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ABSTRACT Surveillance cameras are everywhere, keeping an eye on pedestrians as they navigate through
a scene. With this context, our paper addresses the problem of pedestrian attribute recognition (PAR).
This problem entails recognizing attributes such as age-group, clothing style, accessories, footwear style
etc. This is a multi-label problem and challenging even for human observers. The problem has rightly
attracted attention recently from the computer vision community. In this paper, we adopt trainable Gabor
wavelets (TGW) layers and use it with a convolution neural network (CNN). Whereas other researchers are
using fixed Gabor filters with the CNN, the proposed layers are learnable and adapt to the dataset for a better
recognition. We propose a multi-branch neural network where mixed-layers, a combination of the TGW and
convolutional layer, make up the building block of our 3-branch deep neural network. We test our method
on publicly available challenging datasets and compare our results with state of the art.

INDEX TERMS Computer vision, pedestrian attribute recognition, deep learning.

I. INTRODUCTION
One of the active areas of research in computer vision is
the pedestrian attribute recognition. The pedestrian attribute
recognition deals with identifying a number of visual
attributes from an image data. The identified attributes can
belong to different classes, e.g. clothing style, footwear, gen-
der, age group etc. A successful outcome of this research
can be applied to various domains. It can be employed for
motion analysis [1], where it can be used to identify crowd
behavior attributes. Another important area of application
is image-based surveillance or visual features extractions
for person identification [2], [3]. Other applications include
video analytics for business intelligence, or searching a
criminal database for suspects using the identified visual
attributes. Various factors make this a challenging problem.
One of the main factors that makes this problem very difficult
is the varying lighting conditions. Attributes of the same
type of clothing can appear completely different under differ-
ent lighting conditions. For example, distinguishing between
black and dark blue colors is very difficult in certain weather
conditions. Both colors will appear very similar to the cam-
era in a darker environment. Occlusion also complicates
the correct visual attribution identification and recognition.
Occlusions can be either complete or partial and can results
due to the camera orientation or from object self-occlusions.
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For example, if a person is wears a hat, it might appear
partially in the image, or its shape might be completely
different. Similarly, the orientation of a person or a camera
can hide a backpack partially or completely from the view.
These examples clearly show that settings of an acquisition
environment for image or video capture result in a high
intra-class variations for the same visual attributes.

The focus of this work is the identification of visual
attributes from image and video data. The distance of an
object from the camera affects how that object appears in
the image. If the object is very far from the camera, or if the
image resolution is very low, a visual attribute, e.g. dress, hat,
backpack, scarf, shoes etc. will only occupy a few pixels in the
image. The combination of low image resolution, in addition
to the self-occlusions or view-oriented occlusions, makes
visual attribute identification a very challenging problem.
Many of these issues can be seen in the most widely used
pedestrian datasets. Figure 1 shows some of the samples from
the PEdesTrian Attribute (PETA) [4] and A Richly Annotated
Pedestrian (RAP) [5] datasets. PETA is the largest benchmark
dataset. It comprises of 19000 images of different resolution
that cover more than 60 attributes. The dataset is acquired
from real-world surveillance camera systems and includes
images of 8, 705 persons. It is a very challenging dataset
because of the acquisition setup and scene settings. As can
be seen in Figure 1, the quality of images is very low as
well. This is due to a number of factors: images are very
low resolution, acquisition problems result in a significant
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FIGURE 1. (a) PETA [4] dataset Samples. (b) RAP [5] dataset samples.

blur, many of the attributes are hidden due to severe occlu-
sions. RAP dataset comprises of 41 thousand images covering
72 attributes and is acquired from multiple viewpoints. The
dataset shows a huge variation in the attributes due to pedes-
trian appearance, viewpoints and severe occlusions. After
analyzing these datasets, it is observed that visual attributes
identification from these images is a difficult task due to
the very low quality of the images. Many of the attributes
are not completely visible due to occlusions. Moreover, due
to the fast motion or acquisition problems some of the
objects appear quite blurred thus making it a very challenging
problem.

Visual attribute recognition problem can be solved in dif-
ferent ways, but the predominant solutions involve a two-step
process. In the first step, a feature extraction algorithm is
employed to find a feature representation of the attributes.
A number of feature extraction solutions are discussed in the

computer vision literature. Most of these techniques require
a very expert domain knowledge, and also needs a very high
level of fine tuning for an accurate representation of visual
attributes. For feature representation, methods like SIFT [6],
HoG [7] or Haar-like features [8] have been employed in
the field rigorously. Feature extraction is followed by the
attributes classification step. For classification, Support Vec-
tor Machines (SVM) [4] has been the most widely used
technique in the last decade.

In recent years, the convolutional neural networks (CNNs)
have almost completely replaced SVMs for classification
tasks. Compared to earlier attribute learning or image clas-
sification methods, CNNs are more effective and robust.
In this work, we make use of the Gabor wavelets, which
have been used in the computer vision literature extensively
over the last few decades. However, there have been only
few works that use the Gabor wavelets in conjunction with
the CNNs. For the majority of the works that do employ
these wavelets, the filter are pre-constructed and then fed as
filters on the convolutional network. However, we adopt an
approach where the convolutional network is employed to
learn the wavelet parameters along with learning the dataset.
These Trainable Gabor wavelets (TGW) [9] make up for
the backbone of our network. Each TGW accepts a single
channel input, with a multi-channel output, and learns the
best parameters to generate a set of Gabor filters. TGW layer
contains a 1×1 convolution layer that uses the steerability of
Gabor wavelets to address orientation issues. We also use a
regular convolutional layer to extract features from the input
as well. These outputs from TGW and convolution layers
are stacked together, refer to as mixed-layer, and make up
the building block of our network. The proposed network,
shown in Fig. 3, divides an input image into three parts.
Each part passes through a separate branches each consisting
of 4 mixed-layers. Each branch undergoes a series of fully
connected (fc) layers that are connected to the final output
layer. The network is simple and is trainable with a standard
gradient-decent method.

Our main contributions are:
• We for the first time make use of the trainable
Gabor wavelets to the problem of pedestrian attribute
recognition.

• We propose a novel 3-branch network that, while learn-
ing the Gabor wavelets parameters, and combine the
wavelet features with the regular convolution layers.

• The proposed method is demonstrated to have better
recognition results than state of the art on two of themost
challenging public datasets.

II. RELATED WORK
In this section we will discuss the works that are related
most closely to our method, a detailed survey can be found
here [10]. PETA [4] is one of the most widely used pedes-
trian datasets. While introducing the dataset, the Deng et al.
[4] used the luminance channel and applied Ensemble of
Localized Features (ELF) and Gabor and Schmid filter
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on it. To address the class imbalance problem they also
applied ikSVMs [11] on each attribute separately. They also
proposed using the Markov Random Field (MRF) to exploit
the context from neighboring images. In their representa-
tion, each image is a node and the link between two nodes
is determined by the similarity between the images. RAP
dataset [5] is acquired from multiple viewpoints that intro-
duces significant variations for the same attributes along
with severe occlusions. They employed two CNN models
based on Caffe framework [12] to analyze the impact of the
variations introduced by different viewpoints and occlusions
on the overall classification of the attributes. They trained
SVMs in addition to the adopting of ELF. Additionally, they
divided the image into multiple blocks (three in their case)
to employ a part-based classification scheme. For their work,
the parts were comprised of: upper body (torso), lower body,
and head and shoulders. Joo et al. [13] proposed another
approach that also employed part-based recognition. In their
work, they first crated Histogram of Oriented Gradient (HoG)
features from an image subdivided into multiple overlapping
regions. For the attributes classification, they employed a
Poselet-based approach [14]. Zhao et al. [15] proposed a
solution that employed a Recurrent Neural Network (RNN).
The authors proposed an end-to-end Recurrent Convolu-
tional (RC) and Recurrent Attention (RA) models. RC model
mines the correlations among different attribute groups, while
the intra-group attention correlation and intra group spatial
locality is used by the RA model to improve the performance
and robustness of pedestrian attribute recognition. However,
their network has a deep architecture, hence the number of
parameters is quite large. In another part-based approach,
Zhu et al. [16] proposed a CNN-based solution where the
human body is divided into 15 parts, and a CNN is trained
separately for each part. The contribution of each attribute
determines the weight of the corresponding CNN. Zhou et al.
[17] first extracted mid-level features from detection layers
using GoogLeNet. They localized the pedestrian attributes
by fusing and clustering the activation maps of the detec-
tion layers. Only the image labels are used to train the
detected layers in order to learn the relationship between the
mid-level features and the pedestrian attributes. For training a
max-pooling based weakly-supervised object detection tech-
nique is employed. Chen et al. [18] proposed a part-based net-
work that combined LOMO features [19] with CNN extracted
features. They showed that the Scale-Invariant Local Ternary
Patterns and HSV histograms based LOMO features are
illumination-invariant texture and color descriptors. Li et al.
[20] used pedestrian body structure knowledge and proposed
a pose-guided model. In the first step, the model computes
the transformation parameters to estimate the pose from the
image. Based on the pose information it then localizes the
body parts. Final attribute recognition is estimated by fusing
multiple features. Another parts localization method is pro-
posed by Liu et al. [21]. They proposed a Localization Guide
Network (LGNet) that uses a CNNmodel based on Inception-
v2 [22] for feature extraction. Afterward, a global average

pooling layer (GAP) is adopted to extract global features.
The fusion of global and local features is used to obtain the
pedestrian attributes classification. Li et al. [23] presented
a visual semantic graph based approach that used ResNet-
50 to for the pedestrian images feature extraction. Junejo and
Ahmed [24] also presented a multi-branch approach using
different color space input. The proposed network contains
a large number of parameters because it had more than fifty
layers.

Sarfraz et al. [25] proposed an end-to-end CNN-based
network (VeSPA). This network had four parts, where each
part corresponds to a specific pose category. Pose-specific
attributes of each category are learned by each of these
network parts. Their work demonstrated that coarse body
pose information greatly influences the pedestrian attribute
recognition. They extended their work in [26] and added
a ternary view classifier in a modified approach that
employed a global weighting solution. In this work, the global
weighting solution for feature maps was employed before
the final embedding. P-Net [27] employs a part-based
approach. Based on GoogLeNet, the method guides the
refined convolutional feature maps to capture different loca-
tion information for the attributes related to different body
parts. A joint person re-identification and attribute recogni-
tion approach (HydraPlus-Net) is presented by Liu et al. [28].
HydraPlus-Net is an Inception-based network and aggre-
gates feature layers from multi-directional attention modules
for the final feature representation. Sarafianos et al. [29]
presented a multi-branch network that employed a simple
weight scheme to address the class imbalance problem. They
extracted visual attention masks to guide the network to
crucial body parts. The masks are then fused at different
scales to obtain a better feature representation. Another end-
to-end method for person attribute recognition that uses Class
Activation Map (CAM) network [30] to refine attention heat
map is proposed by Guo et al. [31]. The heat map identi-
fies the areas of different image attributes. They use CAM
network to refine the attention heat map for an improved
recognition. AHarmoniousAttention CNN (HA-CNN) based
joint learning approach for person re-identification is pre-
sented in [32]. They used HA-CNN for the joint learning
of hard regional attention and soft pixel attention. Feature
representation is obtained by this simultaneous optimiza-
tion. A Multi-Level Factorization Net (MLFN) that factors
the visual appearance of a person into latent discriminative
factors is proposed by [33]. The factorization is done with-
out manual annotation at multiple semantic levels. A Trans-
ferable Joint Attribute-Identity Deep Learning (TJ-AIDL)
model that allows for a simultaneous learning of an identity
discriminative and attribute-semantic feature representation
is proposed by [34]. Si et al. [35] proposed a Dual ATten-
tion Matching network (DuATM), which is a joint learning
end-to-end person re-identification framework. Their method
simultaneously performs context-aware feature sequences
learning and attentive sequence comparison in a joint learning
mechanism for person re-identification.
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AGenerative Adversarial Network based pose-normalized
person re-identification framework is presented in [36]. They
learn pose invariant deep person re-identification features
using synthesized images. A deep CNN based method to
learn partial descriptive features for efficient person fea-
ture representation is presented in [37]. They employed a
pyramid spatial pooling module and reported an improve-
ment of 2.71% on the PETA dataset over [25]. Reference
[38] improved over [25] by employing a deeper network
based on a context sensitive framework. The proposed net-
work improved generalization and classification accuracy
by creating a richer feature sets using deeper residual net-
works (ResNet) and achieved the best in class results on
attribute recognition datasets. Reference [23] presented a
visual semantic graph reasoning framework that modeled
spatial and attribute relationships using two types of graphs.
For reasoning, they employed Graph Convolutional Net-
work that encapsulates the spatial relationship between local
regions of the image and the potential semantic relation-
ship of the attributes. Reference [15] used Recurrent Atten-
tion (RA) and Recurrent Convolutional (RC) to present a
dual model approach for pedestrian recognition. The RC
model employed a Convolutional-LSTM model to establish
the correlations between the different groups of attributes.
To improve the overall robustness, the RA model used both
local attention correlation and global spatial locality.

Using Gabor wavelets with CNNs have received a tremen-
dous attention as well [9], [39]–[41]. Reference [39] use a
Gabor filter bank as the first layer of a CNN and the bank
gets updated using the standard back-propagation network
leaning phase. Reference [40] also use Gabor filters in the
first layer of the network. While introducing lateral inhibition
to enhance network performance, they use a n-fold cross vali-
dation to search for the best parameters. Authors in [41] intro-
duce a Gabor Neural Network (GNN) where Gabor filters
are incorporated into the convolution filter as a modulation
process, in a spirit similar to the above mentioned works.
In contrast to the above works where fixed Gabor filters are
used, [9] introduce a trainable Gabor wavelets (TGW) layer.
The authors present a method where the hyperparameters of
the wavelets are learned from the input and a novel 1 × 1
convolution layers are employed to create steerable filters.
In this paper, we propose using this TGW layer with our
proposed CNN for a novel solution to the problem of PAR.
We test on two challenging datasets and show a considerable
improvement over state of the art.

III. MAIN APPROACH
In this section, we start with the description of the Gabor
wavelet layer. Then we describe the architecture of our
network in general.

A. GABOR WAVELET LAYER
Wemake use of the Trainable Gabor wavelets (TGW) layer as
proposed by Kwon et al. [9] (see. Fig. 2). A neural network is
used to generate the hyperparameters for the Gabor wavelet

FIGURE 2. Trainable Gabor Wavelet (TGW) layer [9]: Inputs and outputs
are multichannel. A neural network is used to generate Gabor wavelet
hyperparameters. These generated Gabor filters are then applied to the
input. 1 × 1 convolution layer is added to enable the steerability of the
Gabor wavelets.

and the generated Gabor filters are applied to filter inputs.
In order to capture essential input features, a 1×1 convolution
layer is added to the TGW layer to capture features at different
orientations.

1) HYPERPARAMETER ESTIMATION
The 2D Gabor wavelet can be described as:

G(x, y) = exp
(
−
X2
+ γY 2

2σ 2

)
× cos

(
2π
λ
X

)
(1)

where γ represents aspect ratio, λ represents wavelength of
the sinusoidal, σ represents width or the standard deviation,
X = x cos(θ ) + y sin(θ ), Y = −x sin(θ ) + y cos(θ ), and
θ is an angle in the range [0, π]. Thus in order to specify
a continuous Gabor wavelet, we need to determine the set
of hyperparameters {γ, θ, λ, σ }. In order to convert the con-
tinuous filter to a discrete one, a sampling grids need to be
defined, which is largely linked to σ . A new parameter is thus
introduced to compute the discrete filter:

G[m, n] = g(u, v) =
(
m
bζc
× ζ,

n
bζc
× ζ

)
(2)

where m and n are in the interval −bζc, bζc + 1, . . . , bζc,
and by just varying bζc, variety of sampling grids can be
achieved [9]. For a loss function L, we need to compute ∂L

∂ζ
in order to train for the wavelet layer that is cascaded with
our CNN. In order to train for the ζ , what remains is to
compute ∂G[m,n]

∂ζ
, as ∂L

∂G[m,n] is handled automatically by the
deep learning libraries:
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as d
dζ bζc = 0. The remaining parameters ∂G[m,n]

∂σ
, ∂G[m,n]

∂γ
,

∂G[m,n]
∂λ

can be computed in a similar way and a similar
parameterization can be adopted for the parameters σ, γ
and λ.

A very significant parameter for the Gabor wavelet is the
orientation (θ ). These values are mostly chosen empirically.
This parameter is also made trainable to better design ori-
entations for the task at hand. To use the steering property,
where a linear combination of finite set of responses can
be used to represent convolution at any orientation, a 1 × 1
convolution layer, working as a linear combination layer,
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FIGURE 3. Our Approach: The proposed method divides the input image into three parts. For each branch, the network contains 4 layers that are a
mix between TGW and 3Conv layer (mixed-layers). The output of each branch is followed by three fc layers. Size of the last layer of the network
matches the number of attributes of the dataset. Parameters of the network are mentioned in Table 1.

is added to the output of the generated filters. For this layer,
ten equally spaced fixed orientations are selected, working
as basis filters: 9◦, 27◦, 45◦, 63◦, 81◦, 99◦, 117◦, 135◦, 153◦,
and 171◦ [9].

B. ATTRIBUTE RECOGNITION NETWORK
The above mentioned TGW layer can be thought of as a
feature extracting layer. In addition to this, we also employ
it as the key building block of our network. Thus, in addition
to functioning as the lowest layer, it also aids the network to
learn high level features.

The proposed network is shown in Fig. 3. An input image
is divided into three equal parts along on the vertical axis.
Each part of the image passes through a separate branch
of the network. As can be seen in the figure, each branch
consists of 4 mixed-layers: combination of TGW layer and a
3 × 3 convolution layer. The input to the TGW layer starts
with a 1-channel conversion, i.e. a multi-channel input is
converted to a 1-channel, which is a summation over the
channels operation for all layers except the first layer where
we perform a simple color-to-gray image conversion. The
parameters for these layers are given in Table 1.

Each mixed-layer (1 to 4) contains 256 channels from
the TGW layer and 256 channels from a 3 × 3 convolution
layer (denoted as 3Conv ). Thus depth of each mixed-layer
output is 512 (concatenation of TGW and 3Conv layer).
The network thus contains blocks of layers stacked together.
For each 3Conv layer, as the name suggest, the kernel size
is 3 × 3. The convolution is followed by ReLU activation
function, max-pool layer (size 2× 2), and Batch Normaliza-
tion (BN) layer. The size of the input image to each of these
stacked layers is, respectively: 48 × 48, 24 × 24, 12 × 12,
and 6× 6.
Output from each branch encounters three fully connected

layers, i.e. fc1, fc2 and fc3, of size 512, 512 and 35, respec-
tively. Each fc layer uses ReLU as the activation function,
followed by a dropout layer (p = 0.5), to minimize the
number of parameters of the network. fc3 from all branches
are concatenated and the final output layer size matches the
number of dataset attributes.

TABLE 1. Parameters used for the TGW layers.

The method proposes using Gabor wavelets embedded
with a deep neural network. Whereas other methods con-
struct Gabor filters manually, the proposed network learns the
wavelet parameters suitable to the dataset. Generated Gabor
filters are stacked with convolution layers to build the overall
network. As we shall show next, the proposed network is
efficient and learns the dataset structure well to perform at
par with state of the art.

IV. EVALUATION
Following channel conversion, the grayscale image is divided
into three parts. Each part of the networks encounters
4 mixed-layers, consisting of equal number of channels from
TGW and 3Conv layer. Depth of each mixed-layer is 512.
The mixed-layers are followed by a series of fully connected
layers before the final output layer. ReLU is used as the
activation function for all the layer. The output layer uses
sigmoid as the activation function.
In order to evaluate our method quantitatively, we compute

variousmeasures and report the results below.Althoughmean
accuracy has been widely used in the attribute recognition
literature, it treats each attribute independent of the other
attributes. This might not necessarily be the case and an
inter-attribute correlation might exist. Therefore, researchers
also report example-based evaluations, namely accuracy
(Acc), precision (Prec), recall (Rec), and F1 score (F1) [5].

A. DATASET
RAP and PETA are the most widely used datasets for the
problem of pattern attribute recognition. Collected from
real-time surveillance cameras, the PETA dataset contains
19, 000 images collected from 10 publicly available datasets.
The resolution of the images ranges from 17×39 to 169×365.
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TABLE 2. Quantitative results (%) on PETA and RAP datasets. Results are compared with the other benchmark methods. As can be seen, we have
comparable results, with considerable improved accuracy for both the datasets.

Collected from a multi-camera setup of around 26 cameras,
the RAP dataset contains 41, 585 pedestrian samples. Each
attribute is annotated independently and the size of the images
range from 36× 92 to 344× 554.
Most of the previous works [20], [25] report results on the

PETA dataset using only 35 attributes. Similarly, for the RAP
dataset, results are reported on 51 datasets. In order to make a
fare comparison, we adopt the same scheme and test/train on
the same attributes. Similarly, for a fair comparison, experi-
ments are conducted on 5 random splits: we allocate 9, 500
samples for training, 1, 900 samples for validation, 7, 600
samples for testing on the PETA dataset. For the RAP dataset,
we split it randomly into 33, 268 training images and 8, 317
test images [25]. We adopted the weighted-cross entropy
loss function [20] in order to mitigate the class imbalance
problem. Similarly, following other researchers, images are
resized to an image resolution of 144× 48.
Pre-processing: Before continuing to the next step, we per-
formmean subtraction: That is, we compute the mean for all
the images for each color spaces and this value is subtracted
from image data. Intuitively for each dimension, this step
is equal to centering the data around its origin. Next step
involves normalization: We compute the standard deviation
separately for each color space and the image data is divided
by this value.

B. SETUP
For deep learning, we adopted the KERAS [42] library, which
is based on the TensorFlow backend. All experiments were
performed on a cluster node with 2 x Intel Xeon E5 CPU,
128GB Registered ECC DDR4 RAM, 32TB SAS Hard drive
storage, and 8 x NVIDIA Tesla K80 GPUs.

C. IMPLEMENTATION DETAILS
We train the network for 50 epochs. ReLU was used as the
activation function for all layers of the network. We used the
Adam for update optimizer using the parameters: learning
rate = 1e−4, β1 = 0.9 and β2 = 0.999.
We added the dropout layers to the fc layers to prevent

model over-fitting. We adopt weight decay by a factor of 0.1
after 15 epochs. The batch size was set to be 8. All weights in
the network are initialized using He Normal initialization.

For the TGW layers with a steering block, we use the
scheme suggested by [43]: we fix the parameters {γ, σ, λ} as

shown in Table 1 while training for ζ . This setup yields the
best results in our experiments.

D. RESULTS
We evaluate the effectiveness of the proposed method on
both PETA and RAP datasets. Table 2 shows a compari-
son of the proposed method with six current state of the
art methods. For the PETA dataset, Acc obtained from our
method is 79.35%. This is higher than all the other methods
that we compare with. The obtained results for the other
measures (Pre, Rec and F1) is 86.24%, 79.45%, and 81.48%
respectively. Class-wise accuracy chart for the PETA dataset
is shown in Fig. 4. Interestingly, the lowest accuracy is that
for the class upperBodyOther. Considering the image
resolutions in the dataset, this is indeed a very difficult class
to accurately measure. On the other hand, the highest accu-
racy is that of the classes upperBodyThinStripes and
upperBodyVNeck.

For the RAP dataset, similar to the PETA dataset,
the obtained results are exceedingly encouraging. The
obtained accuracy is 91.1%, while we obtained 92.39%
91.1%, and 91.56% for the remaining measure precision,
recall, and F1-score. The obtained results are a considerable
improvement over state of the art. One significant reason
for this difference is primarily the large size of the RAP
dataset. For the RAP dataset, class-wise accuracy is shown
in the Fig. 5. The class BaldHead is recognized with a
highest accuracy score while the two class that had a low
score were that of Age17-30, Age31-45. These two
classes, naturally, are very difficult to judge, even for expe-
rience human observers. Other low performing classes are:
Cotton, Jacket, OtherAttachments.

The proposed method makes a novel use of the Gabor
wavelet layers. Instead of manually constructing Gabor fil-
ters, the layers are trainable and are able to correctly esti-
mate model parameters. The method divides input image
into three parts. For each part, we train four mixed-layers:
combination of TGW and 3Conv layers. The output of these
branches are concatenated and then followed by three fc
layers. We have obtained very encouraging results for the
key measures. The method is novel and unique in the sense
that it does not resort to data augmentation or part-based
computations, as employed by [5]. We also do not have to
compute pose estimation [20], or construct any hand-crafted

40024 VOLUME 9, 2021



I. N. Junejo: Multi-Branch Gabor Wavelet Layers for PAR

FIGURE 4. Class-wise Accuracy - PETA dataset: the figure shows the obtained class-wise accuracy. The highest accuracy is for the class
upperBodyThinStripes,upperBodyVNeck. The lowest accuracy is 23.4% for the class upperBodyOther.

FIGURE 5. Class-wise Accuracy - RAP dataset: The lowest accuracy is that of the classes: Age17-30, Age31-45. The highest accuracy is for the
class BaldHead.

features [18]. Our results are an improvement over state
of the art and clearly justifies the use of Gabor wavelet
layers.

V. CONCLUSION
We propose a novel multi-branch neural network. Our
key contribution is using trainable Gabor wavelets (TGW)
for the pedestrian attribute recognition problem. The input
image is divided into three parts and each part is processed
through three branches of the network. Each branch contains
mixed-layers that are capable of learning the Gabor wavelet
parameters. This is very crucial, as filters are learned from
the structure of the dataset itself. We demonstrate the work-
ings of our network on two of the most challenging public
datasets and show very encouraging results. For future work,
we intend to further investigate Gabor wavelets for the PAR
problem with different network architectures.
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