISESIEEssg|q]2
o e sz (SIS iEg | IfEzEEIZ|Z|Z2A]3 2
£ b0
] —
S a &
R e < 2 zle - ERNE.
4 = 218 ~ 2 5 6
% 0 < 2
< — —_ 3
] g 2 225|222 2 8
Q= Sl gl Ig=@lgsls ===z |85-&
N 12 g8 |gEs50 S|z |z B8k=2
>.8 R | % |% 2E28
& 2 0B8R ERgE izl 222 EeR8
=1
< £ I EASE IR 2k & IEQ
S N £ ErsEczzscE 218312552
© @ Z :Z2:iER=22E5)s s 55/ 5|5 5 Sl
R £ 5 a FREFFRZEC=S00R 2 22| & | & | & |HED=SZ
e £ 5| &
s £ |2
N % o | =
> % |«
(-5 £ o | o ol s |8 le |3
~ g = = =l S| = = =
©] 5|5 535 |= %

H 5 515 5ls5|=15]5
H] H 2@ PIE|3 |24
- 5 $ | g e | q & || E

> Slalalalal2]2 | 2lzlala|2
v .| o -
€ 5| ZEEEZIZESEEZ 22|22
S w Pl | SRISRG|wRIZEZZ | w2002
£ g

o o

mn e 2 2 2
N 9 £ o | » |5 Sle |«
- e lgl Z2lel5 152 25|15 gl

. £ &l @ |& 53] —|5 o K 815
- s sleles el]2 | =2 s |52 |8 |2
2 = SIEZE S8 %2 LCEela 2|23
8 = EEIEIE S S IE 2 9Rl25|2 83 2 S
Q> e 2 12|22l 2|z 2|5 |58 2 g 2|3 %
v 5 ZIER 2552 ¢ egE2s 2 =18
] w| 2| S |E|SIE| 2|2 |52 g2 |2 |35 |8
v%o._* z 2|5 2|5 |5 F| < RC<S&8| & |5 |5 |23
]
< E 2

-ARE :
‘.—E =z =]

(=) b z o

= 2 = 2

- % = N ° E
(3 £ |g £ £ Sm|e|§ g | g
€ Ozl |E|E E|E|E|E B2l B B E|E|E:
S 0 Z2 20322 Z|Z E558E 22 2|5 2k
‘igmet S8|S 5|8 |S[BlEaEE S |S |8 |a|d|=
o £
I--U 1)
o 3

-] 5 =
[E g
o < 2 2
] s - & P
= P IR R E AR A R

= S| 8 5 |2
'8«:;’3 = SRR E& S S|13|2 0
2N ®]
:g iz
s S
[£z N
S o EZ_ 2 3
— Z |~ 5
> £ O Z=Z g
v = NS £
S g EIEEE
. 2% s =
- wn | . |2 £5lg g s |z
w5 Sl sEz 22 RESEEE (2R
2 B2 8
- = EEIEEE|SEEEE -[22EC | % |8
] A I A B A I A A R e BT I T B

& |e 2|2l 28| 2| 2|2/ 2 |22/ B BglgE 5|2 <
<< Bla |2 |82 (882|228 (222 (BREE|E|8n
= < Z| < O [0l U |0 U O O] T OO0 ¢ gll<a| < = =2

“capable”3, but as all the STAs supported 802.11w,
PMF was always active. Basically, the main reason® we

3Wireshark versions prior to 3.4.0 could not decapsulate any frame if
this flag was set to ‘“required”. This was due to the different message
authentication code scheme used in the 4-way handshake employed; HMAC-
SHA1, AES128-CMAC for “capable” and “‘required”, correspondingly.

4Actually, there were two more reasons related to the Krack attack. First,
for this attack to be successful, we had to use an unpatched supplicant,
namely wpa_supplicant 2.6 on Samsung Note 4. But this version did not
connect to AP under a PMF “‘required” / 802.1X combination. Second, to
implement a SGHz AP, we needed a 802.11w certified USB wireless adapter
able also to disable hardware encryption, which however was no readily
available. PCI-e wireless adapters have more stable drivers and implemented
correctly the 802.11w, but are locked by vendors to not operate as SGHz APs.

34192

TABLE 2. Authentication method per client STA in the testbed.

Device Authentication method
Ubuntu 20.04 QCA6174A EAP-TLS

Ubuntu 20.04 AX200 EAP-TTLS/PAP

MS Windows 10 Pro Alfa AWUS 1900 EAP-PAP

MS Windows 10 Enterprise TP-Link

EAP-TTLS/MSCHAPv2

MS Windows 10 Pro Linksys

EAP-TTLS/MSCHAPvV2

MS Windows 10 Pro TP-Link

EAP-PEAP/MSCHAPvV2

MS Windows 10 Enterprise Alfa AWUS 1900

EAP-PEAP/MSCHAPv2

Samsung Note 4

EAP-PEAP/MSCHAPv2

iPhone 6s

EAP-TLS

Samsung S20 FE

EAP-TLS

chose the “capable” mode was that most of the avail-
able WNIC on MS Windows did not connect to the AP
if PMF was set to “‘required” along with WPA2-802.1X.
This issue applied to MS Windows 10 v20H2 released
in Oct. 2020.

Due to the plethora of nearby Wi-Fi networks, we chose
a specific channel, namely 36 at 5.180GHz with a chan-
nel width of 20MHz, for the communication between the
AP and the client STAs. By doing so, we avoided (almost
completely) capturing any extraneous frames stemming from
other networks in the vicinity during the attack recording
phase. Any remaining instances were manually filtered out.
In this respect, and because all the participating devices in the
testbed were reset to default values, we did not anonymize the
dataset in any way.

To simulate the operation of a sample, but obviously not the
volume of its workload network, we connected the Windows
client STAs to the MS Windows Server and the Linux STAs
to the Fedora server through FreeIPA [13]. Both these servers
were operating as domain controllers and DNS servers. Addi-
tionally, we set up a two-way cross-forest trust between the
FreelPA and the Active Directory (AD). A Samba shared
network was created and integrated with FreeIPA. Therefore,
Linux and Windows-based client STAs must authenticate
before connecting to the shared network. FreeRADIUS did
not join a domain, thus requiring different client authentica-
tion credentials.

For capturing the wireless traffic, the monitor node
employed Wireshark v3.2.7 running on a Kali Linux v2020.4.
This node did not connect in any way to the AP of the
testbed but operated only in monitoring mode. To decrypt
the application layer traffic, we kept the TLS keys from each
desktop STA. This, however, was infeasible for mobile ones.
For them, we utilized mitmproxy> [14]. Except for break-
ing the TLS session into two parts, and thus knowing the
corresponding TLS keys, the proxy was operating passively,
receiving all traffic from those STAs and forwarding it to the
AP and vice versa.

Each STA has been strategically placed in a certain area
to simulate a realistic environment on the one hand and aid
the monitor node to eavesdrop on the traffic on the other. As

SSeveral companies do implement such a tactic for the sake of, say,
scanning for malware and other unwanted content (deep packet inspection)
and enforcing guidelines of acceptable use.

VOLUME 9, 2021

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

described in table 1, the attacker possessed three WNICs. The
two USB ones were employed alongside® for realizing all
of the 802.11 specific attacks except Krack and Rogue AP.
For the rest of the attacks, the PCI WNIC was used. Also, as
detailed in section III-B, the attacker did not connect to the
WLAN, except for the cases of specific higher-layer attacks.
For these scenarios, it is assumed they have managed to steal
the login credentials of a legitimate user.

For desktop client STA devices, we employed different
PCI-e WNICs, using Next Generation Form Factor (NGFF)
into mini PCI-e, and then from mini PCI-e to PCI-e con-
nectors. The main reason for this choice was that during
the period the experiments took place, there was no readily
available USB wireless adapter that supported 802.11w for
the Linux OS.

For the dataset recording phase, and for the sake of
enabling the STAs to produce diverse kinds of normal net-
work traffic, we created a tool which automatically chooses
a randomly scripted data traffic scenario. According to the
selected scenario, the STA visited a given webpage and
proceeded with some operations on it. To achieve this func-
tionality, we used custom-made Python scripts in conjunc-
tion with the Selenium library in v3.141.59 [15]. Also, by
using Node JS [16] along with the Puppeteer [17] library,
we added infinite scrolling to the visited webpages. A last
configuration pertained to the clients is that they needed a
different browser to run the aforementioned functionality.
For this objective, we used Geckodriver v0.28.0 [18] and
Chromedriver v87.0.4280.88 [19]. The nine unique network
traffic scenarios chosen randomly by the STAs are summa-
rized in the below list. The random choice was made using a
Bash or Batch script on Ubuntu or MS Windows, respectively.

1) Watch one from four in total predefined YouTube
videos. Each STA, had different predefined videos.

2) Download NodeJS or Python 3.9 while visiting specific
webpages.

3) Visit certain webpages along with the use of the Spotify
music service.

4) Live streaming over Twitch.

5) Send/receive emails using ProtonMail.

6) Visit specific webpages. This scenario was included
twice in the list of the available scenarios, meaning that
the available traffic scenarios to choose from are ten in
total.

7) Place a Skype call along with email communication.

8) Upload or download files using Dropbox Business
and/or Samba.

9) Upload files using Nextcloud and Samba.

As detailed in subsection III-B, each traffic scenario was
executed for a random duration of time, but always not sur-
passing a predefined upper limit. Precisely, as a first step, the
Bash or Batch script chooses a random number from 1 to 10

6This was done for enabling the monitor node to gather as many frames as
possible during the attack phase, and also to assault the maximum possible
number of client STAs in the available time window.

VOLUME 9, 2021

pertaining to the available scenarios. This number determines
the number of scenarios this STA will execute. Then, the
maximum execution time of the script in sec is divided by this
random number. The result determined the execution time of
each of the randomly chosen scenarios. Say that the random
number is 3. If divided by, say, 300, the script will appoint
three random network traffic scenarios and run each of them
for 100 sec. It was possible for the STA to execute the same
scenario multiple times. The second part of the script is with
regard to the additional tools we used. Namely, when the
script chooses a random scenario, a Python script executes to
realize this scenario. Lastly, regarding the attacker, we used
mainly command-line options, i.e., timeouts, to automate the
attacking phase.

B. DATA COLLECTION
With respect to the data collection process the following
points are of particular interest.

o Each attack comprises a separate pcap file, but as
explained in the next subsection, each one of these
files may contain different variations of the main attack,
implemented with the help of different tools. In accor-
dance with section II and as summarized in table 3,
thirteen attacks were implemented in total.

o As explained in section III-A, the automation scripts
used added several variations of the normal network
traffic per client STA.

o The total number of the recorded frames, the total size
of each pcap file, along with the numerous network
features that these files contain, can easily lead to a Big
Data proportion dataset. This would make the use of the
dataset cuambersome and resource-intensive. With this in
mind, as seen from the 6th column of table 3, we kept
the size of most pcap files under ~2.5M frames, which
corresponds to a total duration of 10 min. For each
pcap file, the first ~3 min are consumed to connect each
STA to the AP and trigger the selected traffic scenario,
while in most cases, the next ~4 min are dedicated to
normal traffic.

« As mentioned in section III-A, the decryption of pcap
files was necessary for handling the captured frames
and extracting the different features to be used, say,
by machine learning classifiers at a subsequent phase.
Given that the main difference between personal and
enterprise mode is that each PMK is different in the sec-
ond case, it is unfeasible to enter the ““pre-shared” key
in the Wireshark and expect to read every pcap file. So,
all PMKs for each STA which made a connection to the
AP must be preserved. To do so, the Radsniff [20] tool
was used at the RADIUS server side. Precisely, the tool
sniffs the Ethernet traffic, namely the EAP over Radius
packets, arriving or leaving the server, and therefore the
PMK sent to the AP within the MS-MPPE-Recv-Key
attribute of the Radius-access-accept message.

Based on the above key points, the steps that realized

the recording of each attack into a separate pcap file are as

34193

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

.-
°
v
]
]
2
[%]
£
("]
1]
:E s © =) o |lolwvn | @ moln |ofn | v |n
e == EAIES = S e e Ee = e
O = Sl @ Il A | = Rl ol IR Il) B |=
= el £ & ahe| n A e
S8R 2 L] F
8EF
— 0 <t =~ o o~ <t — O = 0
e 88 24 RE | BR 33 =&
E2ac | g&8lg2 52 [8 g2RiB g g5d
3583 2C1 %3 | 2% | I R=2% 2 2RS o
S & 0= =SC D | 22 K8 ddglE S glf e ©
V=5 g RSz |22 BT Ral3R 2 2ka <
2ow=E EER| QA | EG S S BESS S 2R o
S8BT [SZg|zF |53 7|3 |Ao2E| S REEES
EEYS ES|S% | T3 2l BalS2 e BER S
s 3 Lo ol Bl Bl AR S Al A RS = el =
SeE8P I R R e R A TR &
g.c;u alel e | a2l |2 = |al<=] = |=Slas —
g E 9
:_:Ei 5% 2 S B89 BRIA RS |R R
v s IS S S | = == =l a | =S
£ £ g .
(=]] N
e E O 7]
32.,,.‘_-
- 8= o I o = o —| v o] e | o |
wwg = @ ~ IS I Y e =R e N A e R S 3
tfwgﬁ§m o« S S| o SIS v S| g ol o
O . € >3
.‘_'°$.2'-Em~n — o lolo | a ezl ol e | a |a
- v o S| o= e} =3 —| S FIQ| = |9 v Pal g
- S O El S| = DI e B I N - IR L B O A
e@eEaizs | ¢ | v TS5 EdE e gk
- [T N =1 O bl s 2| =2
~x O o @ g} i}
foc2tls -
- Q - (s
"Rl
o=EE 8
_:ab;gﬂw(\l o 9 || @0 | © |glm|l a vl o« | o |«
- UQI\ — &« | o (®|e| e || o (oo
8= o 8|E ~ AN i I A I A e S B Y I S L g
YL g 3 & < o o || € | S ||| o g = | £ |
v a howEQ = I o | S |IFQ s 2| e
S l=.,,;‘=°, 2 I o A O o e R e B I S
Qﬁm.—og— o — —| = A |oifen| o || o8 |
T Rs EQE
L] =
o . £
L 0 Mo
= :,'HE o
mg(@m 5%“
2«._:2 a o 2| &
=
o O 0 < < 2| o
EB L g ° 9 ?DE
- < = ElE =3
L24d8 5 P < 3|2 2l 8
=283 A & & g3 E 3| 5 g
°==°_=A 2] © »n |x © %2} ©
8 0 E
2E_3¢E
EW®”'E NS =
SV Ew &
7] (] —_ =g
/\%.E.__.E @ _ z |2
ANBSa e = a g |3
=" 3§ 4 = £ |2
PR TR g By £ A
£22un E g 3z g &
FEUso 3 g S |5 =
umggn- Z I — |Z| |§
s oo o < =
g g Y %E o 2 = =2
o 2 - o _ = =2l
b € 0o|E 0 = | S | e 2 2153
]] g & e] 2 |z =2z,
T QO E =0 0 Re)) —| S T o= S g -
£90 w8 Fog el SR = It I 5] z ISIES
2Es0zE < B z 8 z|% 3> g 5|25
S EBQHE & g F |3 F|8|EE8 s &5 &
"55-335< < = A T2 | < |Z|< & |<|m|<
[T -} [o
EEEn.‘t. Z |z o
=E5E=« S| 18| |wlE
= = — 2| |2 =B o)
a 4 S| IE] |28 .S
e mEE 2l |gl [BlE e g g
o - < 2l \m| (8= 2l 2 3
SES8 o | |ZIZxlz Elalzl EIE 5|z |4 | E| B
SE|E|E 2|85 = 5 =1 ~
TEw e = 2IRE1E| |83 EE| E |8 E| || € |
ESEER| ZEEE RELER 5l ElE| £ E P
8T g — ZEREl 1SFEEZ 2 |2 |2838 £ |2EAR
w = PO I Y et i o Ll B =2 5 ol ol R 53 = =2 B () 5 =N I~ o
L ox o |ZEE44|lxls|3|Ele2B B |agEC|E 2 Elx
B (B|==22 gl2|2|2 ~| ¢ SRR = E=]
=v§“<§€§g§§3%%m§>&::5g%gyo 25z
. - 00| == “z|o|o (0= |9 n| 2 AR
ERE § R 0RPR LR E0N F BREFR 8 <
[} —
Mtﬂgﬂm Sl=| QO |o|twfon] 0 o2 |=
EZSE c T ESSETEEEEREE 2 2 EEEE 2 2SS
O ki ik ik ki kB i i il Bl el il
U Q=S
- =
8BS 58w 2
R - g S
. Qe E 2 g
“"ecfalg g |z g s |8
woe £ﬂ§ 2 <\ 2= ERD
- b0 E %] L=] 2 z o -~ sl £ |7 ==
= 5 3 Z| = 2 < g = S| 2 - | [z
L5822 2 | 2 |BElEEEEER G| B
Ee8S%BE S| A €zl 2|2 |GR =8 a|akE

follows: (a) Enable the recording process of PMKs through
Radsniff, (b) activate the monitor node, (c) establish a new
connection per client STA with the AP, (d) confirm the sound
capture of each STA’s 4-way handshake in the monitor node,
(e) start the script that randomizes the network traffic per
client STA, (f) initiate the attack, (g) end of the attack phase,
(h) save the recorded file in pcap format.

34194

During the recording phase, and as explained in the fol-
lowing, we used scripts to automatize the 802.11-oriented
attacks, namely those included in section II. For the sake
of convenience, each attack and client STA has been given
an alias presented in tables 3 and 4, respectively. For Attl
to Att8 as well as Attl2, the attacker possessed two Alfa
AWUSO036ACH WNICs. In the following, we will refer to
these WNICs as WNICI or WNIC?2. For the same attacks, we
used a round-robin scheme configured in the corresponding
attack script, meaning that both WNICs targeted the same
STA and then moved to another, always in the same order,
namely iPhone, Andr-S20, Ubu-QCA, Ubu-AX, WinEnter-
TP-Link, WinPro-TP-Link, WinPro-Linksys, WinEnter-Alfa,
WinPro-Alfa, and Andr-Note4. Att9 exploited only WNICI,
while Attl10 and Attll utilized both WNIC1 and the PCI
WNIC. For Att13 to Att18 and Att21, it is assumed that the
aggressor has in their possession the login credentials (PAP)
of a given STA, namely WinPro-Alfa. Also, for Attl4 to
Att16, they possess the login credentials of Ubu-AX to the
Samba network.

Specifics per kind of attack and the associated pcap file
are given in the following. Also, table 3 summarizes all the
important information for each pcap file, including the attack
tools used, the breakup in normal and attack frames, the total
size in GB, the total and attack duration in min, and the frame
numbers designating the start/end of an attack phase.

Deauthentication: It exploited both single targeted and
broadcasted types of frames. Two phases, one per type of
attack, namely Attl or Att2, were used. In the first, both
WNICs assaulted each STA for 12 sec, while in the second,
both WNICs targeted the broadcast MAC address for 60 sec
in total.

Disassociation: It also employed mainly unicast and a
limited number of broadcast disassociation attack frames.
Specifically, by utilizing both WNICs, Att3 was executed
first, lasting 120 sec in total. A subsequent phase employed
Att5 on WNICI for 60 sec, while at the same time, WNIC2
unleashed Att4 in 2 phases, each one for a total of 30 sec,
using either Aireplay-ng or Netattack. As expected, and can
be observed from the dataset, this attack also yielded a small
number of KrQOk zero-TK frames.

(Re)association: It contains three attacks in a single pcap
file. Two phases were performed. In the first, Att6 and Att7
were simultaneously executed through different WNICs, both
targeting each STA for 12 sec. In the second, WNICI trig-
gered Att6 against all STAs for 60 sec, i.e., 6 sec per STA,
while at the same time WNIC2 unleashed Att8 with the
purpose of further stressing the STAs.

Rogue AP: For Att9, a rogue AP was created using the
same SSID, MAC address, and channel with the legitimate
one. Recall from section II-A, that the rogue AP operated in
WPA2-PSK with PMF disabled. We observed that more than
half of the STAs were lured into repeatedly trying to con-
nect to the rogue one. Nevertheless, as expected, these STA
received a deauthentication frame due to Pairwise Master
Key (PMK) mismatch; actually, a surge of deauthentication

VOLUME 9, 2021

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

frames were dispatched from the rogue AP. At the same time,
because the APs operated under the same MAC address, this
situation ignited the Security Association (SA) Query mech-
anism between the STA and the legitimate AP, ultimately
leading to a disconnection in most of the cases.

A parallel observation pertained to the beacon frames of
the rogue AP, and affected all the Windows-based STAs
(which initially did not attempted to connect to the rogue
AP as described previously), but the Linksys one (which did
attempted to connect to the rogue AP). Surprisingly, upon
receiving these beacons, these STAs immediately deleted
its SA with the legitimate AP, dispatched a probe frame,
and then initiated an authentication process towards one of
the APs. This on the other hand made the legitimate AP to
start a futile SA Query procedure with the affected STA,
which ultimately led to dissasociating the STA with a reason
code 9 “STA requesting (re)association is not authenticated
with responding STA (0x0009)”. After further analyzing
this bizarre situation’, we concluded that for yielding the
aforementioned results, the beacons stemming from the rogue
AP must at least include the same MAC address, SSID, and
channel as that of the legitimate AP; otherwise these STAs
will have the same behavior as the rest of the STAs, namely
will try to connect to the rogue AP. Put simply, even a single
“empty”’ beacon frame (it only contained the valid SSID tag
parameter of the BSS) can cause this effect. This flaw may
be exploited to create another variant of beacon flooding that
would render any affected STA unable to connect as long as
the attack is ongoing. Lastly, this effect applies only if the
legitimate AP operates on 5SGHz, with at least WPA2-PSK or
WPA2-802.1X, and independently of the PMF mode used.

Krack: This attack was implemented in two steps against
all STAs. Attl0 established a MitM position, while Attl1
launched key reinstallation attacks for a total of 180 sec. Note
that for being able to record more effectively this attack, we
chose a 2.4 GHz AP setup. The attacker implemented the
assault on channel 2, while the legitimate AP operated on
channel 13. Note that the only unpatched, and thus vulnerable
STA to this attack was Andr-Note4.

Kr00Ok: Att12 unleashed timed disassociation assaults with
the reason code 7 “Class 3 frame received from non asso-
ciated station”. Actually, it was observed that this was the
only case this attack was prolific, achieving a zero-TK rein-
stallation. We transmitted this type of frames toward the
victim STAs in circles of 9 sec each. That is, both WNICs
attacked every STAs simultaneously; WNICI using the nor-
mal round robin order, while WNIC2 in the reverse order.
The attack indeed yielded zero-TK encapsulated frames for at
least one vulnerable device, namely the AP. Such frames can
be extracted from the pcap using the rOOkie-krOOkie Python
script [21]. Lastly, an important observation was that after
the AP had deleted an SA, any buffered SA Query frame

7A short video demonstrating this behavior is available on the AWID
website at http://icsdweb.aegean.gr/awid/. Also, this issue has been reported
by the authors to Microsoft.

VOLUME 9, 2021

for this SA were transmitted unencrypted. As it is detailed
in section V, this may leave room for exploiting this type of
frames against an STA.

SSH brute force: Attl3 attempted unsuccessfully for
180 sec to brute-force the login credentials to the Radius
server. This naturally involves the exchange of numerous
Key exchange (“‘kex”’) messages. That is, from a total of
~3,800 SSH messages, about 20% of them are of type
“kex”. Note that SSH messages of type “USERAUTH”
are encrypted in the pcap file because the service request
phase is done over the protection of the SSH tunnel utilizing
ephemeral keys.

Botnet: It assumes that the attacker gained access to the
Samba Network, placed a couple of malicious files in a shared
directory, and waited for a random victim STA (user) to
execute them. These files, one for MS Windows and the other
for Linux OS, were created with the help of Ares tool [22].
Note that due to the cross-trust forest between the AD and
FreelPA, the attacker also needed a Security Identifier (SID)
to connect using the login credentials of any Windows user. In
the implemented scenario, four STAs successfully executed
these files and were turned to bots. Afterwards, the attacker
exploited the infected STAs to execute different commands,
like capturing a screenshot of a user’s desktop or monitoring
their activity. These pieces of stolen data where then sent to
the attacker.

Malware: Regarding Attl5 and Attl6, the attacker placed
two pieces of malware, namely WannaCry Plus [23] and Tes-
laCrypt [24] to the shared Samba network. The malware files
were downloaded by 6 STAs (users) of the network, but were
never executed for obvious reasons. In the dataset the mal-
ware files are named as “Win32.Wannacry.exe”, “node.exe”
and “51B4EF5DC9D26B7A26E214CEE90598631E2EAA
67, “finances’, respectively, and were obtained beforehand
from the theZoo repository [25] in GitHub.

SQL injection: Attl7 was performed on a Damn Vulnerable
Web Application (DVWA) docker container [26] running
in MS Azure. The webpage’s ULR was https://dwva-
awid2.azurewebsites.net/. The assailant exercised manually
this attack for a total of 180 sec; no automatic tool was used
for being able to preserve the TLS keys and decrypt the traffic.
For instance, the assailant exploited commands like % or ‘0’
= ‘0’ union select user, password from dvwa.users #, %° or
‘0’="0" union select user, password from dvwa.users #, % or
‘0= 0.

SSDP Amplification: Att18 was exercised against the same
DVWA webpage residing on MS Azure. First, for ~30 sec,
the attacker scanned the intranet for exploitable devices
using a Python script [27]; the IP destination address of
such a M-SEARCH packet was 239.255.255.250:1900. The
IP of the AP was returned, and next the same device has
been identidied to reply with around 10 frames per each
M-SEARCH of type “ssdp:all”. In a subsequent phase last-
ing 210 sec, the assailant unleashed the attack against the
DVWA webpage with the aid of the Saddam-new tool. That
is, the tool dispatches towards the AP’s IP address a surge of

34195

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

spoofed M-SEARCH packets with the ST header field being
“ssdp:all”.

Evil_Twin: This pcap file contains two different imple-
mentations of the Evil Twin assault. The first realizes a
captive portal attack. For this, we relied on Hostapd [28]
(it turns a WNIC into an AP), Dnsmasq [29] (it provides
DNS caching and a Dynamic Host Configuration Protocol
server for LAN networks) and Apache2 server [30] (it cre-
ates an HTTP server that can operate with Hostapd and
Dnsmasq and hosts the fake captive portal webpage). Via
an Evil_Twin assault, we redirected every connected client
to the rogue AP STA to visit the fake webpage, namely
https://captiveportal.local, which afforded a self-signed cer-
tificate. Note that after the user entered their credentials to
the fake webpage, they were directed to another webpage,
which automatically downloaded a piece of malware, named
“agent.exe” to the STA. The rogue AP operated on the same
channel, SSID, and almost the same MAC address? (the last
digit was “5” instead of “4”’) with the legitimate one. It
is to be noted that although Windows STAs were able to
establish a connection to the rogue AP, they were unable to
access the Internet, and therefore be redirected to the captive
portal webpage. This is because they allocated a specific
DNS IP address, the one the AD Domain Controller had, and
thus it expected for the same IP address in DNS responses.
Therefore, this attack was effective only against the mobile
STAs. On the other hand, Att20 exploited the Eaphammer
tool [31]. Under certain assumptions, this tool can perform
an Evil_Twin against WPA2-802.1X networks and it is one
of the few that can operate well in 5 GHz. Using the same
AP configuration as with Att19, we targeted all STAs by
potentially exploiting any EAP downgrade misconfiguration.
Then, we restarted Eaphammer and launched a “‘hostile portal
attack” as provided by the tool. Lastly, both these attack
variants could not be implemented successfully for STAs
that were connected using a TLS-based method, in our case,
EAP-TTLS and EAP-TLS. This was because the rogue AP
(acting simultaneously as a RADIUS server) did not possess
a valid certificate, i.e., one issued by a CA that the STA could
trust.

Website_spoofing: After deploying Apache2, the attacker
hosted a fake Instagram webpage having a self-signed cer-
tificate. By exercising ARP and DNS poisoning targeting the
real Instagram page, the victim STAs were redirected to the
fake one, thus allowing the attacker to steal their credentials
and decrypt them using the TLS keys obtained from the
server. In the dataset, DNS and ARP poisoning are done in
the ~4th min, while the victims attempted to access the real
Instagram page 4 min after that. Specifically, the victims were
the 5 Windows STA, the AP, and the AD domain controller.
Overall, as can be observed from the corresponding dataset
file, WinPro-Alfa, WinEnter-Alfa, and WinPro-Linksys fell
victims to this attack.

8Due to the beacon issue mentioned previously in Att9 and the use of
mitmproxy, we avoided using the same MAC address in both the APs.

34196

= Protected Deauth. frames = Unprotected Deauth. frames

300
250 (
$200 111 T e
= i
9150 i I
[V h
100 :‘\ | } ‘ |
b i
00— LAY
100 200 300 400 500 600
Time
(a) Attl
m Protected Deauth. frames ™ Unprotected Deauth. frames
7
JIh | I R
. | | |
g, |
5. | it
3| ‘ it
[‘ ‘ ‘
{0 |
1
UL ALY I |
440 460 480 500 520 540
Time
(b) Zoom on Attl

FIGURE 2. Deauthentication (Att1) signature.

IV. SIGNATURE OF ATTACKS

This section offers symptomatic signatures of selected attacks
based on cherry-picked features. Precisely, we chose 6
assaults, that is, one per category of section II plus KracK,
plus a multi-stage one synthesizing 3 different pcap files.
Contrariwise to the original AWID, we opt out of evaluat-
ing the dataset by means of machine learning, given that
this should be done per category of attacks, and thus would
overburden the already lengthy manuscript. Naturally, future
researches can exploit virtually any set of features that stem
from the pcap files along with machine learning classifiers,
as the dataset is offered in a cleartext form.

Flooding attacks in 802.11 demonstrate more or less the
same structure; the observer discerns a sudden increase in
the unprotected management frames per second. Recall that
in the context of the current dataset, PMF was active, so
the AP communicated using only protected deauthentication
and disassociation management frames after it had estab-
lished a Security Association (SA) with the corresponding
STA. Based on the Deauth.pcap file of the dataset contain-
ing Attl and Att2, figure 2 depicts the number of spoofed
deauthentication frames vis-a-vis the legitimate (protected)
ones. As it can be easily observed from the bottom subfigure
containing this type of frames when the attack was unfold-
ing, i.e., for 180 sec, only a tiny number of protected (black-
colored) frames is present within the gush of attack ones.

Regarding Attl3, figure 3 focuses on traffic containing
multiple SSH requests and responses stemming from the

VOLUME 9, 2021

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

= abnormal SSH traffic

100
80
3
g 60
L 40 I “ m“\ |
20
0
0 100 200 300 400 500 600
Time
(a) Attl3
= abnormal SSH traffic
50

450 500 550 600
Time

(b) Zoom on Attl3

FIGURE 3. SSH brute force (Att13) signature.

same IP source address. This sudden surge of SSH traffic
may straightforwardly designate that a SSH brute force is
unfolding.

Concerning Attl8, figure 4 portrays a SSDP amplifica-
tion attack in its blooming. That is, the aggressor sends
multiple SSDP packets towards the AP acting as amplifier,
having their source IP address spoofed to that of the victim,
i.e., the Azure VM hosting DVWA. The generated traf-
fic volume (SSDP requests) towards the AP reached
~35,000 packets per sec.

As a fourth case, we examined the Website_spoofing.pcap,
namely Att21. We chose to focus only on the ARP poisoning
part, because it should be easily detected by an Intrusion
Detection System (IDS). Specifically, in figure 5 one can
clearly observe the abnormal ARP traffic originated from the
same single MAC address.

The next signature has been generated based on the
Krack.pcap, i.e., Attl1. Figure 6 demonstrates the recurrent
transmission of a plethora of messages 1 or 3 of a 4-way
handshake, namely EAPOL-Key frames, for about 180 sec.
Note that these frames pertain to both of the wireless channels
(2 and 13) as recorded by the monitor node.

A last signature attempts to visualize a multi-stage assault
by combining 3 pcap files, namely “Deauth”, “Evil_Twin”,
and ‘“Website_spoofing”. As observed from figure 7, after
the attacker deploys a rogue AP, they mount Attl and Att2
to disconnect the STAs from the legitimate AP in high hopes
that they subsequently connect to the rogue one. This plot,

VOLUME 9, 2021

= normal SSDP traffic m abnormal SSDP traffic

45k
40k
35k
30K
£ 25k
© 20k
15k
10k
5k
0
100 200 300 400 500 600
Time
(a) Attl8
= normal SSDP traffic = abnormal SSDP traffic
25
020
19}
€15
©
w
10
5
0
100 200 300 400 500 600
Time
(b) Zoom on Attl8

FIGURE 4. SSDP amplification attack (Att18) signature.

= normal ARP traffic m abnormal ARP traffic

2500
2000
o
1500
S
©
- 1000
500
0
100 200 300 400
Time
(a) Att21
= normal ARP traffic = abnormal ARP traffic
18
16
14
wn 12
£10
C 8
L
6
4
2
0
100 200 300 400 500 600
Time
(b) Zoom on Att21

FIGURE 5. Website_spoofing (Att21) signature.

i.e., through the captive portal, may allow the attacker to
steal the login credentials of some STAs. Now, having access

34197

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

= Normal = Repeated EAPOL Msg. 1/3

45

40

35

830

%25

r20

i5

10

5

0

100 200 300 400 500 600
Time
(a) Attl1
= Normal = Repeated EAPOL Msg. 1/3

10

8

@ 6
£
-

C 4

2

0

100 200 300 400 500 600
Time
(b) Zoom on Attl1

FIGURE 6. Krack (Att11) signature.

to the network, the assailant launches Att21. For depicting
the Evil_Twin, we relied on data frames (0x0028), namely,
normal traffic produced by the legitimate AP vs. traffic
generated by the rogue AP, represented by grey and red
colors, respectively. Note that the traffic produced by the
legitimate AP is originally encrypted, while that of the rogue
one is unencrypted. For the rest of the attacks, we exploited
the same features as previously. Note that both the normal
Deauthentication and ARP traffic are also included in the
synthesized pcap, but it is barely shown even in the zoomed
subfigure. So, no data labels are given for these types of
traffic.

V. KEY OBSERVATIONS REGARDING PMF

This section details on the results of 802.11 specific attacks
for which we observed a somewhat different behavior than
the one expected based on the 802.11w amendment. First, we
elaborate on significant remarks that pertain to the resilience
of certain devices when they are under attack, and second,
in subsection V-B, we investigate the root reasons behind the
perceived behavior. Bear in mind that the connected client
STAs to the AP communicated using PMF. This could be
verified easily because all STAs did received an IGTK as a
part of the relevant EAPOL message in the 4-way handshake.
Therefore, among others, the deauthentication, disassocia-
tion, and SA query frames (0x000d) were protected. Recall
that Table 4, contains the aliases of the employed STAs during
the experiments, while each attack’s unique number (alias) is
given in the second column of table 3. Naturally, the below

34198

= Normal = Deauth. m Evil Twin = ARP
7000
6000
»n 5000
0]
£ 4000
©
L_ 3000
2000 L L
1000 ‘
. o im0
200 400 600 800 1000
Time
(a) Multi-stage attack
= Normal Deauth. = Evil Twin = ARP

500 600 700 800 900 1000 1100

(b) Zoom on Multi-stage attack

FIGURE 7. Multi-stage attack (Att1, Att2, Att19 to Att21) signature.

TABLE 4. List of STA aliases used in section V.

0S WNIC Alias
Ubuntu 20.04 LTS Intel AX200 Ubu-AX
Ubuntu 20.04 LTS Qualcomm Atheros QCA 6174A | Ubu-QCA
MS Windows 10 Pro Alfa AWUS 1900 WinPro-Alfa

MS Windows 10 Pro
MS Windows 10 Pro
MS Windows 10 Enterprise

Linksys WUSB6100M
TP Link AC 1300 T4U
Alfa AWUS 1900

WinPro-Linksys
‘WinPro-TP-Link
WinEnter-Alfa

MS Windows 10 Enterprise | TP Link AC 1300 T4U WinEnter-TP-Link
iOS 14.2 iPhone 6s iPhone

Android 10 Samsung S20 FE Andr-S20
Android 6.0.1 Samsung Note 4 Andr-Note4

analysis has to be viewed in relation to the specific hard-
ware/software configuration of the testbed devices as given
in table 1.

A. DEVICE RESILIENCE TO ATTACKS
The following important remarks per kind of 802.11 attack
were made, also visible in the respective pcap file.

For Attl, it was observed that almost all client STAs
were disconnected after some time. Exceptions to this behav-
ior were WinPro-Linksys and Andr-S20. Regarding Att3
all STAs but the Andr-S20 were disconnected. iPhone,
Ubu-QCA, WinPro-Linksys, Ubu-AX, and Andr-S20 were
disconnected after triggering Att4 and Att5S. As noted in
section II, several hardware vendors have implemented
defenses against the broadcast of these frames. However,
during our experiments and specifically for attacks Att2

VOLUME 9, 2021

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

and Att4, it was noticed that at least one STA suffered a
disconnection.

The joined effect of Att6 and Att7 was to discon-
nect Ubu-QCA, WinEnter-TP-Link, WinPro-Alfa, and
WinEnter-Alfa from the AP. The same result was discerned
for Ubu-QCA, WinPro-Alfa, and WinEnter-Alfa after exer-
cising Att6 and Att8 simultaneously. On the other hand,
Att9 achieved the disconnection of Ubu-QCA, WinPro-Alfa,
WinEnter-Alfa, WinPro-TP-Link, and WinEnter-TP-Link;
the first due to PMF, while the rest because of the beacon
strange effect as detailed in subsection III-B.

B. DISCUSSION

Following the analysis done in the previous subsection, the
current one attempts to dig into the root causes that may lead
to disconnections even in the presence of PMF. To do so, we
implemented 6 auxiliary - not included in the dataset - attack
scenarios, in which we scrutinized every aspect we con-
sidered important. Specifically, with the aid of a modified
version of Aireplay-ng, we generally capitalized on Att3,
which stresses the resilience of 802.11w, and peered into any
deviation from the expected behavior.

In all these attack scenarios there was only one STA
connected to the AP at any moment, and the attacker was
motionless. All APs used were running with the default
configuration settings. For all but the last scenario, the tar-
gets were all STAs contained in table 4. The attacker was
equipped with a 2xCPU/16 GB DDR4 RAM laptop running
Ubuntu 18.04 desktop, and relied in most cases on two Alfa
AWUSO036ACH WNICs.

Scenario I: It aimed to scrutinize the different behavior that
may occur between the 802.11w ‘“‘capable” and “‘required”
mode (flag) of the ASUS RT-AC68U AP. In addition, it
examined possible deviations between the Personal (2.4GHz)
and Enterprise (5§GHz) modes according to our setup. For
the latter, every STA used the respective EAP authentication
method as summarized in table 2. The assailant used 4 attack
instances simultaneously exploiting one WNIC. The results
are summarized in table 5. As seen in the table, each STA was
either idle, i.e., connected to the AP without transmitting or
receiving any data, or busy; we experimented with only two
combinations, namely 2.4/idle and 5/busy, which we think
are enough to demonstrate the matter. As expected, during
the tests, for all the STAs, we perceived that the respective
attacks did not have an immediate effect, i.e., a network dis-
connection, as compared to the situation where the 802.11w
was disabled. On the downside, with reference to table 5,
all the STAs disconnected after some time. Obviously, some
of them showed greater sturdiness to these DoS attacks. For
instance, two of the most resilient choices seem to be the
WinPro-TP-Link and WinPro-Alfa. Additionally, from the
table, it is extrapolated that in the majority of the cases it is
harder to disconnect an STA from the AP if the 802.11w is
set to the 2.4 GHz, “required” combination. We assume that
this behavior is due to the lower speed rates of the 802.11n
protocol and the idle condition of the STA. Another important

VOLUME 9, 2021

TABLE 5. Results on 802.11w. All numbers are in seconds until a
disconnection takes place. Cap.: Capable, Req.: Required, N/A: The STA
was unable to authenticate to the AP under the “Required” mode due to
the last MS Windows update mentioned in section IIl.

Idle Busy

Personal (2.4 GHz) Enterprise (5 GHz)
Devices Cap. | Req. | Cap. Req.
Andr-S20 3 3 3 3
Andr-Note4 6 6 6 6
iPhone 9 8 10 8
WinPro-Linksys 20 20 49 N/A
WinPro-TP-Link 105 164 29 N/A
WinEnter-TP-Link 64 145 18 N/A
WinPro-Alfa 105 109 38 N/A
WinEnter-Alfa 87 127 24 N/A
Ubu-AX 5 8 17 12
Ubu-QCA 9 21 28 10

factor was the idle or busy situation of each STA. Simply
put, the greater the overload, the harder for the SA Query
mechanism to cope. Lastly, regarding the mobile STAs, they
demonstrated similar times regardless the setting, presumably
due to the low CPU power that each wireless adapter had.

Scenario II: Instead of a dedicated hardware AP, Hostapd
v2.9 [28] was installed on an Intel 4770K/32 GB DDR3 RAM
machine running Kali Linux 2020.4 along with Dnsmasq to
provide DHCP and DNS services. The WNIC of this machine
was a Gigabyte Wb1733D-I having an Intel 9260 chipset.
The AP operated in Personal Mode and PMF was configured
as “required”. The connection to the Internet was provided
through USB tethering using a Xiaomi Redmi Note 8 Pro
smartphone over 4G. All tested STAs were idle. Under the
“required” setting, the iPhone device was unable to con-
nect, so for this device “capable” was used. Following their
bombarding with 8 attack instances, 4 per WNIC, simultane-
ously, Ubu-AX and Ubu-QCA demonstrated great resilience,
being disconnected after 188 and 181 sec, respectively, while
iPhone disconnected after 40 sec. On the other hand, WinPro-
TP-Link and WinEnter-TP-Link were both disconnected after
8 and 38 sec, respectively using 4 attack instances, i.e., one
WNIC. Another important observation is that, as expected,
the number of the already connected STAs to the AP at a
given time affects negatively the endurance of any STA in
such attacks. For instance, after connecting another (busy)
STA along with the Ubu-AX to the AP, the latter disconnected
after 37 sec, i.e., about five times faster.

Scenario 111: The purpose of this scenario was to observe
any contingent deviation in the behavior of the same STA
(namely, Ubu-AX) regarding the usage of PMF when WPA3
(SAE/Personal in 2.4 GHz) was used. So, Hostapd had the
same hardware configuration as in the previous scenario,
except it operated in WPA3. We received similar results, that
is, Ubu-AX disconnected after 198 sec after attacking it with
two WNICs, namely 8 attack terminals simultaneously.

Scenario IV: It employed an Andr-S20 hotspot 2.4 GHz
connection as the AP. Note that this mobile device is
currently among the few that support 802.11w when

34199

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

acting as AP. The 802.11w was configured as ‘“‘capable”.
The attacker exploited both WNICS, meaning 8 attack
terminals in total. iPhone and Ubu-AX remained con-
nected for the total duration of the attack, i.e., 300 sec.
The rest STAs, namely WinPro-Linksys, WinPro-Alfa,
WinEnter-Alfa, WinPro-TP-Link, WinEnter-TP-Link, Ubu-
QCA, and Andr-Note4, disconnected after 20, 11, 12, 20,
21, 5, and 75 sec, respectively. To further scrutinize on the
stamina of iPhone and Ubu-AX, we employed the regular
version of Aircrack-ng and Attl using 8 attack terminals
per WNIC for 360 sec in total. Both STAs were again able
to withstand the attack, but as expected, they experienced
severe delays when receiving traffic. Also, the Andr-S20 were
severely overheated.

After executing the above-mentioned scenarios, it was
observed that the (Re)Association Response frame (0x0001)
with reason “Status code: Association request rejected tem-
porarily; try again later (0x001e)”’, was not used by any
AP, either Hostapd or Andr-S20, but the ASUS RT-AC68U
one. In fact, the sole time this frame was transmitted by
the ASUS AP was during a Reassociation request flooding
exploiting random MAC addresses, and also in Att6 and
Att7, which is in any case in accordance to the standard. The
Time Units (TUs) value contained in this frame was 20.1 sec,
which is very large vis-a-vis the 802.11w amendment [3]
and the currently active 802.11-2016 standard [39]. Regard-
ing the AP (re)association procedures the interested reader
can refer to subsections 11.3.2 and 11.3.5 of [3] and [39],
respectively.

Also, with reference to the specification [39], there are
two other parameters, namely the SA Query maximum and
retry timeouts, that were observed to have an immense impact
in the communication between the AP and the STA. The
first one, refers to the maximum time the specific device
must wait for a SA Query response, having a default value
of 1 sec. To assist the reader, the top subfigure of figure 8
depicts a typical example of the use of the SA Query max-
imum timeout. The second, pertains to the time the device
must bide before sending another SA Query request, having
a default value of 0.2 sec. Therefore, the device may send
out multiple subsequent SA Query requests before the 1 sec
time window of the previous one(s) expires. Nevertheless,
after sending, say, 3 SA Queries, we noticed that the AP
disconnected the STA after a duration corresponding to the
maximum timeout of first submitted query i.e., after 1 sec,
and not the timer corresponding to the last query, i.e., 1.6 sec
assuming a jumping-off point the dispatch of the first query.
A characteristic example of this situation is illustrated in
the bottom subfigure of the same figure, where the STA is
disconnected due to the late arrival of SA Query response
with trans_id = 0.

With the exception of high-end, expensive APs, which
cater for detailed customization in their user interface, the
above-mentioned default values are either hardcoded or any
reconfiguration requires recompiling the firmware. Hence, in
most cases, to tamper with these values one needs to rely

34200

Attaecker Supplicant Authenticator

[aa) —
Disass. (code = 0x0007) t;

Active Active
SA SA
Disass. (code = 0x0007) t5
SA Query mechanism SA Query mechanism
started started

SA Query Req. (trans_id: 0x0000) t3

SA Query Res. (trans_id: 0x0000) t4

Attack is
on

SA Query

. SA Query Req. (trans_id: 0x0100) t5
80IE mechanism active

SA Query Max
Timeout reached

Protected Disass.(code=0x0007,p) t6

SA Query mechanism
ceased

At =tg-t5> 1024ms

SA Query mechanism
ceased

(a) SA Query maximum timeout disconnection occurred due to
unanswered SA Query with trans_id = 100.

Altaecker Supplicant Authenticator

faa =
Disass. (code = 0x0007) t; |_SA SA

Disass. (code = 0x0007) t; J

SA Query mechanism SA Query mechanism
started started

SA Query Req. (trans_id: 0x0000) t3

SA Query Retry
Timeout reached
SA Query Req. (trans_id: 0x0001) t4
SA Query Res. (trans_id: 0x0001) ts

_) SA Query Max
Atz =t5-13> 1024ms |pi0000u reached

Protected Disass.(code=0x0007,p) ts

‘ Aty =ty-t3> 201ms

SA Query
mechanism active

Attack is
ongoing

SA Query mechanism
ceased

SA Query mechanism
ceased

(b) SA Query maximum timeout disconnection occurred due to the
unanswered SA Query with trans_id = 0.

FIGURE 8. Exemplification of disconnections due to SA Query maximum
and retry timeouts.

on a software AP. Specifically for Hostapd, these values are
contained in its configuration file [40] and presented in list 1.
For ASUS RT-AC68U, the relevant configuration files can be
found in Github [41], [42], while the relevant C code is shown
in List 2.

Scenario V: Having the above in mind, we further scru-
tinized the behavior of the 802.11w using Hostapd as the
AP, by tinkering with the default values of SA Query maxi-
mum and retry timeouts. Different values, including 50, 100,
500, 3,000, 7,000, 10,000 have been tested. Nevertheless, no
change in the default behavior of this AP regarding the SA
Query frames was observed, and no Association response
frame, namely ‘“Timeout Interval Type: Association Come-
back time (TUs)” was sent.

VOLUME 9, 2021

m

. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

Association SA Query maximum timeout
(in TU = 1.024 ms; for MFP)

(maximum time to wait for a SA Query
response)

dotllAssociationSAQueryMaximumTimeout ,
1...4294967295
assoc_sa_query_max_timeout=1000

O 0NN B W~

Association SA Query retry timeout

(in TU = 1.024 ms; for MFP)

(time between two subsequent SA Query
12 # requests)

dotllAssociationSAQueryRetryTimeout ,

1...4294967295

assoc_sa_query_retry_timeout=201

LISTING 1. Hostapd retry and maximum timeout default values.

1 #ifdef CONFIG_IEEES0211W

2 enum mfp_options ieee80211w;

3 /+dotllAssociationSAQueryMaximumTimeout s/
4 /+(in TUS) =/

5 unsigned int assoc_sa_query_max_timeout;
6 /xdotllAssociationSAQueryRetryTimeout =/

7 /% (in TUs) %/

8 int assoc_sa_query_retry_timeout;

9 #endif /+ CONFIG_IEEE80211W x/

10

11 #ifdef CONFIG_IEEE80211W

12 bss—>assoc_sa_query_max_timeout = 1000;
13 bss—>assoc_sa_query_retry_timeout = 201;

14 #endif /+ CONFIG_IEEE80211W =/

LISTING 2. Asus RT-AC68U retry and maximum timeout default values.

static const unsigned int
sa_query_max_timeout = 1000;

static const unsigned int

1
2
3
4
5 sa_query_retry_timeout = 201;

LISTING 3. Wpa_supplicant retry and maximum timeout default values.

Scenario VI: This final test had Hostapd v2.9 as an AP
(2.4 GHz), running on an Ubuntu 18.04 Desktop machine
with 8xCPU/64 GB DDR4 RAM. The wireless adapter
was the Gigabyte GC-WBAX200 (Intel AX200 chipset).
The 802.11w was configured as “‘required”. DHCP, DNS,
and Internet services are offered in the same way as in
scenario II. However, in this case, we employed a soft-
ware STA (Wpa_supplicant v2.9), running on an Ubuntu
20.04 desktop machine with 8xCPU/32 GB DDR4 RAM
and exploiting the Qualcomm Atheros QCA 6174A as a
WNIC. The STA obtained an IP address via the dhclient.
First, the Wpa_supplicant was connected to Hostapd with
the default configuration. Attl was triggered on 10 Aireplay-
ng instances (5 per wireless adapter) simultaneously, and
achieved to disconnect the STA after 43 sec. Before discon-
necting, the STA (a) displayed the message “SME: SA Query
timed out”, meaning that the default time of 1 sec that the
Wpa_supplicant had to wait for a SA Query response had
expired, and (b) sent a protected deauthentication message
toward the AP with reason code 2 “Previous authentication
no longer valid”. Next, we proceeded by increasing the SA

VOLUME 9, 2021

Query timeout default values in both the Wpa_supplicant and
Hostapd. For the former, the relevant code is given in list 3.
First off, we doubled the respective values, i.e., 2 and 0.4 sec
for the SA Query maximum and retry timeout, respectively.
This led in the exchange of fewer action frames between the
STA and the AP, and hence disconnections became harder. In
fact, the STA disconnected after 90 sec, i.e., almost twice as
much as with the default values. As a next step, we quintupled
the default values, namely to 5 and 1 sec, respectively. With
this, the STA was disconnected after 12 min (720 sec). Nev-
ertheless, in this case, the disconnection was not due to the
SA Query maximum timeout, but because of the crashing of
the Hostapd service. Even greater values for the SA Query
timeouts had an identical outcome; the Hostapd paralyzed
and needed to be restarted, thus inevitably disconnecting the
STAs. We assume that this behavior is due to some counter
overflow in the C code. Lastly, regarding Hostapd, as in
scenario II, we observed identical behavior. That is, Hostapd
is probably locked to a maximum CPU and RAM usage,
and will not consume all the available resources on the host
machine.

Given the above remarks, we ended up to the following
conclusions. First, after some time, in contrast to the Hostapd,
the ASUS RT-AC68U was not replying to SA queries stem-
ming from STAs. As explained previously, this time period
seems to be related to the computing resources and especially
the current CPU load at the AP side. The result of this behav-
ior was the AP to receive most of the times a Disassociation
protected frame from the under-attack STA, with the reason
“STA requesting (re)association is not authenticated with
responding STA (0x0009)” or the reason ‘““Disassociated
because sending STA is leaving (or has left) BSS (0x0008)™.
Also, in a limited number of cases, the Deauthentication
protected frame was transmitted by the STA, with the rea-
son ‘“‘Previous authentication no longer valid (0x0002)”.
Scarcely, the STA did not respond to SA Queries, and as a
result, the AP disconnected the former after transmitting a
Disassociation protected frame (0x0009).

Summarizing the above discussion, the resilience of
802.11w in DoS attacks seems to be dependent mainly on
the CPU load at the AP, and especially the rather low default
values of SA Query maximum and retry timeouts. Naturally,
these parameters are directly proportional to extra factors,
including the magnitude of the attack, the position of the
aggressor and if they are stationary or not, the communication
channel (2.4 or 5 GHz), the load status of each STA, and the
802.11w operation mode, namely ‘“‘capable” or ‘“‘required”.
The software driver of the WNIC is also an important factor.

For instance, Alfa and TP-Link-based devices lack of offi-
cial support of 802.11w, namely the particular devices are
not certified by Wi-Fi Alliance. Also, while WinPro-TP-Link,
WinEnter-TP-Link on the one hand and WinPro-Alfa,
WinEnter-Alfa on the other, employed the same models of
WNICs, they used different drivers for each version of this
OS, respectively. Namely, the WinPro-TP-Link and WinPro-
Alfa worked on the uncertified MS Windows wireless drivers,

34201

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

while the WinEnter-TP-Link and WinEnter-Alfa on the offi-
cial TP-Link and Alfa ones, respectively. So, contrariwise
to Intel AX200, which is Wi-Fi Alliance certified and uses
the same drivers on both OSs, the TP-Link and Alfa-based
devices were more unstable to attacks and demonstrated
certain incompatibilities regarding PMF. At the same time,
although iPhone is also not Wi-Fi Alliance certified, it coped
very well compared to the rest of the smartphones. No less
important, as shown in scenario VI, increasing the values of
SA Query max and retry timeout, can mitigate the DoS effect
at least to some extent. Finally, as expected, it was perceived
that the behavior of 802.11w was the same regardless of the
authentication method used, i.e., WPA2, WPA3, or Hotspot.

We also discerned that an association flooding attack (Att6)
can attain faster results vis-a-vis a reassociation one; after
some time, ~10 sec, the AP will most probably disassociate
the STA, sending to it a protected frame with reason code
(0x0009) “STA requesting (re)association is not authenti-
cated with responding STA”. As already indicated, this may
happen if the STA does not reply to the first SA Query send
out by the AP. Also, it was observed that an association
flooding can be victorious with the exploitation of only one
attack terminal, and in cases where the device shows greater
sturdiness, if executed in parallel with a beacon flooding. No
less important, the main distinction between a (re)association
and a deauthentication/disassociation flooding is that in the
former case the STA will automatically reconnect to AP after
a few seconds of disconnection, typically, 3 to 4 sec. In the
latter case however, the STA will remain disconnected until
the attack ceases.

An important remark regarding Attl to Attl2 is that when
the STA disconnected itself from the AP, the latter kept
buffered any remaining SA Query for that STA. When the
STA tried to reconnect to the same AP, it received along
with the messages of the 4-way handshake, the buffered SA
Queries, if any. This leaded into a deadlock, namely the STA
could not proceed with the 3rd message of the handshake,
as long as it received these SA Queries. To cope with this
situation, the user had to try to reconnect several times to the
AP for it to clear the remaining buffered SA Query frames
and be able to reconnect the STA. Therefore, as pointed out
in section 111, an attacker could possibly capture these unen-
crypted SA Query frames and keep replaying them towards
the STA for blocking it to reconnect to the AP. One can say
that this phenomenon shares the same roots as the KrOOk
vulnerability, nevertheless the attacker’s aim is fundamentally
different. In fact, traces of these frames exist in at least half
of the pcaps that pertain to 802.11 specific attacks. Inter-
estingly, this behavior regarding unencrypted SA Queries
persists even if the AP is updated with the latest firmware
(v3.0.0.4.386.40558), which patches KrOOK as well.

Lastly, from our experiments it is derived that the unen-
crypted SA Query phenomenon may apply to certain STAs
too. This was observed for the WinPro-Linksys, which seems
to not abide with the 802.11w amendment regarding the SA
Query retry and maximum timeouts. Precisely, as it can be

34202

noticed from “Disass” (Att3) and “Kr00k™ (Att12) pcap
files, after launching Att3 with Aireplay-ng, a deadlock sit-
uation was emerged. The STA did send SA queries, but in
an uncontrolled manner; about 100 such frames per sec were
dispatched towards the AP, thus preventing the latter from
responding with a dissasociation protected frame when a
timeout had been reached. However, at that time, the AP
deleted the SA with the STA, leading to a couple of side
effects. First, Aireplay-ng becomes aware of this situation and
ceases the attack against the AP, concentrating only against
the STA, and second the STA continued sending protected SA
Query requests having the same transaction_id, but different
sequence number, meaning that the replay flag was set to
false. The AP on the other hand responded with unencrypted
dissasociation frames. We realized that this deadlock kind of
situation continues even if the attack is stopped, and even-
tually either (or both in some rare cases) the STA crashes
after displaying a “blue screen of death” in Windows OS
or it deletes the corresponding SA and sends an protected
deauthentication frame towards the AP. In the latter case, if
the attack is still ongoing, the STA will try to reconnect to the
AP in vain. During this process however, the STA will start
transmitting a lot of unprotected SA Query requests. Natu-
rally, this strange behavior can be exploited by an attacker
having the vulnerable STA and the AP to attack each other.
Traces of the same behaviour for the same STA can be
also observed in the “Deauth” (Attl) pcap file, however, in
this case, the devices do not attack each other if the attack

ceases’.

VI. RELATED WORK

This section examines the relevant work with a particular
focus on the original AWID and amendment 802.11w. Recall
that contributions on the security of WPA3, including those
in [43]-[45] are intentionally left out as the respective attacks
have not been included in the current dataset.

As already pointed out, this work complements the original
AWID dataset, which was built on WPA/WPA?2 personal and
released in 2015. Since then, AWID has been requested and
downloaded by more than 730 universities, research labs, and
companies worldwide, and to the best of our knowledge, com-
prises the only full-fledged 802.11-oriented corpus so far. By
examining the literature, one can descry a significant number
of research works that capitalized on AWID to develop and
assess machine learning-driven wireless network intrusion
systems [46]-[51]. Indicatively, a recent survey on research
exploiting AWID is given in [52].

The present work adds a number of key features to the orig-
inal corpus, namely, a WPA2 enterprise deployment under
a realistic testbed, assessment of PMF resilience, the inclu-
sion of modern attacks, including Krack and Kr0Ok, and the
encompassing of higher-layer assaults under the prism of
attack escalation. Additionally, the dataset is offered in pcap
cleartext format, thus allowing the community to utilize any

9These issues have been reported by the authors to Wi-Fi Alliance.

VOLUME 9, 2021

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

possible feature residing at any layer, including the applica-
tion one.

Regarding the 802.11w amendment, one can observe a
rather limited number of research works devoted to its
security evaluation. First, the authors in [53] reported on
three potential attack scenarios against 802.11w. The first
was related to Broadcast/Multicast Integrity Protocol (BIP),
which provides data origin authenticity and replay protection
to broadcast/multicast robust management frames. Recall that
this protection is offered after the STA and AP have suc-
cessfully created an Integrity Group Temporal Key Security
Association (IGTKSA), meaning installed an Integrity Group
Temporal Key (IGTK) transferred in the 3rd message of
the 4-way handshake. By abusing this network-wide key, a
malevolent insider can potentially launch a protected deau-
thentication/disassociation attack. The second was related to
the SA Query (request/response) frame, which is meant to
defend against deauthentication/disassociation attacks. The
attacker first starts the exchange of such frames by sending
a spoofed unprotected deauthentication one, and then blocks
the legitimate SA Query response frames from reaching the
AP. After some time, the AP will delete the active SA with
that STA, thus obliging the latter to establish a new one with
the AP. The last attack scenario exploited the Traffic Indicator
Element (TIE) field added with the advent of 802.11w (and
later in IEEE 802.11-2016) in the Association response frame
to defend against Association request attacks. That is, when
the AP receives a spoofed (re)association request frame in the
name of a STA which is already connected to it, the AP must
reply with a rejection notice (status code 0 x le (30)). This
response includes the Association Comeback Time (TUS).
The attacker may create a spoofed Association response
frame, that contains a status code (30) and a very high
value of TIE, thus holding off the STA from (re)associating
with the AP. For evaluating the above-mentioned attacks,
the authors employed a testbed composed of Hostapd
v0.7.3 as a software AP and wpa_supplicant v0.7.3 as the
client STA.

The contribution in [54] offered a formal analysis of
802.11w deadlock vulnerabilities. The authors evaluated their
findings on Hostapd v0.8.x and wpa_supplicant 0.8.x, after
disabling the wpa_supplicant optional deadlock recovery
mechanism in 802.11w. They specifically reported on three
vulnerabilities along with the relevant attack cases. First, an
attacker could sent an unprotected deauthentication frame
after the STA receives the third message of the 4-way hand-
shake. This would cause a protocol deadlock and eventu-
ally disconnect the STA from the AP. The second scenario
assumes that the AP and STA have an active SA. Then, the
attacker, impersonating the STA, sends first an unprotected
authentication request followed by an association one toward
the AP. This would drive the AP to delete the relevant SA
and trigger a 4-way handshake with the STA. Given that the
latter is unaware of this situation, the 4-way handshake will
result in a timeout. After that, the AP will send an unprotected
Deauthentication notification to the STA, which however will

VOLUME 9, 2021

be dropped by the STA. The last deadlock was related to
the Channel Switch Announcement (CSA) element, which is
used by an AP in a BSS to advertise a shift to a new radio
channel along with the new channel number. This element is
shared in beacon, probe response, and/or action management
frames. Again, this scenario supposes that the AP and the
target STA have an active SA. The aggressor, impersonating
the AP, transmits a beacon, instructing the victim(s) STA to
shift to a different channel. Then, impersonating the STA,
it sends a first association request (note that the STA is on
another channel so it will not reply) followed by another
one after the SA Query timeout of the first expires. Finally,
the aggressor transmits a beacon frame instructing the STA
to change its channel to the original one. In the meantime,
the AP has deleted the relevant SA and has started a 4-way
handshake with the STA, eventually leading to the same result
as in the previous scenario.

Lastly, the work in [55] offers a theoretical survey about
vulnerabilities and corresponding attacks which may cause
DoS in 802.11w-protected networks.

Given the above analysis, it is apparent the no work so
far offers a wholemeal assessment of PMF under a variety
of modern equipment, both STAs and APs. From our results
summarized in section V, it can be argued that while PMF
makes legacy DoS attacks harder, it is not unbeatable when it
comes to a persistent opponent. The most salient takeaway
in this case is that due to hardware restrictions, possible
software bugs, and incompatibilities vis-a-vis the standard,
most off-the-self devices cannot withstand a sustained bom-
bardment of unsolicited management frames for a prolonged
period.

VIi. CONCLUSION

The existing literature on 802.11 lacks a comprehensive study
on attacks conducted in an IEEE 802.1X EAP environment,
where also the 802.11w safeguard is enabled. Motivated by
this fact, based on a full-fledged testbed, we scrutinized on
more than two handfuls of attacks exercised mostly at the
802.11 MAC layer, but also on higher ones, including the
application layer. Especially for the 802.11-oriented attacks,
and by considering diverse setups, we meticulously stud-
ied their effect on devices with a particular focus on PMF
and elaborated on probable causes. Among other interest-
ing results, our study reveals that even with the protection
of PMF, legacy DoS attacks exploiting 802.11 management
frames are still quite feasible on legacy devices by using off-
the-self equipment. Another goal of this work is the build
up of a dataset that is offered to the community for serv-
ing either research or educational needs. In fact the dataset
complements the well-known AWID, which has compiled
under WPA/WPA2-personal settings. In addition, an initial
firsthand evaluation of almost half of the included pcap files is
offered based on selected features. This work can be extended
by embracing WPA3-focused attacks along with others exer-
cised against Independent Basic Service Set (IBSS) type of
network.

34203

IEEE Access

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, “Intrusion
detection in 802.11 networks: Empirical evaluation of threats and a pub-
lic dataset,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 184-208,
1st Quart., 2016, doi: 10.1109/COMST.2015.2402161.

LAN MAN Standards Committee of the IEEE Computer Society
IEEE Standard for Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, Standard 802.11-1997, 1997.
Accessed: Nov. 11, 2020. [Online]. Available: https://ieeexplore.ieee.org/
document/654749

C/LM—LAN/MAN Standards Committee IEEE Standard for Information
Technology—Telecommunications and Information Exchange Between
Systems—Local and Metropolitan Area Networks—Specific Require-
ments. Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications Amendment 4: Protected Man-
agement Frames. Standard 802.11w-2009, 2009. [Online]. Available:
https://standards.ieee.org/standard/802_11w-2009.html

M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in WPA2,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
M. Bhavani and I. Thuraisingham, Eds., Dallas, TX, USA, Oct./Nov. 2017,
pp. 1313-1328, doi: 10.1145/3133956.3134027.

M. Vanhoef and F. Piessens, “Advanced Wi-Fi attacks using commodity
hardware,” in Proc. 30th Annu. Comput. Secur. Appl. Conf. (ACSAC),
A. Hahn, K. R. B. Butler, and M. Sherr, Eds., New Orleans, LA, USA,
Dec. 2014, pp. 256-265, doi: 10.1145/2664243.2664260.

R. L. S. Svorencik. Kr0Ok: How Kracking Amazon Echo Exposed a
Billion+ Vulnerable Wifi Devices. Accessed: Nov. 11, 2020. [Online].
Available: https://www.welivesecurity.com/2020/08/06/beyond-krO0k-
even-more-wifi-chips-vulnerable-eavesdropping/

ESET. KrOOk—A Serious Vulnerability Deep Inside Wi-Fi Encryp-
tion. Accessed: Nov. 11, 2020. [Online]. Available: https://www.eset.
com/int/kr00k/

ESET. Beyond Kr@@k: Even More Wi-Fi Chips Vulnerable to Eaves-
dropping. Accessed: Nov. 11, 2020. [Online]. Available: https://www.
welivesecurity.com/2020/08/06/beyond-kr00k-even-more-wifi-chips-
vulnerable-eavesdropping/

IEEE 802.1X-2010—IEEE Standard for Local and Metropolitan
Area Networks-Port-Based Network Access Control. Accessed:
Dec. 13, 2004. [Online]. Available: https://standards.ieee.org/standard/802
_1X-2010.html

Freeradius. Accessed: Nov. 11, 2020. [Online]. Available: https://
freeradius.org/

Snbforums—Discussion Related to CPU Isses of Asus Ac68u
Firmware Updates. Accessed: Nov. 18, 2020. [Online]. Available:
https://www.snbforums.com/threads/asus-rt-ac68u-firmware-version-3-0-
0-4-386-40558-05-nov-2020.67462/

Snbforums—Recent Discussion Regarding the Issues of the Lastest
Firmware of Asus Ac68u. Accessed: Nov. 18, 2020. [Online]. Available:
https://www.snbforums.com/threads/asus-rt-ac68u-firmware-version-3-0-
0-4-385-20253.62620/

Freeipa. Accessed: Nov. 11, 2020. [Online]. Available: https://www.
freeipa.org/page/Main_Page

Mitmproxy—A Free and Open Source Interactive.
Nov. 11, 2020. [Online]. Available: https://mitmproxy.org/
Selenium. Accessed: Nov. 11, 2020. [Online]. Available: https:/www.
selenium.dev/

Node JS. Accessed: Nov. 11, 2020. [Online]. Available: https://nodejs.
org/en/

Puppeteer—Headless Chrome Nodejs Api. Accessed: Nov. 11, 2020.
[Online]. Available: https://github.com/puppeteer/puppeteer

Geckodriver. Accessed: Nov. 11, 2020. [Online]. Available: https://github.
com/mozilla/geckodriver/releases
Chromedriver. Accessed: Nov. 11,
https://chromedriver.chromium.org/
Freeradius Man Pages—Radsniff. Accessed: Nov. 11, 2020. [Online].
Available: https://freeradius.org/radiusd/man/radsniff.html
ROOkie-KrOOkie POC. Accessed: Nov. 11, 2020. [Online]. Available:
https://github.com/hexway/rO0Okie-krOOkie

Ares—Python Botnet and Backdoor. Accessed: Nov. 11, 2020. [Online].
Available: https://github.com/sweetsoftware/Ares

D. M. Blog. Third Time’s the Charm? Analysing Wannacry Samples.
Accessed: Nov. 11, 2020. [Online]. Available: https://dissectingmalwa.re/
third-times-the-charm-analysing-wannacry-samples.html

Accessed:

2020. [Online]. Available:

34204

(24]

[25]

(26]

[27]

(28]
[29]
(30]
(31]
(32]

(33]

(34]

(35]

[36]
(37]
(38]

(391

(40]

[41]

[42]

[43]

(44]

(45]

[46]

(47]

(48]

Kaspersky. Teslacrypt Ransomware Attacks. Accessed: Nov. 11, 2020.
[Online]. Available: https://www.kaspersky.com/resource-center/threats/
teslacrypt

Thezoo—A Repository of Live Malwares. Accessed: Nov. 11, 2020.
[Online]. Available: https://github.com/ytist/theZoo

Damn Vulnerable Web Application Docker Container. Accessed:
Nov. 11, 2020. [Online]. Available: https://hub.docker.com/r/vulnerables/
web-dvwa/

SSDP Amplification Blog post—Scanning Python Script. Accessed:
Nov. 11, 2020. [Online]. Available: https://blog.cloudflare.com/ssdp-
100gbps/

J. Malinen. hostapd and Wpa_Supplicant. Accessed: Nov. 11, 2020.
[Online]. Available: https://w1.fi/

Dnsmasq. Accessed: Nov. 11, 2020. [Online]. Available: https://www.
openhub.net/p/dnsmasq

Apache2—The Apache. Accessed: Nov. 11, 2020. [Online]. Available:
https://httpd.apache.org/

Eaphammer. Accessed: Nov. 11, 2020. [Online]. Available: https:/
github.com/sOlst1c3/eaphammer

Aircrack-ng—Wifi Security Auditing Tools Suite. Accessed: Nov. 11, 2020.
[Online]. Available: https://github.com/aircrack-ng/aircrack-ng
Netattack—A Simple python Script to Scan and Attack Wireless Net-
works. Accessed: Nov. 11, 2020. [Online]. Available: https://github.
com/chrizator/netattack

Mdk4. Accessed: Nov. 11, 2020. [Online]. Available: https://github.com/
aircrack-ng/mdk4

Scapy. python-Based Interactive Packet Manipulation Program &
Library. Accessed: Nov. 11, 2020. [Online]. Available: https://github.
com/secdev/scapy

Nmap—The Network Mapper. Accessed: Nov. 11, 2020. [Online].
Available: https://github.com/nmap/nmap

Saddam 2nd Implementation. Accessed: Nov. 11,
Auvailable: https://github.com/S4kur4/Saddam-new
Bettercap—The Swiss Army Knife of 802.11. Accessed: Nov. 11, 2020.
[Online]. Available: https://www.bettercap.org/

IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks—Specific Requirements—Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications,
Standard 802.11-2016, Accessed: Sep. 30, 2020. [Online]. Available:
https://standards.ieee.org/standard/802_11-2016.html

Hostapd Configuration File. Accessed: Nov. 11, 2020. [Online]. Available:
https://w1.fi/cgit/hostap/plain/hostapd/hostapd.conf

Asuswrt ap Config. Accessed: Nov. 11, 2020. [Online]. Available:
https://github.com/RMerl/asuswrt-merlin/blob/9f14d213d07fa36
da459424a699bfe85f15b2286/release/src/router/wpa_supplicant-
0.7.3/src/ap/ap_config.c

Asuswrt ap Config. Accessed: Nov. 11, 2020. [Online]. Available:
https://github.com/RMerl/asuswrt-merlin/blob/9f14d213d07fa36da
459424a699bfe85f15b2286/release/src/router/wp_supplicant-
0.7.3/src/ap/ap_config.h

M. Vanhoef and E. Ronen, ‘““‘Dragonblood: Analyzing the dragonfly hand-
shake of WPA3 and EAP-PWD,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2020, pp. 517-533.

K. Lounis and M. Zulkernine, ‘“Bad-token: Denial of service attacks on
WPA3,” in Proc. 12th Int. Conf. Secur. Inf. Netw. (SIN), New York,
NY, USA: Association for Computing Machinery, 2019, pp. 1-8, doi:
10.1145/3357613.3357629.

K. Lounis and M. Zulkernine, “WPA3 connection deprivation attacks,” in
Proc. 14th Int. Conf. (Lecture Notes in Computer Science), vol. 12026,
S. Kallel, F. Cuppens, N. Cuppens-Boulahia, and A. H. Kacem, Eds.
Hammamet, Tunisia: Springer, Oct. 2019, pp. 164—176, doi: 10.1007/978-
3-030-41568-6_11.

S.J. Lee, P. D. Yoo, A. T. Asyhari, Y. Jhi, L. Chermak, C. Y. Yeun, and
K. Taha, “IMPACT: Impersonation attack detection via edge computing
using deep autoencoder and feature abstraction,” IEEE Access, vol. 8,
pp. 6552065529, 2020, doi: 10.1109/ACCESS.2020.2985089.

S. M. Kasongo and Y. Sun, “A deep learning method with wrapper based
feature extraction for wireless intrusion detection system,” Comput. Secur.,
vol. 92, May 2020, Art. no. 101752, doi: 10.1016/j.cose.2020.101752.

Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient
intrusion detection system based on feature selection and ensemble
classifier,” Comput. Netw., vol. 174, Jun. 2020, Art. no. 107247, doi:
10.1016/j.comnet.2020.107247.

2020. [Online].

VOLUME 9, 2021

http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.1145/3133956.3134027
http://dx.doi.org/10.1145/2664243.2664260
http://dx.doi.org/10.1145/3357613.3357629
http://dx.doi.org/10.1007/978-3-030-41568-6_11
http://dx.doi.org/10.1007/978-3-030-41568-6_11
http://dx.doi.org/10.1109/ACCESS.2020.2985089
http://dx.doi.org/10.1016/j.cose.2020.101752
http://dx.doi.org/10.1016/j.comnet.2020.107247

E. Chatzoglou et al.: Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks

IEEE Access

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. W. Mikhail, J. M. Fossaceca, and R. lammartino, ‘A semi-boosted nested
model with sensitivity-based weighted binarization for multi-domain net-
work intrusion detection,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 3,
pp. 28:1-28:27, 2019, doi: 10.1145/3313778.

M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim,
“Deep abstraction and weighted feature selection for Wi-Fi impersonation
detection,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 3, pp. 621-636,
Mar. 2018, doi: 10.1109/TTFS.2017.2762828.

C. Kolias, V. Kolias, and G. Kambourakis, “TermID: A distributed swarm
intelligence-based approach for wireless intrusion detection,” Int. J. Inf.
Secur., vol. 16, no. 4, pp. 401-416, Aug. 2017, doi: 10.1007/s10207-016-
0335-z.

A. A. Reyes, F. D. Vaca, G. A. Castro Aguayo, Q. Niyaz, and
V. Devabhaktuni, “A machine learning based two-stage Wi-Fi network
intrusion detection system,” Electronics, vol. 9, no. 10, p. 1689, Oct. 2020.
https://www.mdpi.com/2079-9292/9/10/1689

M. S. Ahmad and S. Tadakamadla, “Short paper: Security evaluation of
IEEE 802.11w specification,” in Proc. 4th ACM Conf. Wireless Netw.
Secur., D. Gollmann, D. Westhoff, G. Tsudik, and N. Asokan, Eds.,
Hamburg, Germany, Jun. 2011, pp.53-58, doi: 10.1145/1998412.
1998424.

M. Eian and S. F. Mjglsnes, “A formal analysis of IEEE 802.11w
deadlock vulnerabilities,” in Proc. IEEE INFOCOM, A. G. Greenberg
and K. Sohraby, Eds., Orlando, FL, USA, Mar. 2012, pp. 918-926, doi:
10.1109/INFCOM.2012.6195841.

B. Bertka, “802.11 w security: Dos attacks and vulnerability con-
trols,” Univ. Brit. Columbia, Vancouver, BC, Canada, Tech. Rep.,
2012, pp. 1-11. [Online]. Available: http://blogs.ubc.ca/computersecurity/
files/2012/04/BBertka_bbertka_571B_final.pdf

EFSTRATIOS CHATZOGLOU received the M.Sc.
degree in security of information and communi-
cation systems from the University of Aegean,
Samos, Greece. He was worked as a Web Devel-
oper in an Integrated Health Information System
web application with the Hellenic Army General
Staff, Greece. He is currently a Penetration Tester
with the Hellenic National Defence General Staff,
Greece. His research interests include wireless and
cellular networks security, the IoT networks secu-

rity, Android application security, Web application security, and machine
learning.

VOLUME 9, 2021

GEORGIOS KAMBOURAKIS is currently a Full
Professor with the Department of Information and
Communication Systems Engineering, University
of the Aegean, Greece. He has served as the Head
of the Department, from September 2019 to Octo-
ber 2019. He was the Director of the Informa-
tion Security Laboratory, from September 2014 to
December 2018. He is currently on unpaid leave
from the University of the Aegean, while he is
working with the European Commission, Euro-

pean Joint Research Centre (JRC), Ispra, Italy. His research interests include
mobile and wireless networks security and privacy, VoIP security, the IoT
security and privacy, DNS security, and security education. He has more
than 145 refereed publications in the aforementioned areas. More info at:
http://www.icsd.aegean.gr/gkamb

-

CONSTANTINOS KOLIAS received the Ph.D.
degree from the University of the Aegean, in
2014. In 2018, he joined the Department of Com-
puter Science, University of Idaho. Before that,
he was a Research Assistant Professor with the
Department of Computer Science (CS), George
Mason University. He is also active in the design
of intelligent IDS with a special interest in pri-
vacy preserving distributed IDS. His main research
interests include security and privacy for the IoT

and critical infrastructures. Other areas of interest include mobile and
wireless communications security, and privacy enchasing techniques for
the Internet. More info at: https://www.uidaho.edu/engr/departments/cs/our-
people/faculty/constantinos-kolias

34205

http://dx.doi.org/10.1145/3313778
http://dx.doi.org/10.1109/TIFS.2017.2762828
http://dx.doi.org/10.1007/s10207-016-0335-z
http://dx.doi.org/10.1007/s10207-016-0335-z
http://dx.doi.org/10.1145/1998412.1998424
http://dx.doi.org/10.1145/1998412.1998424
http://dx.doi.org/10.1109/INFCOM.2012.6195841

