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ABSTRACT With the development of new energy power systems, the estimation of the parameters of
photovoltaic (PV) models has become increasingly important. Weather changes are random; therefore,
the changes in the PV output power are periodic and nonlinear. Traditional power prediction methods are
based on linearity, and relying only on a time series is not feasible. Consequently, metaheuristic algorithms
have received considerable attention to extract the parameters of solar cell models and achieve excellent
performance. In this study, the Turbulent Flow of Water-based Optimization (TFWO) is used to estimate
the parameters of three traditional solar cell models, namely, Single-Diode Solar Cell Model (SDSCM),
Double-Diode Solar Cell Model (DDSCM), and Three-Diode Solar Cell Model (TDSCM), in addition to
three modified solar cell models, namely, modified SDSCM (MSDSCM), modified DDSCM (MDDSCM),
and modified TDSCM (MTDSCM). Moreover, a polynomial equation of five degrees for the sum of squared
errors (PE5DSSE) between the measured and calculated currents was used as a new objective function for
extracting the parameters of the solar cell models. The proposed objective function delivered improved
prediction accuracy than common objective functions. Experimental results revealed the effectiveness of
TFWO compared with six counterparts, namely, ‘‘Tunicate Swarm Algorithm (TSA), Grey wolf optimizer
(GWO), modified particle swarm optimization (MPSO), Cuckoo Search algorithm (CSA), Moth flame
optimizer (MFO) and Teaching Learning based optimization algorithm (TLBO),) for all the traditional and
modified solar cell models based on the optimal parameters extracted using best PE5DSSE values.

INDEX TERMS Turbulent flow of water optimization (TFWO), metaheuristic algorithms (MHs), photo-
voltaic models, single diode solar cell model (SDSCM), double diode solar cell model (DDSCM), three
diode solar cell model (TDSCM).

ABBREVIATIONS
PV Photovoltaic
SDSCM Single Diode Solar Cell Model
DDSCM Double Diode Solar Cell Model
TDSCM Three diode Solar Cell Model
MSDSCM Modified Single Diode Solar Cell Model
MDDSCM Modified Double Diode Solar Cell Model
MTDSCM Modified Three Diode Solar Cell Model
TFWO Turbulent Flow of Water Optimization
MPSO Modified Particle Swarm Optimization
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GWO Grey Wolf Optimizer
CSA Cuckoo Search Algorithm
TSA Tunicate Swarm Algorithm
MFO Moth Flame Optimizer
TLBO Teaching Learning Based Optimization

I. INTRODUCTION
Human activities release excess carbon dioxide and other
global warming gases into the atmosphere. Such gases act like
a cover and trap heat in the atmosphere, resulting in signifi-
cant and destructive impacts, including frequent storms and
dry spells, rise in sea levels, and termination of animals [1].
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Most renewable energy sources emit small to no global warm-
ing gases. Renewable energy obtained from biomass can pro-
duce a large number of global warming gases depending on
the assets and whether the biomass is economically sourced
and collected. Expanding the renewable energy supply can
allow us to supplant carbon-intensive vitality sources and
altogether decrease global warming emissions [2].

Solar energy is renewable. It is abundantly available, free,
does not require transportation, and does not contaminate the
environment. Sun-powered vitality facilitates a modern way
of life for humankind and considers environment and ecolog-
ical life into vitality preservation to diminish environmental
contamination. It is the most common renewable source after
wind energy [3]. Moreover, it is a promising vitality source
that has expanded to incorporate numerous applications,
including sun-powered water warming, sun-powered heat-
ing of buildings, sun-powered refining, sun-oriented pump-
ing, sun-powered heaters, sun-oriented cooking, sun-powered
electric control, sun-powered warm-control generation, and
sun-powered greenhouses [4].

Solar energy is converted into a valuable power source
using a photovoltaic (PV) model based on system based on
the building block of the solar cell that converts light into
electricity directly [5]. Solar PV innovation is considered a
significant renewable energy source worldwide [6]. Recently,
considerable financial enhancements within the PV control
industry have been achieved, thus enabling a clean future for
this innovation. PV can influence humans from all walks of
life, such as mortgage holder, agriculturist, planner, architect,
or electricity user. PV was first used in space programs.
Currently, PV frameworks are used to produce power-to-
pumpwater, illuminate the night sky, actuate switches, charge
batteries, and supply electric utility lattice, among others.

An essential aspect of improving the efficiency of PV
systems is determining an optimal design for the system.
Therefore, a reliable and optimal PV system model must be
established to improve the operating characteristics of the
overall PV system [7]. The modeling process can be divided
into two independent stages. The first stage involves the
preparation of the mathematical model of the PV system, and
the second stage involves the accurate parameter estimation
technique for precise PV cell modeling and the analysis of
PV system characteristics. However, the high nonlinearity
of the output I–V curve makes the optimal design for the
system very difficult. Many PV solar cell models describe
the nonlinear performance of the solar PV system, such as
The Single Diod PV (SDPV), a Double Diode PV (DDPV),
and a Triple-Diode PV (TDPV) [8]

The SDPV model is the basic PV solar cell model and
is the most popularly used model owing to its simplicity,
smaller number of unidentified parameters, and higher accu-
racy. Therefore, the SDPV model exhibits a straightforward
structure with fast dynamic behavior. The DDPV model
achieves more accurate modeling of the PV panels than the
SDPV model; further, the DDPV model shows losses in the
P–N junction’s quasineutral and space-charge regions [9].

The DDPV model has seven unknown parameters that must
be estimated; therefore, it simulated as amathematical model.
In a study by Kaur et al. [10], the three-diode model is
presented as a model with ten parameters that increase the
exactness of the estimation process and make the PV cell
model suitable for manufacturing applications. The TDPVis
considered the best PV solar cell model, although its design is
complicated. The consistent modeling of the PV system is a
challenging task that typically depends on the formulation of
the mathematical simulation model and the exact estimation
of the unknown parameters [11].

Different approaches have been used to fine-tune the
unknown parameters (maximum ten parameters) of the PV
model. In recent literature, the SDPV, DDPV, and TDPV
models of the PV modules have been widely investigated
because of their unknown parameters determined using
analytical techniques and metaheuristic (MH) optimization
approaches [12].

Analytical techniques have been used to estimate the PV
parameters using different selected points. The analytical
approach is based on the derivation of mathematical equa-
tions that necessarily provide simple and rapid identifica-
tion and calculation of the PV parameters. In analytical
approaches, the main points of the I–V characteristic curves
were used, namely, the point of the short circuit current,
open-circuit voltage, and the maximum power. Despite the
simplicity and short calculation time, the accuracy of analyt-
ical approaches can decrease if one or more critical points
of the I–V characteristics are incorrectly determined [13].
Moreover, the analytical approach does not reflect the real
operating conditions. Several analytical techniques have been
reported in the literature [14].

The Lambert method is a strategy for predicting the
obscure parameter values of the one- and two-diode modes
of the sun-powered PV cells. This approach is less accu-
rate than the numerical approaches. Numerical calcula-
tion strategies generally involve nonlinear calculations,
such as the Newton–Raphson method [15], Nelder–Mead
simplex strategy [16], conductivity strategy [17], and
Levenberg–Marquardt (LM) calculation, to distinguish the
parameters of the reenactment models of the PV frame-
work [18]. In this setting, multiple numerical procedures are
presented in a study [?]. In any case, notwithstanding the
precision of the explanatory approaches, numerous obscure
parameters within the numerical strategies complicate the
extraction procedure.

A comprehensive survey on MH calculations and related
variations [20]–[22] has been performed on the PV cell
parameters. These calculations are primarily classified
into four categories: biology-, physics-, sociology-, and
mathematics-based calculations.

The primary category of MH calculations for PV cell
modeling and parameter estimation is biology-based cal-
culations, such as genetic algorithm (GA) and differen-
tial evolution (DE). In the same setting, the adaptive GA
method can yield higher computation efficiency of parameter
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estimation [23] than traditional GA methods. In the same
context, the improved versions of DE [24],have been pro-
posed to enhance the convergence speed and global search
quality, such as artificial bee swarm optimization [25], artifi-
cial bee colony algorithm, teaching–learning-based artificial
bee colony [26], whale optimization algorithm (WOA) [27],
improved WOA [28], and chaotic WOA [29]. In addition
to modified WOA, improved antlion optimizer [30], and
biogeography-based optimization (BBO) [31], the BBO–M
strategy incorporates the mutation strategy of DE into the
original migration of BBO [31], to effectively enhance
the exploitation capability and overcome the shortcomings
of the conventional BBO, which can easily determine an
optimumwhen the PV cell parameter identification is applied
using the cuckoo search (CS) [32]. A hybrid version of
CS, called biogeography-based heterogeneous CS algorithm,
is proposed [33] to improve the accuracy and reliability of
various algorithms, such as original CS, bird-mating opti-
mization (BMO) [34], simplified BMO [35], Flower polli-
nation algorithm (FPA) [?], hybrid bee pollinator FPA [36],
Grey wolf optimization (GWO) [37], Bacterial foraging algo-
rithm [38], Artificial immune system [39], and Salp swarm
algorithm.

Simulated results show the significant superiority of MH
algorithms for modeling model the PV cells based on the
category of biology-based algorithms. Hence, such strategies
can be considered robust and effective tools to solve the
identification problem of PV cells.

The second category of MH calculations for PV cell
modeling and parameter estimation is the physics-based cal-
culation. This category incorporates calculations that are used
for parameter identification, such as particle swarm optimiza-
tion (PSO) (and its improved models [40],), parallel chaos
optimization algorithm (PCOA), modified PCOA (MPCOA)
[41], simulated annealing (SA) algorithm [42], hybrid
method (LM+SA) [17], firework algorithm [43], wind-driven
optimization [44], evaporation rate-based water cycle algo-
rithm (an improved version of water cycle algorithm (WCA)),
and improved Lozi map-based chaotic optimization algo-
rithm [45]. All these physics-based algorithms have been
used for identifying the parameters of PV cells.

The third category of MH algorithms PV cell modeling
and parameter estimation is the sociology-based algo-
rithms. This category includes algorithms that are used
for parameter identification, such as harmony search (HS)
algorithm, grouping-based global HS [46], (an improved vari-
ant of HS), teaching–learning-based optimization (TLBO)
algorithm [47], improved and simplified TLBO (STLBO)
algorithm [44], imperialist competitive algorithm (ICA) [44]
and multiple learning backtracking search algorithm. Com-
pared with GA and PSO, ICA has a higher convergence
speed and accuracy and more substantial convergence stabil-
ity, particularly for low-dimensional optimizations. Based on
backtracking search algorithm [48], all sociology-based algo-
rithms and approaches have been used for PV cell parameter
identification for SDM and DDM.

The fourth category of MH calculations for PV cell mod-
eling and parameter estimation is the mathematics-based
calculation. This category incorporates calculations used for
parameter estimation, such as pattern search algorithm [49],
shuffled complex evolution algorithm [50] Jaya algorithm,
and modified Jaya algorithm.

In summary, the major contributions of this study are as
follows:
• The polynomial equation of five degrees for the sum of
squared errors (PE5DSSE) between the measured and
calculated currents is used as a new objective function
for extracting parameters of the solar cell models.

• New MH algorithms and turbulent flow of water-based
optimization (TFWO) are used for identifying the solar
cell parameters.

• The performance of the proposed algorithm is compared
with those of other algorithms, such as tunicate swarm
algorithm (TSA), GWO, modified particle swarm opti-
mization (MPSO), CS algorithm (CSA), moth flame
optimizer (MFO), and TLBO algorithm.

• The parameters of traditional solar cell models, namely,
single-diode solar cell model (SDSCM), double-diode
solar cell model (DDSCM), and three-diode solar cell
model (TDSCM), are estimated.

• The parameters of the modified solar cell mod-
els, namely, modified SDSCM (MSDSCM), modi-
fied DDSCM (MDDSCM), and modified TDSCM
(MTDSCM), are estimated.

• The modified and traditional solar cell models are com-
pared based on the new PE5DSSE value.

• The characteristic curves of SDSCM, DDSCM,
TDSCM, MSDSCM, MDDSCM, and MTDSCM are
simulated based on the optimal parameters extracted
using the best PE5DSSE value from the TFWO
algorithm.

The remainder of this paper organization is as follows. The
analysis of photovoltaic models is presented in Section II.
The new objective function is discussed in Section III.
An overview of TFWO is shown in Section IV. The experi-
mental results and discussion are presented in Section V. The
conclusion of this paper is summarized in Section VI.

II. ANALYSIS OF PHOTOVOLTAIC MODELS
The traditional PV models, such as SDSCM, DDSCM, and
TDSCM, and modified PV models (MSDSCM, MDDSCM,
and MTDSCM) are analyzed in this section.

A. SINGLE DIODE SOLAR CELL MODEL (SDSCM)
Figure 1 shows the equivalent circuit of SDSCM. Based on
this circuit, the current generated from SDSCM is determined
using the following equation:

I = Iph − Id1 − Ish (1)

I = Iph − Io1

[
e
q(V+IRs)
n1KTc − 1

]
−
V + IRs
Rsh

(2)
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FIGURE 1. Single diode equivalent model.

FIGURE 2. Modified single diode equivalent model.

where I ; is the current output from SDSCM, Iph is the photo
generated current, the shunt current is Ish, Id1 is the diode
current, Rsh is the shunt resistance, Rs is the series resistance,
n1 is the diode ideality factor, K is Boltzmann’s constant, q is
the charge of electron, Tc is the cell temperature.

B. MODIFIED SINGLE DIODE SOLAR CELL MODEL
(MSDSCM)
Figure 2 shows the equivalent circuit of MSDSCM. Based on
this circuit, the current generated from MSDSCM is deter-
mined using the following equation:

I = Iph − Io1

[
e
q(V+IRs−Id1Rsm)

n1KTc − 1
]
−
V + IRs
Rsh

(3)

The losses in the quasi-neutral region is expressed by adding
the modified series resistance; Rsm.

C. DOUBLE DIODE SOLAR CELL MODEL (DDSCM)
Figure 3 shows the equivalent circuit of DDSCM. Based on
this circuit, the current generated fromDDSCM is determined
using the following equation:

I = Iph − Id1 − Id2 − Ish (4)

I = Iph−Io1

[
e
q(V+IRs)
n1KTc − 1

]
−Io2

[
e
q(V+IRs)
n2KTc − 1

]
−
V+IRs
Rsh

(5)

where Id2 is the current in the second diode, n2 is the ideality
factor of the second diode.

FIGURE 3. Double diode equivalent model.

FIGURE 4. Modified double diode equivalent model.

FIGURE 5. Three diode equivalent model.

D. MODIFIED DOUBLE DIODE SOLAR CELL MODEL
(MDDSCM)
Figure 4 shows the equivalent circuit of MDDSCM. Based on
this circuit, the current generated from MDDSCM is deter-
mined using the following equation.

I = Iph − Io1

[
e
q(V+IRs)
n1KTc − 1

]
− Io2

[
e
q(V+IRs−Id2Rsm)

n2KTc − 1
]

−
V + IRs
Rsh

(6)

The losses in the space charge region is expressed by
adding the modified series resistance; Rsm in the second
diode.

E. THREE DIODE SOLAR CELL MODEL (TDSCM
Figure 5 shows the equivalent circuit of TDSCM. Based on
this circuit; the current generated fromTDSCM is determined
using the following equation:

I = Iph − Id1 − Id2 − Id3 − Ish (7)

I = Iph − Io1

[
e
q(V+IRs)
n1KTc − 1

]
− Io2

[
e
q(V+IRs)
n2KTc − 1

]
− Io3

[
e
q(V+IRs)
n3KTc − 1

]
−
V + IRs
Rsh

(8)

where Id3 is the current in the third diode, n3 is the ideality
factor of the third diode.
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FIGURE 6. Modified three diode equivalent model.

F. MODIFIED THREE DIODE SOLAR CELL MODEL
(MTDSCM)
Figure 6 shows the equivalent circuit of MTDSCM. Based on
this circuit, the current generated from MTDSCM is deter-
mined using the following equation.

I = Iph − Io1

[
e
q(V+IRs)
n1KTc − 1

]
− Io2

[
e
q(V+IRs)
n2KTc − 1

]
− Io3

[
e
q(V+IRs−Id3Rsm)

n3KTc − 1
]
−
V + IRs
Rsh

(9)

The losses in the defect region is expressed by adding the
modified series resistance; Rsm in the third diode.

III. OBJECTIVE FUNCTION
To measure the consistency between the measured and sim-
ulated data, the PV models (SDSCM, MSDSCM, DDSCM,
MDDSCM, TDSCM, and MTDSCM) were evaluated using
a new objective function for estimating the parameters of
eachmodel. The new objective function is PE5DSSE between
the measured and simulated current data. The mathematical
equations for PE5DSSE are expressed as follows:

J (V .I .X) = I − Iexp (10)

SSE =
N∑
1

J (V .I .X)2 (11)

PE5DSSE = SSE + SSE2
+ SSE3

+ SSE4
+ SSE5 (12)

where Iexp, is the measured current, N is the number data
set and X is the variables required to estimate. The decision
variable vector for SDSCM is:

X = (Iph. Io1. n. Rs and Rsh).

The decision variable vector for DDSCM is:

X = (Iph. Io1. n. Rs. Rsh. Io2 and n2).

The decision variable vector for TDSCM is:

X = (Iph. Io1. n1. Rs. Rsh. Io2. n2. Io3 and n3).

The decision variable vector for MSDSCM is

X = (Iph. Io1. n1. Rs. Rsh and Rsm).

The decision variable vector for MDDSCM is:

X = (Iph. Io1. n. Rs. Rsh. Io2. n2 and Rsm).

TABLE 1. The limits of estimated parameters [33].

The decision variable vector for MTDSCM is:

X = (Iph. Io1. n1. Rs. Rsh. Io2. n2. Io3. n3 and Rsm).

The parameters for the SDSCM, DDSCM, TDSCM,
MSDSCM, MDDSCM and MTDSCM are identified with
the proposed TFWO algorithm for R.T.C France solar
cell. The proposed algorithm TFWO results are compared
with other algorithms such as Tunicate Swarm Algorithm
(TSA) [51], Grey wolf optimizer (GWO) [52], modified par-
ticle swarm optimization (MPSO) algorithm [53], Cuckoo
Search algorithm (CSA) [54], Moth flame optimizer (MFO)
[55] and Teaching Learning based optimization algorithm
(TLBO) [56]. the limit of estimated parameters [33] are
shown in Table 1.

IV. TURBULENT FLOW OF WATER-BASED OPTIMIZATION
(TFWO)
TFWO [57], is a recent MH algorithm. It is inspired by the
whirlpool phenomenon created in a turbulent flow of water.
A whirlpool moves in a circular motion along a tight route.
The center of the whirlpool is a hole that sucks the particles
around it toward the middle and then draws the particles
inside the vortex. In the TFWO algorithm, the population is
divided into NWh groups and the best member of each group
is set in the center of the whirlpool.

a: FORMATION AND EFFECTS OF WHIRLPOOLS
The algorithm divides the initial population (x0) and com-
prising Np members set equally between the NWh whirlpool.
Moreover, by applying a centripetal force on each whirlpool
(Wh), and plunging them into its well, the positions of objects
in a specific set (X ) were integrated with its central position.
Then, each whirlpool jth (with their local position on Whj,
integrating the Xi object position with itself; this implies
that ((Xi = Whj). If this integration is not performed, some
deviations (1Xi) will occur for other (Wh) whirlpools owing
to the distance (Wh−Whj) between them and their objective
values (f ()). Therefore, the ith new position of the object
will be equal toXinew = Whj −1Xi. Moreover, around their
whirlpool’s center and approach, themotion of the objects (X )
is restricted by the special angle (δ), which changes at each
iteration as follows:

δnewi = δi + rand1 × rand2 × π (13)

The angle 1Xi has been calculated depending on the dis-
tance of the whirlpools from all the objects with the least and
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most weights based on Eqs. 14 and 15 respectively. Then,
the particle’s position is updated from Eq. (16).

1t = f (Wht)× |Wht − sum (Xi)|0.5 (14)

1Xi = (cos(δnewi )× rand (1,D)× (Whf − Xi)

− sin
(
δnewi

)
× rand(1,D)× (Whw − Xi)

)
×
(
1+

∣∣cos (δnewi
)
− sin

(
δnewi

)∣∣) (15)

Xnew
i = Whj −1Xi (16)

where the δi is the ith object’s angle and the whirlpools with
the minimum and maximum values of1t areWhf andWhW ,
respectively.

A. THE MATHEMATICAL MODEL
This subsection presents an overview of the mathematical
steps for the TFWO algorithm as follows:

1) Updating object’s position phase: The updating of
object’s position is summarized in the following two
steps:
Step 1:
for t = 1 NWh
1t = f (Wht )× |Wht − sum(Xi)|0.5

end
Whf=Wht with min value of 1t
Whw=Wht with max value of 1t
δnewi = δi + rand 1 × rand 2 × π

1Xi=
(
cos

(
δnewi

)
× rand (1,D)×

(
Whf − Xi

)
− sin

(
δnewi

)
× rand(1,D)× (Whw − Xi)

)
×
(
1+

∣∣cos (δnewi

)
×− sin

(
δnewi

)∣∣);
Xnew
i = Whj −1Xi;
Step 2:
Xnew
i = min

(
max

(
Xnew
i ,Xmin

)
,Xmax

)
;

if f
(
Xnew
i

)
<= f (Xi)

Xi = Xnew
i

f (Xi) = f
(
Xnew
i

)
;

end
2) Centrifugal force phase:

From Newton’s first law of motion, although the cen-
tripetal force FEi pulls the moving objects toward
their whirlpool, FEi occasionally overcomes the cen-
tripetal force of the whirlpool; therefore, the object ran-
domly moves to a new position. Then, the centrifugal
force moves them away from the corresponding center.
Moreover, the centrifugal force and action use Eq.(17)
and Eq. (18) respectively. Additionally, the mathemati-
cal model of the centrifugal force phase is summarized
in Step 3.

FEi =
((
cos

(
δnewi

))2
×
(
sin
(
δnewi

))2)2 (17)

xi,p = xmin
p + rand ×

(
xmax
p − xmin

p

)
(18)

Step 3:

FEi=
((
cos

(
δnewi

))2
×
(
sin
(
δnewi

))2)2.
if rand < FEi
p = round(1+ rand×(D− 1));

xi,p = xmin
p + rand ×

(
xmax
p − xmin

p

)
;

f (Xi) = f
(
Xnew
i

)
;

end
3) Interactions between the whirlpools phase:

The effects of whirlpools on the objects have beenmod-
eled. Every whirlpool tends to unite its own position
with that of the considered whirlpool, which is similar
to the effects of a whirlpool on the surrounding objects.
Therefore, the minimum amount of nearest whirlpool
is calculated using Eq. (19) based on its objective
function. To update the whirlpool position, Eqs. (20)
and (21) are defined as follows.

1t = f (Wht )×
∣∣Wht − sum(Whj)∣∣ (19)

1Whj = rand(1,D)×
∣∣∣cos(δnewj )+ sin(δnewj )

∣∣∣
× (Whnewf −Wh

new
j ) (20)

Whnewj = Whf −1Whj (21)

where, value of the jth whirlpool hole’s angle is acts
by δ.
To summarize the above phenomenon, we use Steps 4
and 5, which illustrate the relation between the
whirlpool interactions:
Step 4:
for t = 1: NWh − j
1t = f(Wht ) ×

∣∣Wht − sum(Whj)∣∣
end
Whf =Wh with min value of 1t
Whnewj = Whf −1Whj;

1Whj = rand(1,D) ×
∣∣∣cos(δnewj )+ sin(δnewj )

∣∣∣ ×
(Whnewf −Wh

new
j );

δnewj = δj + rand1 × rand2 × π .
Step 5:
Whnewj = min(max(Whnewj ,Xmin), Xmax);
if f(Whnewj ) ≤ f(Whj)
Whj = Whnewj ;
f(Whj) = f(Whnewj );
end

4) The strongest member phase:
Among the new members obtained for the whirlpool,
the strongest member is selected for the next iteration
according to the least value of the objective function
compared with its corresponding whirlpool. To sum-
marize this phase, Step 6 illustrates the selected new
strongest whirlpool.
Step 6:
if f(Xbest ) ≤ f(Whj)
Whj↔ Xbest
end

V. RESULTS OF SOLAR CELL MODELS
The identified parameters of the traditional and improved
solar cell models are established in this section using the
R.T.C France solar cell. The proposed TFWO algorithm
uses the estimated parameters. Several algorithms, such
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TABLE 2. The parameters identified SDSCM at the best PE5DSSE.

FIGURE 7. I-V and P-V curves for SDSCM at the best PE5DSSE from TFWO.

as TSA [51], Grey wolf optimizer (GWO) [52], modi-
fied particle swarm optimization (MPSO) algorithm [53],
Cuckoo Search algorithm (CSA) [54], Moth flame optimizer
(MFO) [55] and Teaching Learning based optimization algo-
rithm (TLBO) [56], are compared with the proposed TFWO
algorithm. The algorithms used in this study extract the solar
cell parameters of each model based on the new objective
function. TFWO and all compared algorithms were evaluated
using 30 independent runs (with 1000 iterations in each run)
and 30 search agents.

A. RESULTS OF THE TRADITIONAL SOLAR CELL MODELS
The results for the traditional solar cell models, namely,
SDSCM, DDSCM, and TDSCM, are discussed in this sub-
section. The estimated parameters of these models are based
on the new objective function. PE5DSSE in terms of the
proposed TFWO algorithm and other compared algorithms is
discussed. The I–V and P–V curves of the R.T.C France solar
cell for SDSCM, DDSCM, and TDSCM are illustrated using
the best PE5DSSE value for the proposed TFWO algorithm.

1) SDSCM RESULTS
The parameters extracted from the seven algorithms for
SDSCM explain in table: 2. Based on this data the best value
of PE5DSSE is 2.5278E-05, that is achieved by the TFWO
algorithm, the TLBO algorithm achieve the second best
PE5DSSE (2.5308E-05), then CSA, MFO, GWO, TSA and
MPSO respectively. Figure 7 explains the I-V and P-V curves

TABLE 3. The parameters identified DDSCM at the best PE5DSSE.

for SDSCM at the best value of PE5DSSE from the proposed
TFWO. Figure 8 explains the absolute error for current and
power curves for SDSCM at the best value of PE5DSSE from
the proposed TFWO. Based on these figures; the maximum
absolute error for current is 0.00250741232809032, the max-
imum absolute error for power is 0.00146257361097508.

2) DDSCM RESULTS
The parameters extracted from the seven algorithms for
DDSCM explain in table 3. Based on this data the best value
of PE5DSSE is 2.51E-05, that is achieved by the TFWO algo-
rithm, the TLBOalgorithm achieve the second best PE5DSSE
(2.52E-05) then MFO, CSA, GWO, TSA and MPSO respec-
tively. Figure 9 explains the I-V and P-V curves for DDSCM
at the best value of PE5DSSE from the proposed TFWO.
Figure 10 explains the absolute error for current and power
curves for DDSCM at the best value of PE5DSSE from the
proposed TFWO. Based on these figures; the maximum abso-
lute error for current is 0.00255209505168791, the maximum
absolute error for power is 0.00148863704364956.
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FIGURE 8. Absolute error of current and power for SDSCM at the best PE5DSSE from TFWO.

FIGURE 9. I-V and P-V curves for DDSCM at the best PE5DSSE from TFWO.

FIGURE 10. Absolute error of current and power for DDSCM at the best PE5DSSE from TFWO.

3) TDSCM RESULTS
The parameters extracted from the seven algorithms for
TDSCM explain in table 4. Based on this data the best value
of PE5DSSE is 2.51E-05, that is achieved by the TFWO

algorithm, the TLBO algorithm achieve the second best
PE5DSSE thenMFO, CSA, GWO, TLBO andMPSO respec-
tively. Figure 11 explains the I-V and P-V curves for TDSCM
at the best value of PE5DSSE from the proposed TFWO.
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FIGURE 11. I-V and P-V curves for TDSCM at the best PE5DSSE from TFWO.

FIGURE 12. Absolute error of current and power for TDSCM at the best PE5DSSE from TFWO.

TABLE 4. The parameters identified TDSCM at the best PE5DSSE.

Figure 12 explains the absolute error for current and power
curves for TDSCM at the best value of PE5DSSE from the
proposed TFWO. Based on these figures; the maximum abso-
lute error for current is 0.00255165596868381, the maximum
absolute error for power is 0.00148838092653328.

B. RESULTS OF THE MODIFIED SOLAR CELL MODELS
The results of the modified solar cell models, namely, MSD-
SCM, MDDSCM, and MTDSCM, are discussed in this sub-
section. The estimated parameters of these models are based
on the new objective function; further, PE5DSSE for the

TABLE 5. The parameters identified MSDSCM at the best PE5DSSE.

proposed TFWO algorithm and other compared algorithms
is discussed. The I–V and P–V curves for the R.T.C France
solar cell are illustrated for SDSCM, DDSCM, and TDSCM
using the best PE5DSSE value by employing the proposed
TFWO algorithm.

1) MSDSCM RESULTS
The parameters extracted from the seven algorithms for
MSDSCM are presented in Table 5. Based on these data,
the best PE5DSSE value is 2.5278E-05, which is achieved
using the proposed TFWO algorithm. The TLBO algorithm
achieves the second-best PE5DSSE value (2.5298E-05),
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FIGURE 13. I-V and P-V curves for MSDSCM at the best PE5DSSE from TFWO.

FIGURE 14. Absolute error of current and power for MSDSCM at the best PE5DSSE from TFWO.

followed by CSA, MFO, GWO, TSA, and MPSO, in the
given order. Figure 13 presents the I–V and P–V curves
for SDSCM using the best PE5DSSE value by employ-
ing the proposed TFWO algorithm. Figure 14 shows the
absolute error of the current and power curves for SDSCM
using the best PE5DSSE value by employing the pro-
posed TFWO algorithm. Based on these figures, the max-
imum absolute errors of the current and power curves
are 0.00250741122972475 and 0.00146257297029845,
respectively.

2) MDDSCM RESULTS
The parameters extracted from the seven algorithms for
DDSCM explain in table 6. Based on this data the best value
of PE5DSSE is 2.51E-05, that is achieved by the TFWO

algorithm, the TLBO algorithm achieve the second best
PE5DSSE (2.522E-05) then MFO, CSA, GWO, TSA
and MPSO respectively. Figure 15 explains the I-V and
P-V curves for DDSCM at the best value of PE5DSSE
from the proposed TFWO. Figure 16 presents the abso-
lute error of the current and power curves for DDSCM
using the best PE5DSSE value by employing the pro-
posed TFWO algorithm. Based on these figures, the max-
imum absolute errors of the current and power curves
are 0.00254956327080924 and 0.00148716025586303,
respectively.

3) MTDSCM RESULTS
The parameters extracted from the seven algorithms for
MTDSCM explain in table7. Based on these data, the best
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FIGURE 15. I-V and P-V curves for MDDSCM at the best PE5DSSE from TFWO.

FIGURE 16. Absolute error of current and power for MDDSCM at the best PE5DSSE from TFWO.

TABLE 6. The parameters identified MDDSCM at the best PE5DSSE.

PE5DSSE value is 2.509E-05, which is achieved using
the TFWO algorithm. The TLBO algorithm achieves the
second-best PE5DSSE value, followed by MFO, CSA,
GWO, TLBO, and MPSO, in the given order. Figure 17
shows the I–V and P–V curves for TDSCM using the best
PE5DSSE value by employing the proposed TFWO algo-
rithm. Figure 18 shows the absolute error of the current
and power curves for TDSCM using the best PE5DSSE
value by employing the proposed TFWO algorithm. Based

TABLE 7. The parameters identified MTDSCM at the best PE5DSSE.

on these figures, the maximum absolute errors of the
current and power curves are 0.00254473384254822 and
0.00148434325035837, respectively.

C. STATISTICAL ANALYSIS FOR ROBUSTNESS DATA FOR
ALL ALGORITHMS
In this section, we compared the performance of the mod-
ified and traditional solar cell models. The accuracy and
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FIGURE 17. I-V and P-V curves for MTDSCM at the best PE5DSSE from TFWO.

FIGURE 18. Absolute error of current and power for MTDSCM at the best PE5DSSE from TFWO.

TABLE 8. Statistical data for SDSCM and MSDSCM.

TABLE 9. Statistical data for DDSCM and MDDSCM.

reliability of each model are compared. The accuracy of
the model is measured using the best PE5DSSE value.
The reliability of the model is measured using the standard

TABLE 10. Statistical data for TDSCM and MTDSCM.

deviations of 30 independent runs for eachmodel based on the
PE5DSSE value. The minimum, mean, maximum, and stan-
dard deviation values of all the algorithms for SDSCM and
MSDSCM are presented in Table 8, those for DDSCM and
MDDSCM are shown in Table 9, and those for SDSCM
and MSDSCM are presented in Table 10. The results pro-
vided in Tables 7, 8, and 9 show that MSDSCM is more
accurate and reliable than SDSCM. Furthermore, MDDSCM
and MTDSCM are more reliable and accurate than DDSCM
and TDSCM, respectively. The proposed TFWO algorithm

VOLUME 9, 2021 35393



D. S. Abdelminaam et al.: TFWO Using New Objective Function for Parameter Extraction of Six Photovoltaic Models

FIGURE 19. The SDSCM robustness data.

FIGURE 20. The DDSCM robustness data.

achieves the optimal results for the minimum, mean, maxi-
mum, and standard deviation values using PE5DSSE com-
pared with other algorithms.

We performed statistical analysis for 30 independent runs
for all algorithms. The robustness curves for TFWO, TSA,
GWO, CSA, MFO, MPSO, and TLBO are presented in
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FIGURE 21. The TDSCM robustness data.

FIGURE 22. The MSDSCM robustness data.

Figures 19, 20, 21, 22, 23 and 24 for SDSCM,
DDSCM, TDSCM, MSDSCM, MDDSCM, and MTDSCM,
respectivelyi. Based on these figures, the objective function
output from each run for most algorithms diverges from the

best solution, except for the solutions extracted using the
proposed TFWO algorithm. The global optimum solution is
converged by the proposed TFWO. Therefore, the TFWO
algorithm is superior to all comparative algorithms.
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FIGURE 23. The MDDSCM robustness data.

FIGURE 24. The MTDSCM robustness data.

VI. CONCLUSION AND FUTURE WORK
The PV systems are becoming one of the most popular
renewable energy technologies for generating electric power.
Establishing an accurate PV model that emulates the sys-
tem behavior under different environmental conditions is
essential. The challenge of PV cell parameter estimation has

garnered the attention of researchers and industrialists and
gained immense momentum for the development of PVmod-
els. The accuracy of the PV model depends on its identified
parameters that are mainly based on the executed optimiza-
tion technique and employed objective function. Therefore,
we use PE5DSSE between the measured and calculated
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currents. PE5DSSE is used as a new objective function for
extracting the parameters of the solar cell models. Herein,
we present an efficient MH method, called TFWO, for esti-
mating the parameters of PVs in solar cell systems. Regarding
the proposed objective function, the experimental and com-
parative results show that TFWO with high stability achieves
more precise and accurate parameters than other competitor
algorithms. The main conclusions of this study are listed:
• We propose a new objective function based on polyno-
mial equations to extract the parameters of the solar cell
models.

• This function yields the most accurate, precise, and con-
sistent solutions.

• The modified solar cell models, namely, MSDSCM,
MDDSCM, and MTDSCM, are more accurate and reli-
able than the traditional solar cell models, namely,
SDSCM, DDSCM, and TDSCM.

• TFWO shows more flexibility and effectiveness perfor-
mance than the other algorithms.

• The good fit confirms the superior reliability and
stability of TFWO.

• The superiority of the TFWO algorithm in comparison
with other competitor algorithms is confirmed in terms
of the experimental dataset fitting accuracy, convergence
rate, stability, and consistency of the results.

the future, we aim to improve the TFWO and other MH
algorithms for enhanced renewable energy and power sys-
tems. Moreover, we will consider the output power prediction
of multiple energy systems under the integrated energy sys-
tem. We also aim to perform research on the optimal control
of energy internet.
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