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ABSTRACT Unmanned aerial vehicle (UAV)-aided wireless relay networks are at risk of eavesdropping
activities due to their open nature. In this paper, we study the security of a UAV-aided selective relaying
wireless network in which N UAVs are employed as decode-and-forward (DF) relays linking a ground base
station (BS) with L legitimate users on the ground in the presence of a passive eavesdropper (Eave). Direct
links between the ground BS and both the ground users and the eavesdropper are assumed to be blocked.
The ground-to-air and air-to-ground channels are assumed to follow Rician fading model with opportunistic
scheduling scheme for UAVs and users selection. In order to secure data transmissions against such an
interception action, the UAV of the worst UAV-selected user link transmits a jamming artificial noise (AN)
signal to degrade Eave ability in decoding the confidential information successfully. The transmission outage
probability, intercept probability, and hybrid outage probability are derived and analyzed. Due to the heavy
computation burden raised by increasing the number of UAVs and users as well as the difficulty in estimating
the instantaneous channel state information (CSI), existing traditional optimization methods are not highly
efficient in solving the considered power allocation problem. Therefore, we propose a dynamic power control
scheme based on Q-learning algorithm combined with statistical CSI where the hybrid outage probability
is minimized. Simulation results show that the proposed algorithm efficiently reduces the hybrid outage
probability with a noticeable reduction in the computational time.

INDEX TERMS Unmanned aerial vehicle, Rician fading, physical layer security, outage probability,
intercept probability, reinforcement learning, Q-learning, power allocation.

I. INTRODUCTION
Utilization of unmanned aerial vehicle (UAV) in modern
wireless networks is expected to increase rapidly in the
next few years. They can serve as aerial base stations
(BSs) or relays providing successful solutions to reinforce the
network reliability and capacity. UAV-aided networks surpass
terrestrial networks in fast deployment and more flexible
construction. They can succeed in rapid foundation of supple-
ment wireless network to support terrestrial networks in con-
gested hotspots circumstances. Also, they help in supplying
communications in post disaster conditions where the terres-
trial network breaks down and communication is demanded
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by rescue activities [1]. Unlike ground wireless communi-
cations, line-of-sight (LOS) is dominant in the UAV-aided
networks.

UAV-aided networks can be applied in temporarily events
like sports, outdoor activities, and scientific missions [1].
In particular, UAV employment for providing wireless ser-
vices has enticed wide research and industry efforts in
terms of deployment, navigation, and control issues [2]–[4].
Due to the fact that UAVs work in an exposed envi-
ronments, UAV-aided wireless networks are threatened
by eavesdropping attempts from unauthorized parties.
Nevertheless, resource allocation such as transmit power is
also essential to further enhance the physical layer secu-
rity (PLS) and outage performance for UAV-aided wireless
networks.
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TABLE 1. List of acronyms.

To improve UAV-aided network performance in terms of
transmission outage and security outage probabilities, a sub-
stantial effort has been recently spent on optimization theory
to develop more efficient algorithms to gain optimal UAV
trajectory or power allocation. However, many works found
in literature assume a UAV working in static environment.
Practically, in UAV-aided wireless networks with a mas-
sive number of users, the environment is often dynamically
changeable. Therefore, it is desirable to enable the network
controller to have autonomous decision based on local obser-
vations, e.g., nodes power, number of network nodes, and
their locations.

UAVs employment as relay has recently attracted extensive
research efforts. In [5], a UAV relay network was investi-
gated where derivation of the system outage probability was
provided. Additionally, a variable rate protocol for a UAV
relay hovering at a constant height around a circular path was
proposed where the data-rate was optimized to improve the
system outage probability. Energy harvesting (EH) applica-
tions in UAV-based relay networks were addressed in [6]. The
UAV was used to link two ground nodes where air-to-ground
(A2G) and ground-to-air (G2A) channels were assumed to
follow Rician fading model. The system outage probability
was derived and analyzed. Also, the impact of the UAV height
on the outage probability were addressed. Another study was
achieved in [7] where both the spectrum and energy efficiency
optimizations were conducted. The trade-off between these
two important metrics was studied for a UAV-based relay
network.

The authors in [8] proposed an optimization scheme for
the outage probability of a UAV-based relay network by
designing the trajectory and controlling the transmit power of
the UAV. In [9], the system total throughput was addressed for
a hovering UAV where the authors proposed a framework to
jointly optimize the power allocation and the UAV trajectory
to maximize the system throughput. The scenario of multiple
users was not considered in this work. In [10], an optimiza-
tion of the UAV altitude to improve a UAV relaying system
performance in terms of outage probability, bit error rate, and
power loss was conducted. The authors in [11] proposed a
3D location optimization scheme to improve the UAV-based
relay network outage performance.

A UAV relay was used to link a BS to multiple users
where a mixed Rayleigh/Rician channel was assumed. Most
of the available papers, which studied the PLS issues in UAV-
based relay networks are mainly focusing on optimizing the
UAV trajectory or power allocation to enhance the security
performance or using jamming techniques to decrease the
possibility of eavesdropping. In [12], the secrecy rate of a
UAV transmitting information to a ground user was studied
in existence of an eavesdropper. The secrecy rate was maxi-
mized by jointly optimizing the UAV 2D trajectory and power
where the A2G channels were assumed to be dominated
by the LOS model. The authors of [13] have addressed the
performance of a UAV-based relay connecting two points on
the ground in the presence of an eavesdropper in a known
location on the ground. LOS channel model was assumed
for the A2G links, both the UAV 2D trajectory and power
allocation were optimized to maximize the secrecy energy
efficiency. In [14], the secrecy rate was maximized by opti-
mizing the power allocation in a UAV-based relay network
where free space path loss model was used to model the link
between a frequency division duplex (FDD) buffer UAV relay
and two ground BSs (source and destination).

In [15], a UAV was used to communicate with multi-
ple destinations on the ground and another UAV was used
as a jammer. Joint power and trajectory optimization was
achieved with an objective to maximize the secrecy rate.
A2G channels were modeled using the LOS model and
frequency division multiple access was utilized for multi-
ple destinations scheduling. In [16], a UAV was utilized as
a friendly jammer to protect information against potential
wiretapping where the information is transmitted between
two points on the ground. The source and destination nodes
communicate via a Rayleigh channel, while the A2G channel
is modeled using the LOS/NLOS probability model. The
UAV position and jamming power were optimized to mini-
mize both the outage probability at the legitimate user and
the interception probability at the eavesdropper. Cooperative
jamming was studied in [17] and [18] where in [17], a trans-
mission scheme was proposed for a UAV-based relay net-
work. The system model contained one destination with the
A2G channel modeled by Rician distribution. A transmission
scheme that combines simultaneous wireless information and
power transfer (SWIPT) energy harvesting approach and
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cooperative jamming was also proposed. In addition, exact
and asymptotic expressions for the connection and intercep-
tion probabilities were derived. In [18], the performance of a
multiple UAVs relay networkwas studiedwhere the best UAV
is used to relay confidential information, while the remaining
UAVs emit jamming signals to protect the information from
eavesdropping. Rician fading distribution was used to model
the A2G links. Another study was conducted in [19] with a
UAV relay connecting a source to a destination in a mmWave
scenario with SWIPT technique. A Homogeneous Poisson
Process distribution of multiple eavesdroppers was assumed,
and the A2G channels were assumed to be Nagakami-m
distributed. Closed-form expressions for the average secrecy
rate and the average energy coverage were derived for both
the amplify-and-forward (AF) and the decode-and-forward
(DF) relaying schemes. Selective UAV-based relaying net-
work was studied in [20] where multiple UAV-aided relays
cooperatively connect a ground BS to a ground destination
in existence of one UAV eavesdropper. One UAV is selected
opportunistically for forwarding the signal from the BS to the
destination, while the remaining UAVs emit jamming signal
to degrade the eavesdropper ability to successfully decode the
confidential information. In this paper, both the A2G and the
G2A channels are modeled using Rician fading model. The
authors derived and analyzed the outage probabilities at both
the eavesdropper and destination sides. The PLS issue was
also addressed in [21] and [22] where a single UAV and a
single user model was assumed in [21]. The power allocation
was optimized to minimize the system intercept probability.
A jamming UAV was used in [22] where the author proposed
a system consists of a single UAV-enabled relay connecting
a source with a single user on the ground and a single UAV
jammer in the presence of a passive eavesdropper. Joint power
and trajectory optimization of the two UAVs was achieved to
minimize the system intercept probability.

Due to the fact that modern wireless networks are char-
acterized by fast dynamic change, some recent researchers
introduced the Reinforcement Learning (RL) to solve the
wireless networks optimization problem such as power and
spectrum allocation problems with tolerable time delay.
Q-learning, which is a model-free RL technique, was applied
to solve the power and spectrum allocation problems in differ-
ent wireless network structures [23]–[25]. Dynamic resource
allocation has been provided in [26]–[28] where RL methods
were adopted to solve the optimization problems related to
the transmit power levels and spectrum allocations. In [26],
the scenario of multiple UAVs acting as aerial BSs serving
and multiple users on the ground was studied where the A2G
channels were modeled using the LOS and the probabilistic
models. The authors in [27] addressed a joint power and
spectrum allocation optimization problem for multiple UAVs
working as aerial BSs. The objective function considered
both the propulsion power and signal-to-interference-plus-
noise ratio (SINR) requirements of the served users. In [28],
the trajectory and power of a UAV employed as a cellular

BS were optimized to maximize the sum-rate of vehicle-to-
cellular (V2C) communications.

As can be noticed, none of the previous papers
addressed or studied the PLS issue in multiple UAV-based
relay networks with multiple users. The considered system
can be found in several applications such as in gathering
information from ground sensors and in providing commu-
nication for outdoor activities such as scientific and rescue
missions. In addition, such scenario can be used in providing
communication services for outdoor events such as in sport
activities.

To the best of our knowledge, UAV relay network security
enhancement using machine learning techniques has not been
addressed yet. In addition, considering multiple UAVs relay
serving multiple users and assuming Rician channel model in
the presence of a passive eavesdropper has not been studied
in the available literature. The following points represent a
summary of the main contributions of this paper.
• Deriving expressions for the end-to-end (e2e) outage,
intercept, and hybrid outage probabilities for the mul-
tiple UAV relay network with multiple users over Rician
fading channels.

• Analyzing the security performance of the considered
model.

• Proposing an optimization scheme for the power allo-
cation to minimize the hybrid outage probability of the
considered system.

• Introducing a Q-learning based algorithm to solve the
power allocation problem of the considered system.

The rest of this paper is organized as follows. In Section II,
the system and channel models are provided. Problem for-
mulation and derivations of the performance measures are
presented in Section III. Explanation of the Q-Learning
method and the proposed power allocation algorithm based
onQ-Learning are presented in Section IV. Simulation results
are demonstrated in Section V. Finally, the paper is concluded
in Section VI.

II. SYSTEM AND CHANNEL MODELS
The scenario considered in this paper consists of N UAVs
operating as selective relays between a ground BS and L
users. We denote the set of N UAVs by M, and the set of L
users byL, we assume that a passive eavesdropperEave exists
in the region. The L users and Eave are assumed to exist in an
area on the ground, as shown in Figure 1. It is assumed that
direct wireless communication between the ground nodes and
the ground BS cannot be achieved due to natural or artificial
obstacle. This model can be found in an urban or rural areas
where the links between the ground BS and the ground nodes
(the users and the eavesdropper) are assumed to be blocked
by high buildings or natural obstacles like small mountains.

The users and the eavesdropper are assumed to be located
in a specific target area where the users represent the
legitimate users of the network, while the eavesdropper rep-
resents a party prevented from receiving the transmitted
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TABLE 2. List of symbols.

information. In most practical cases, the accurate location and
channel state information (CSI) of a passive eavesdropper are
unknown to the network [29]. Hence, it is more practical to
design the cooperative jamming to reduce the eavesdropper
intercept probability in all possible locations within the tar-
get area where eavesdroppers are expected to be located in.
A real-world example for our proposed model can be found
in a work site containing several locations far away from a
main control office. The main control office represents the
ground BS and the users and the eavesdropper are located in
several locations within an area, which we call the target area.
The BS location is assumed to be secured enough against
eavesdropping, while the target area is assumed to be far away
from the main control office and wide such that eavesdrop-
ping activities cannot be avoided.

The channels between the ground nodes and the UAVs
are assumed to follow the Rician fading model. Each UAV
is assumed to hold a DF relay. Although the AF relays are

FIGURE 1. UAV relay system model.

simply implemented, DF shows superior performance [10].
The considered system is applicable in several wireless
schemes, including wireless sensor networks, cellular net-
works, cognitive radio networks, etc.

During the communication process, the BS sends its signal,
where the N UAVs try to decode it. Those UAVs, which
achieved the BS signal correctly decoded are put in a decod-
ing set U . Given N UAVs, there exists 2N − 1 possible
decoding sets given by

� = { ∅, U1, U2, . . . , Un, . . . , U2N−1}, (1)

where ∅ represents the case when neither of the N UAVs suc-
ceeded in decoding the BS signal, whereas Un is a nonempty
set from the N UAVs. If the decoding set U is not empty,
a specific UAV-user pair is opportunistically selected for
communication, whereas, the worst UAV, in terms of SNR
with respect to the selected user, transmits an AN jamming
signal to degrade the ability of Eave to decode the confiden-
tial signals. The AN signal in our paper is assumed to be
independent of the information signal and a priori known by
the legitimate receiver. This assumption has been used before
in several papers in literature [30]–[32]. The AN signal can
be easily removed from the confidential information using a
self-interference canceling (SIC) receiver [33].

The proposed system model depends on statistical channel
modeling instead of instantaneous CSI. Considering instan-
taneous CSI requires that the receiver continuously estimates
the CSI by decoding a symbol transmitted by the transmitter
and then feeding back the CSI to the transmitter to adjust
accordingly. This process introduces more complexity, higher
cost, and higher power consumption.

A. GROUND BS-TO-UAV CHANNEL
The received signal at the mth UAV is given by

yg,um =
√
Pghg,umxg + ng,um , (2)
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where Pg is the power transmitted by the ground BS, hg,um is
the BS to the mth UAV channel coefficient, which is modeled
using Rician fading distribution with E[|hg,um |2] = 1, where
E[ .] is the average operator, xg is the data symbol transmitted
by the ground BS with E[x2g ] = 1, and ng,um ∼ N (0,N0) is
the additive white Gaussian noise (AWGN) term with zero
mean and variance N0.
The instantaneous signal-to-noise ratio (SNR) for the chan-

nel between the ground BS and the mth UAV is given by

γg,um =
Pg|hg,um |

2

N0d
η
g,um

, (3)

where η is the path loss coefficient and dg,um is the distance
between the ground BS and the mth UAV.

B. UAV-TO-USERS CHANNEL
The signal sent by the mth UAV and received by the l th user
is given by

yum,l =
√
Puhum,lxum,l + num,l, (4)

where Pu is the UAV transmit power, m ∈ {1, 2, . . . ,N },
hum,l is the UAV to the l th user channel coefficient,
l ∈ {1, 2, . . . ,L}, which is modeled using Rician distribution
with E[|hum,l |2] = 1, xum,l is the data symbol transmitted
by the mth UAV to the l th user with E[x2um,l] = 1, and
num,l ∼ N (0,N0) is the AWGN noise term.
The SNR of the mth UAV to the l th user link is given by

γum,l =
Pu|hum,l |

2

N0d
η
um,l

, (5)

where dum,l represents the distance from the mth UAV to the
l th user. We assume independent non-identically distributed
(i.n.d.) wireless paths between the N UAVs and the L users.
For user selection, opportunistic scheduling is employed,
where the UAV-user link with the best instantaneous SNR γ ∗

is given the opportunity to communicate, γ ∗ is given by

γ ∗ = max
Ui∈Un
c∈L

{γui,c} (6)

III. PERFORMANCE ANALYSIS
A. OUTAGE PROBABILITY
According to previous illustration, we can arrive at the outage
probability of the consideredmodel using the total probability
theorem [34] as

Pout = Pr( U = ∅)+
2N−1∑
n=1

Pr( U = Un) Pr

×
(
max
ui∈Un

γui,l ≤ γout
)
, (7)

where Pr( . ) is the probability operation and γout is the outage
SNR threshold, which is given by γout = 2R − 1, where R
is the spectral efficiency. The event ( U = ∅) represents the
case where neither one of the N UAVs succeed in decoding
the signal transmitted by the BS, so we can write this event as

Pr( U = ∅) = Pr
(
max
um∈M

γg,um ≤ γout
)
. (8)

Substituting (3) into (8) yields

Pr( U = ∅) =
N∏
m=1

Pr
(
|hg,um |

2
≤ γ1

)
, (9)

where γ1 =
γoutN0 d

η
g,um

Pg
. The probability in (9) represents

the cumulative distribution function (CDF) of the chi-square
random variable |hg,um |

2 evaluated at γ1, using [35, Eq. (8)]
and after doing some mathematical manipulations, (9) can be
written as

Pr( U = ∅) =
N∏
m=1

[
1− Q1(

√
2K ,

√
2(K + 1)γ1)

]
, (10)

where Q1 is the first order Marcum Q-function and K is the
Rician factor, which is the ratio of the LOS component power
to the NLOS component power. The probability Pr(U = Un)
can be written as

Pr( U = Un) =
∏

ui ∈ Un

Pr(γg,ui > γout)

×

∏
uk ∈

∼

Un

Pr(γg,uk 6 γout), (11)

where
∼

Un = (M − Un) is the complement of Un.
Using the same steps in deriving (10), we get the outage
probability as

Pout =
N∏
m=1

[
1− Q1(

√
2K ,

√
2(K + 1)γ1)

]

+

2N−1∑
n=1

∏
ui ∈ Un

Q1(
√
2K ,

√
2(K + 1)γ2)

×

∏
uk ∈

∼

Un

[
1− Q1(

√
2K ,

√
2(K + 1)γ3)

]
×

∏
ui ∈ Un
l ∈L

[
1− Q1(

√
2K ,

√
2(K + 1)γ4)

]
, (12)

where γ2 =
γoutN0 d

η
g,ui

Pg
, γ3 =

γoutN0 d
η
g,uk

Pg
, and γ4 =

γoutN0 d
η
ui,l

Pu
.

B. INTERCEPT PROBABILITY
According to the proposed cooperative jamming scheme,
the best UAV-user link will be engaged in the communication
process at a time instance, while the UAVwith the worst SNR
to the selected user is to be used as a jammer emitting a jam-
ming AN signal, which is known to the receiving ends. The
power of the jamming signal is denoted byPJ. The worst UAV
is selected as a jammer to reduce any interference caused
by the jammer on the ground user in the case of imperfect
CSI [36]. For nonempty subset Un and using the law of total
probability, the considered system intercept probability is
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given by

Pint =
2N−1∑
n=1

Pr( U = Un)
L∑
l=1

|Un|∑
i=1

Pr
(

max
(j,c) 6= (i,l)

c∈L

γuj,c ≤ γui,l
)

×Pr (γui,e > γout) Pr
(

min
ut∈{Un−ui&up}

γut ,l > γup,l
)
,

(13)

where |Un| is the cardinality of the set Un, γui,e is the instan-
taneous SNR of the selected UAV-to-Eave link, i and p are
indexes of the transmitting and jamming UAVs respectively,
and t ∈ {1, 2, . . . , N }−{i, p}. The derivation of the intercept
probability Pint is provided in Appendix VI. Accordingly, Pint
is given by

Pint =
2N−1∑
n=1

∏
ui ∈ Un

Q1(
√
2K ,

√
2(K + 1)γ2)

×

∏
uk ∈

∼

Un

[
1− Q1(

√
2K ,

√
2(K + 1)γ3)

]

×

L∑
l=1

|Un|∑
i=1

|Un−ui|∑
v=0

(−1)v

(v!)

|Un−ui|∑
n1=1

|Un−ui|∑
p1=1

. . .

(nx, py) 6= (i, l) · · ·
|Un−ui|∑
nv=1

|Un−ui|∑
pv=1

∞∑
s=0

2e−2KK s(K + 1)s(s!)2σ (s+1)
ui,l (s+ 1)!(

σui,l +
∑|Un−ui|

t=1 σunt ,pt
)(s+2)

×

M∑
r=0

r∑
j=0

∞∑
s=0

2grr !σejK se−K (s+ j+ 1)
j!(s!)2(K + 1)s(σe + 1)s+j+1

|Un−ui−up|∑
v=0

(−1)v

(v!)

|Un−ui−up|∑
n1=1

. . . v 6= (i, p) . . .

|Un−ui−up|∑
nv=1

∞∑
s=0

2e−2KK s(K + 1)s+1σ (s+1)
up,l (s+ 1)!(

σui,l +
∑|Un−ui−up|

t=1 σunt ,l
)(s+2) .

(14)

C. HYBRID OUTAGE PROBABILITY
Three mutually exclusively events can occur during the
data transmission in the considered UAV-based relaying net-
work, namely the transmission outage event, the secrecy
outage event, and the secure transmission event. Specifically,
the transmission outage event probability is given by (12),
and the secrecy outage event probability is given by (14). The
hybrid outage probability Pho is utilized as a comprehensive
performance measure, which is the sum of the transmission
and the secrecy outage probabilities [37]

Pho = Pout + Pint. (15)

D. PROBLEM FORMULATION
To enhance the security performance of the considered sys-
tem, the power allocation optimization problem is formulated

as follows

minimize
Pg,Pu,PJ

Pho(Pg,Pu,PJ)

subject to Pu ≤ P max
u

Pg ≤ P max
g

PJ ≤ P max
J , (16)

whereP max
u ,P max

g , andP max
J are themaximum allowedUAV,

BS, and the jammer UAV powers, respectively.

IV. POWER ALLOCATION ALGORITHM BASED
ON Q-LEARNING
In this section, we discuss a powerful model-free algorithm
called Q-learning, and we also illustrate how Q-learning is
related to Reinforcement Learning (RL), which is how to
obtain Q-learning from RL [39], [40].

A. Q-LEARNING CONCEPTS
ARLmodel has 4 parameters, which are: a set of the possible
states of the environment, a set of the possible actions the
agent may take, scalar reward signal, and the policy. These
four features are denoted by S, A, R, and π .

• System states (S): It describes the circumstance of the
UAV-based relaying system environment, and action
decision is taken based on the states of the network.
The key factors affecting the state of the network envi-
ronment are the channel and transmit power of the differ-
ent nodes in the network, and the number of nodes and
their locations. All this information is fed back to the
network controller, which is considered as the learner
in this learning process, so it can adjust the network
accordingly to improve the network performance. The
system state S is defined as a countable set as

S = S( u, e, p) = { S0, S1, . . . , St , . . . , ST }, (17)

where u and e represent the users and Eave information,
respectively. p = [ Pg, Pu, PJ].

• Action space (A): The controller takes a decision by
observing the state of the network, causing the network
to change to the next state. The action in the power
allocation case means adjusting Pg, Pu, and PJ levels
based on the state of the network. Thus, the set of all
actions is expressed as

A = A(p) = { A0, A1, . . . , At , . . . , AT }. (18)

For the action selection, we adopt the ε-greedy policy to
take advantages of the exploitation and exploration [38].
Specifically, at the current state Si, the best action max-
imizing the action-value function is selected with the
probability ε, where ε ∈ [0, 1]. On the other hand, with
the probability 1 − ε, the action is randomly chosen
from A, and this is done for exploration to ensure obtain-
ing global optimal solution. At an iteration i, the action
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will be chosen as follows

Ai =

{
arg max

a∈A
Q(S,A) with probability 1− ε,

U(A) with probability ε,
(19)

whereQ(S,A) is the state-action function defined in (26)
and U(A) is uniformly distributed over the set A.

• Reward function (R): In the considered system,
the learner tries to maximize the accumulated rewards
by taking a set of actions, which directly results in
improvement of the system outage and security per-
formance. In the optimization problem (16), the goal
is to minimize the system hybrid outage probability.
Thus, we define the immediate reward as the amount
of change between the current and previous system
hybrid outages. The immediate reward is positive when
the outage decreases, otherwise it is negative. Thus,
the immediate reward can be given as

Rt = Pho,t − Pho,(t+1), (20)

where Pho,t is the hybrid outage probability at the time
instant t and Pho,(t+1) is the hybrid outage probability at
time instant (t + 1) after the controller takes the action
At to change the network from state St to state S(t+1).

• The policy (π): When the learner is in state St , it can
take a certain action At = π (St ). The objective of
a learner is to find the optimal policy that results in max-
imization of the total expected reward over the operating
time, which is described as

V π (St ) =
Tmax∑
i=0

β iR(t+i), (21)

where β ∈ [0, 1] is the reward discount factor. If β
is set to 0, that means only immediate reward Rt is
considered into account, on the other hand, if β is close
to 1, that means the future reward is more import than the
immediate reward. The optimal policy π∗ is the policy
that maximize the accumulated reward and it is given as
follows

π∗ = arg max
At

V π (St ), ∀(St ). (22)

Substituting (21) into (22), we get

π∗ = arg max
At

[
R(St ,At )+ β V π (St+1,At+1)

]
. (23)

Getting the optimal policy in (23) requires perfect
knowledge of the state-action information, which is
quiet difficult, so we define

Q(St ,At ) = R(St ,At )+ β V π (St+1,At+1). (24)

So that

π∗ = arg max
At

Q(St ,At ). (25)

Algorithm 1Dynamic Power Allocation AlgorithmBased on
Q Learning
Input: Q-table, α ∈ [0, 1], β ∈ [0, 1], ε ∈ [0, 1], L, N ,

S(u, p), A(p), Ti, Ts
Output: Optimal strategy π∗, Optimal power levels P∗

1: for t1 = 1 to Ti do
2: Select an initial state S0 randomly
3: for t2 = 1 to Ts do
4: Initialize a random number µ ∼ U [0, 1]
5: if µ > ε then
6: Exploit
7: Select an action At based on greedy strategy
8: Obtain immediate reward Rt and next state St+1
9: Update the Q-table according to (26)
10: Adjust the network transmit powers according to

At
11: else
12: Explore
13: Select an action At randomly
14: Obtain immediate reward Rt and next state St+1
15: Update the Q-table according to (26)
16: Adjust the network transmit powers according to

At
17: end if
18: end for
19: end for

An iterative method is always taken in computing
Q-learning as follows

Q(St ,At ) = (1− α)Q(St ,At )+ α
[
R(St ,At )

+β max Q(S ′,A′)
]
, (26)

where 0 < α < 1 is the learning rate.

B. Q-LEARNING-BASED POWER
ALLOCATION ALGORITHM
The details of power allocation algorithm based on
Q-learning method is given in Algorithm 1. The parameters
related to network and Q-learning are initialized in the step
input. The number of training episodes Ti is defined, along
with Ts, which determines the maximum iterations per train-
ing episode. The learner reads the initial state information
S0 and selects an action according to the ε-greedy policy
to obtain immediate reward and update the corresponding
state-action functionQ(St ,At ). To achieve switching between
exploration and exploitation a number µ is taken randomly
from a uniform range [0, 1]. If µ is greater than ε, then
exploitation is achieved, where the action which maximizes
the state-action function Q(S,A) is to be selected. Otherwise,
exploration process is archived, where an action is randomly
selected from A. Exploration helps in increasing the chance
of reaching global solutions. The optimal power allocation
policy can be reached through massive training iterations.
The power allocation scheme is obtained from the state-action
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FIGURE 2. Outage probability versus UAV transmit power for different
numbers of users and UAVs.

function as follows

a∗i = arg max
a∈A

Q(si, a), ∀i. (27)

V. SIMULATION AND NUMERICAL RESULTS
In this section, some simulation results are shown and ana-
lyzed to validate the derived expressions and the proposed
Q-learning based power allocation algorithm. The analytical
results of the outage probability and the intercept probability
are demonstrated. Moreover, the impacts of various network
parameters such as the number of users L, number of UAVs
N , UAV transmit power, and the ground BS transmit power
on the system performance are investigated.

For the Q-learning based power allocation, we assume the
ground users and the eavesdropper are randomly located in a
2D circular area of radius 500 m on the ground. The power
levels of the BS, UAV, and the jammer are quantized into
three levels (10 dBm, 20 dBm, and 30 dBm). In the same way,
the distances from the UAVs to ground nodes are quantized
into three levels (100 m, 300 m, and 500 m). This is done to
obtain a discrete set of possible states and actions required
by the Q-learning algorithm operation. The simulation and
experimental parameters are summarized in Table 3.

TABLE 3. Table of simulation and experimental parameters.

Figure 2 shows the system outage probability versus the
UAV transmit power Pu for different numbers of users and
UAVs. Two sets of curves are displayed on this figure, set of

FIGURE 3. Intercept probability versus UAV transmit power for different
values of jamming power.

FIGURE 4. Intercept probability versus UAV-to-UAV and
user-to-eavesdropper distances, N = 2, L = 1, Pg = Pu = PJ = 10 dBm.

N = 2 and set of N = 3. Clearly, when N is high, better
performance is obtained, as expected. For both sets, an error
floor appears at higher values of Pu as at this range of Pu
values, the system performance is dominated by the first hop
(fixed Pg) and any increase in either Pu or number of users
L adds no gain to the system performance. Increasing Pu
leads to improving the system performance when Pg is higher
than Pu. In this case also, increasing L adds some gain to the
system performance.

In Figure 3, the jamming power effect on the system inter-
cept probability is demonstrated. As expected, increasing the
jamming power PJ results in decreasing the system intercept
probability, while increasing Pu has an opposite effect on the
intercept probability.

In Figure 4, the intercept outage probability versus the
distance between the UAVs and the distance between the
user and the eavesdropper is displayed. As can be seen,
the distance between the UAVs compared to the distance
between the user and the eavesdropper greatly affects the
system intercept probability. It is seen that when the distances
are comparable, higher intercept probability is resulted.
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FIGURE 5. Accumulated reward versus the number of iterations for
several values of the learning rate α.

FIGURE 6. Average hybrid outage probability versus number of users and
UAVs. The red, green, and brown bars represent the proposed power
allocation, the random power allocation, and the maximum power
allocation schemes, respectively.

Figure 5 shows the convergence of the accumulated reward
under different learning rates α versus number of itera-
tions. The accumulated reward is calculated as the amount
of change in the system hybrid outage probability in every
iteration. This figure shows that as the number of iterations
increases, the accumulated reward gradually converges to a
constant value. As α increases, the algorithm requires less
number of iterations to converge. The algorithm in this case
converges to lower values of the accumulated rewards, which
may not lead to learning the optimal strategy. When α is
set at smaller value, the algorithm converges to the optimal
policy in a slower rate with a higher accumulated reward.
So it is required to properly select the value of α to compro-
mise between the speed of convergence and the accumulated
reward.

In Figures 6, the hybrid outage probability is displayed
versus number of users for different numbers of UAVs. The
performance of the proposed algorithm is compared with
other two power allocation schemes, namely equal power

FIGURE 7. Delay time for global search algorithm versus number of users
for N = 3.

FIGURE 8. Delay time for global search algorithm versus number of UAVs,
L = 1.

distribution on all the network nodes (BS, transmitting UAV,
and jamming UAV), and random power allocation. The pro-
posed scheme achieves power allocation based on Q-learning
where the nodes powers are optimally distributed. The results
show the superiority of the proposed algorithm over the other
two schemes. By comparing our result with the models pro-
posed in [21] and [22], which can be considered as special
cases of the multi-UAV and multi-user model proposed in
our paper, we notice that a considerable improvement in the
security and outage performance is obtained by the proposed
model in this paper.

Global search optimization algorithms such as Genetic
algorithm and Particle Swarm provide the optimal global
solution in expense of computational time. For dynamic
adaptable networks applications, those algorithms are not
applicable despite of their high quality solutions compared
to the Q-learning based algorithm. The main advantage of
the proposed algorithm is its capability to reduce the time
required to solve the power allocation problem in a dynami-
cally changing UAV wireless network.

A time performance comparison of the global search
methods and the proposed algorithm is presented in
Figures 7, 8, 9, and 10. It can be noticed from these figures
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FIGURE 9. Delay time of the proposed algorithm versus number of users,
N = 3.

FIGURE 10. Delay time of the proposed algorithm versus number of UAVs,
L = 1.

that increasing the number of users results in a linear increase
in the computation time for both the global search and the
Q-learning based algorithm, while increasing the number of
UAVs leads to a logarithmic increase in the computation time.

VI. CONCLUSION
In this work, we studied a wireless communication configura-
tion, which utilizes N UAVs as DF opportunistically selected
relays. The multiple UAVs were employed to connect the
L users to a ground BS where on-ground communication
is blocked. The outage, intercept, and hybrid probabilities
closed-form expressionswere derived. An optimization based
on Q-Learning machine learning techniques was proposed
to solve the dynamically changing wireless network power
allocation problem. The objective of the proposed power allo-
cation algorithm was to minimize the system hybrid outage
probability. Our results showed that the proposed algorithm
can efficiently reduce the hybrid outage probability compared
to equal and random power allocation schemes with a notice-
able reduction in the delay time.

APPENDIX
In this appendix, the derivations related to (14) are presented
as follows

Pr
(

max
(j,c) 6= (i,l)c∈L

γuj,c ≤ γui,l
)

=

∫
∞

0

∏
(j,c)6=(i,l)c∈L

[
1− Q1(

√
2K ,

√
2(K + 1)σuj,cx)

]
×fγui,l (x)dx. (A.28)

According to [42, Eq. (2.10)] the probability density function
(PDF) in (A.28) is given by

fγui,l (x) = 2(K + 1)σui,le
−K xe−(K+1)σui,lx

×I0(2
√
K (K + 1)σui,lx), (A.29)

where σui,l =
Pu

N0d
η
ui,l

and σuj,c =
Pu

N0d
η
uj,c

and I0(.) is the zeroth-

order modified Bessel function of the first kind, and it is
given by

I0(z) =
∞∑
s=0

( 1
4 z

2
)s

(s!)2
. (A.30)

An approximation of the Marcum Q-function is found in [41,
Eq. (7)] as

Q1(W ,V ) ≈
M∑
r=0

grr !e−
V2
2

r∑
j=0

(V
2

2 )j

j!
, (A.31)

where M depends on max{1,W ,V }, which can be truncated
as 50 max{1,W ,V } [6], and gr is given by

gr =
0(1+M )M1−2rW 2r2−r

0(r + 1)0(M − r + 1)0(1+ r)e
W2
2

, (A.32)

where 0( . ) is the Gamma function. Upon using (A.31) and
(A.32) in (A.28) and using Taylor series expansion of the
exponential function with ignoring the higher order terms
for high SNR regime, the product term in (A.28) can be
simplified as follows∏
(j,c) 6= (i,l)

c∈L

[
1− Q1(

√
2K ,

√
2(K + 1)σuj,cx)

]
=

∏
(j,l) 6= (i,l)
c ∈L

[
1− e−K e−(K+1)σuj,cx

]
. (A.33)

Given the identity

V∏
v=1

(1− qv) =
V∑
v=0

(−1)v

(v!)

V∑
n1,...,nv

v∏
t=1

qnt . (A.34)

With
∑V

n1,...,nv being a short hand of
∑
n1=1

n1 6= n2 6= .. 6=

nv
∑
nv=1

.
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Upon using (A.34), (A.33), (A.32), (A.31), (A.30), and
(A.29) into (A.28), then using [43, Eq. (3.361.2)] and
[43, Eq. (3.371.1)], we get

Pr
(

max
(j,c) 6= (i,l)

c∈L

γuj,c ≤ γui,l
)

=

|Un−ui|∑
v=0

(−1)v

(v!)

|Un−ui|∑
n1=1

|Un−ui|∑
p1=1

. . . (nx, py) 6= (i, l) . . .

|Un−u_i|∑
nv=1

|Un−ui|∑
pv=1

∞∑
s=0

2e−2KK s(K + 1)s(s!)2σ (s+1)
ui,l (s+ 1)!(

σui,l +
∑|Un−ui|

t=1 σunt ,pt
)(s+2) .

(A.35)

Using the same procedure, we can get the remaining terms
as follows

Pr
(

min
ut∈{Un−ui&up}

γut ,l > γup,l
)

=

|Un−ui−up|∑
v=0

(−1)v

(v!)

|Un−ui−up|∑
n1=1

. . . v 6= (i, p) . . .

|Un−ui−up|∑
nv=1

∞∑
s=0

2e−2KK s(K + 1)s+1σ (s+1)
up,l (s+ 1)!(

σui,l +
∑|Un−ui−up|

t=1 σunt ,l
)(s+2) ,

(A.36)

and

Pr (γui,e > γout)

= 1− Pr (γui,e < γout)

= 1− Pr
(

Pu|hui,e |
2d−ηui,e

N0 + PJ|hup,e |d
−η
up,e

< γout

)
. (A.37)

At high SNR values, the term N0 can be ignored, and hence,
(A.37) can be rewritten as

Pr (γui,e > γout)

= 1− Pr
(
Pu|hui,e |

2d−ηui,e

PJ|hup,e |2d
−η
up,e

< γout

)
= 1− Pr (|hui,e |

2 < σe|hup,e |
2)

= 1−
∫
∞

0
[1− Q1(

√
2K ,

√
2(K + 1)σex)]

×fhup,e (x)dx, (A.38)

where σe = γout (
PJ
Pu
)(
dup,e
dui,e

)−η, dup , e and dui,e are the
distances between the jamming and transmitting UAVs to the
eavesdropper, respectively. Using (A.29), (A.30), (A.31), and
(A.32) we get

Pr (γui,e > γout)

=

M∑
r=0

r∑
j=0

∞∑
s=0

2grr !σejK se−K (s+ j+ 1)
j!(s!)2(K + 1)s(σe + 1)s+j+1

. (A.39)
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