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ABSTRACT DICOM X-rays are not easily accessible for telemedicine, and existing learning-based auto-
mated Cobb angle (CA) predictions are not accurate on suboptimal X-ray images. To develop an automated
CA prediction system irrespective of image quality, with no restrictions on curve patterns, 367 consecutive
patients attending our scoliosis clinic were recruited and their coronal X-rays were re-captured using mobile
phones. Five-fold cross-validation was conducted (each with 294 randomly selected images for training a
neural network SpineHRNet to detect endplate landmarks and end-vertebrae, and the remaining 73 images
for testing). The predicted heatmaps of vertebral landmarks were visualized to enhance interpretability of the
SpineHRNet. Per-landmark Euclidean distance (L2) errors and recall of landmark detection were calculated
to assess the accuracy of the predicted landmarks. Further computed CAs were quantitatively compared with
spine-specialists measured ground truth (GT). The average L2 error and the recall of the detected endplates
landmarks were 2.8 pixels and 0.99 respectively. The predicted CAs were all significantly correlated with GT
(p<0.01). Compared with GT, the mean absolute error was 3.73-4.15◦ and standard deviation was 0.8-1.7◦

for the predicted CAs at different spinal regions. This is the first study on non-original X-rays to automatically
and accurately predict endplate landmarks of the scoliotic spine and compute the CAs at different regions
of the spine, irrespective of image qualities. SpineHRNet’s applicability is evidenced by five-fold cross-
validations, which may be used with telemedicine to facilitate fast and reliable auto-diagnosis and follow-up.

INDEX TERMS Automatic analysis, computer vision, HRNet, telemedicine, landmark detection, out of
hospital consultation.

I. INTRODUCTION
Adolescent idiopathic scoliosis (AIS) is the most common
pediatric spinal deformity [1], characterized by lateral cur-
vature of the spine [2], [3] on coronal X-rays [3], [4].
If untreated, curve progression can reach 90% [5], [6]. Up
to 38% of patients progress, despite following brace-wear-
protocol [7], [8], thus careful follow-ups are critical. Cobb
angles (CAs), which are measures of spine curvature in
degrees, are the primary consideration for AIS diagnosis
before appropriate treatment planning can be conducted [9].
To measure the CAs, the end vertebrae need to be identified,
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which are the most tilted vertebrae away from the horizon-
tal apical vertebra. The CA is then measured by the angle
formed by lines drawn at the superior and inferior endplates
of the upper and lower end vertebrae respectively. Previ-
ous studies have demonstrated traditional image processing
techniques [10]–[18] for feature extraction and CA calcula-
tion [16]. Due to the heterogeneous patterns of deformities
(i.e., different curve locations and combinations) and X-rays
having high variance (due to different equipment with differ-
ent technicians), these methods have limited accuracy and are
not applicable for direct clinical use.

Recent advances in artificial intelligence (AI) CA automa-
tion [19]–[22] can directly [23] or indirectly [21], [22] deter-
mine CAs from X-rays limited to a single curve, but cannot
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handle heterogeneous patterns of curves. It is also difficult to
guarantee the model has learnt the correct computation of CA
without intermediate supervision [23].

Deep learning analysis of CAs utilizing convolutional neu-
ral networks (CNNs) indicated the possibility of automated
spinal shape detection, but with unsatisfied accuracy despite
the use of original high-resolution X-rays [24].

The recently proposed human pose estimation network
High-Resolution Net (HRNet) [25] can improve the accuracy
of landmark detection in natural images. Most exist-
ing landmark detection networks consist of several cas-
caded encoder-decoder submodules, which down-sample and
up-sample feature maps sequentially. HRNet, on the con-
trary, can maintain high-resolution representations through
the whole network. It gradually adds sub-branches with
low-resolution representations in a parallel manner, and
fuses multi-scale features in its final high-resolution rep-
resentation. It may therefore have applications in medical
imaging analysis when accurate key point landmark detec-
tions are required, as is the case for endplate landmark
detection.

The stationary picture archiving and communication sys-
tem (PACS) is conventionally used for viewing and manually
assessing DICOM X-rays with built-in manual tools, which
are not easily accessible or modifiable. However, to facilitate
real-time or out of hospital follow-up, it is popular for spine
specialists to take a photo of the X-ray with a smartphone
for further communication with other clinicians and patient
carers [26], [27]. An automatic tool for accurately detecting
vertebrae landmarks on images of various quality can provide
an easily accessible tool to evaluate deformities.

This study aims to provide reliable automated verte-
bral landmark detection, irrespective of image quality, thus,
to potentially facilitate real-time diagnosis or out of hospital
follow-up. The objectives are, 1) to establish a reliable deep
learning-based method to accurately detect vertebral land-
marks, including endplates and end vertebrae; 2) to elim-
inate previous restrictions of automatic coronal alignment
on curve patterns or imaging quality by training the model
using non-original X-rays of various image quality and dif-
ferent curve patterns; and 3) to examine the vertebral land-
marks detection accuracy and CA computation accuracy by
comparing with the specialists measurements.

II. MATERIAL AND METHODOLOGY
A. DATASET PREPARATION AND IMAGE PRE-PROCESSING
Images of X-rays from 367 consecutive AIS patients (80%
female; age 10-18) who visited our clinic underwent screen-
shot of their X-rays by smartphones (Fig. 1A: including
iPhone 8 and iPhone 8 Plus; Apple Inc.) from April to
June of 2019. This study was ethically approved by the local
institutional review board. Patients were excluded if they
had psychological and/or systematic neural disorders that
could influence the compliance of the study and/or patient
mobility (e.g., prior cerebrovascular accident, Parkinson’s
disease, myopathy), congenital spinal deformities, previous

FIGURE 1. Example of the image acquisition process, end vertebra and
Cobb angles. The images were acquired by using smartphones and
screenshots of the X-rays displayed on the PACS (A). Cobb angles (CAs)
measured by the angles formed by lines drawn at the upper and lower
endplates of the upper and lower end vertebrae (the most tilted
vertebrae from the apical vertebra) respectively, with CAC, CAT, CAL
representing CAs at different regions of the spine (B). The deformity
severity of the spine is classified according to the CAs, with 0◦-20◦ being
normal to mild, 21◦-40◦ being moderate and over 40◦ being severe (C).
Different clinical interventions ranging from nonoperative management
to surgeries, would be required according to different severities.

spinal operations, any trauma that could impair posture and
mobility, and any oncological diseases. The technicians were
instructed to take photos or screenshots of the displayedX-ray
while maintaining the image plane parallel to the screen,
excluding the patient’s demographic information from the
capturing field to anonymize the X-rays. All images were
uploaded to our internal server via an in-house developed
mobile application.

The image collection was followed by labelling 4
endpoints of the 2 endplates of each vertebral body, manually
by spine specialists, using a self-developed Python-script, for
key point placement on the images. The upper 6 cervical ver-
tebrae were occluded by the skull, leaving 18 distinguishable
vertebrae from the 7th cervical vertebra to the 5th lumbar
vertebra (C7-L5), rising to 18 × 4=72 endplate landmarks.
End vertebrae and CAs (Fig. 1B), manually assessed by spine
specialists for deformity severity diagnosis and treatment
planning (Fig. 1C), were considered as ground truth (GT).
The inter-rater variation between the two specialists who
labelled the images were tested on fifty images. To clarify
the position of each curve, the CAs were triaged accord-
ing to whether the curvature started in the cervico-thoracic
region (CAC), the thoracic region (CAT) or the lumbar region
(CAL).

38288 VOLUME 9, 2021



T. Zhang et al.: Learning-Based Coronal Spine Alignment Prediction Using Smartphone-Acquired Scoliosis Radiograph Images

FIGURE 2. The overall pipeline of the automated Cobb angles using SpineHRNet. The left panel (grey) shows the network architecture, which predicts
4 heatmaps for the 4 endpoints of the vertebrae/endplates and 1 heatmap for the locations of the end vertebrae. The right panel illustrates the
inference stage with different sub-stages. During inference, endpoint locations of the endplates were extracted by Non-Maximum-Suppression (NMS)
and matched to different vertebrae, and the center point locations of the end vertebra were extracted by NMS from the end-vertebra-heatmap.
Subsequently the end vertebra center point with the nearest 4 endplate landmarks were identified to calculate the CAs.

The image quality varied with different resolution, inten-
sity and anatomical structures contained in the X-rays. The
image height range was 654-892 pixels (mean=887.3; and
median=892.0), whilst width range was 386-1384 pixels
(mean=704.8; median=696.0), and the mean intensity range
per image was 23.8-116.8, with most of images containing
the whole spine, but a few also including the whole body
(with the lower limbs). Due to the large variance in the
collected dataset, pre-processing was performed to automat-
ically remove the surrounding background pixels (i.e., with-
out affecting the spine) created by the optical acquisition of
the X-ray images displayed on the PACS. After the auto-
cropping, the range, mean, and median of image height were
654-892, 887.3 and 892 pixels respectively; with the range,
mean and median of image width being 318-893, 439.2 and
430 pixels respectively. To further unify the size of the input
images, the re-captured X-ray images were automatically
cropped and resized with zero padding to a fixed dimension
of 896× 448 pixels containing the whole spine.

B. DEEP LEARNING-BASED VERTEBRAL LANDMARKS
DETECTION
Our new approach consisted of a two-stage detection design
to identify the vertebral landmarks, including 1) the endplate
landmarks and 2) the end vertebrae. Thus, the CAs were
computed based on pre-detected endplate landmarks of the
end vertebrae. With this two-stage formulation, it was not
necessary to fix the number of CAs, as both the pat-
terns of curves and the number of CAs could be inferred
from the detected end vertebrae (Fig. 2). Importantly, these
endplate landmarks were close to each other in the adja-
cent vertebrae. Therefore, it was essential to utilize high-
resolution feature maps with sufficient low-level information,
which is the advantage of HRNet [25]. Additionally, locating

landmarks in the form of heatmaps has been shown to
be more effective and accurate than directly regressing
coordinates [28].

C. HEATMAP GENERATION AND SUPERVISION
To detect the endplate landmarks and end vertebrae, we uti-
lized heatmap representation as our supervision target. The
advantages of a heatmap include: 1) it can better capture
ambiguities in landmark labelling since the pixels around
the labelled landmarks are probable landmarks; 2) directly
outputting coordinates is a highly non-linear mapping from
the image to quantitative numbers; 3) the heatmap can
be visualized, which serves as an interpretable guide for
clinicians.

For the endplate landmark detections (Fig. 2), heatmaps
were generated as a 2D Gaussian distribution centred at
each of the ground-truth landmarks, where the pixel value
indicated the probability of it being a landmark. Further-
more, the landmark estimation was not formulated as a
single-spine landmark estimation, but multi-vertebra land-
mark estimation through a bottom-up approach [29]. If the
single-spine landmark estimation approach were adopted to
detect 72 landmarks, we would be generating 72 heatmaps,
each corresponding to one landmark of one end of the
endplate. However, we adopted the multi-vertebra landmark
estimation approach, thus we generated 4 heatmaps, each
corresponding to one endpoint of one endplate of one end
vertebra. For example, the first heatmap corresponded to the
left-upper landmarks and the last heatmap corresponded to
the right-lower landmarks of all the endplates. As a result,
the heatmaps were generated from a multi-peak 2D Gaussian
distribution (σ = 1, where σ is the standard deviation of
the Gaussian distribution: this value was selected due the
necessity of key point detection of the endplate landmarks).
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For end vertebrae detections (Fig. 2), we also adopted such
multi-peak heatmaps as a supervision target, enabling the
model to detect variable numbers of end vertebrae. There-
fore, we only generated 1 heatmap for all the end verte-
bra, with each peak value indicating the center of one end
vertebra, defined as the average of four endplate landmarks
of this end vertebra, with the σ value set to 6 (decided
empirically).

D. DATA AUGMENTATION AND TRAINING POLICIES
To further mimic the real-world situation and enhance the
robustness of our network to handle images captured under
different setups and quality, and to avoid overfitting our
dataset, extensive data-augmentation during training was car-
ried out. We did not use a fixed augmented dataset but
conducted augmentation in the training procedure. With this
augmentation policy, the size of our augmented dataset was
unbounded. Specifically, the imagewas firstly read intomem-
ory, followed by a random flip (probability=0.5), random
scale ([0.8, 1.2]), random rotation ([−5◦, 5◦]), random hor-
izontal translation ([−75 pixels, 75 pixels]), random vertical
translation ([−10 pixels, 10 pixels]), and a random contrast
augmentation ([0.8, 1.2]). Furthermore, we conducted addi-
tional cropping or padding to ensure the size of images was
fixed to 896 × 448 pixels, since the augmentation would
change the image size. The generated heatmaps and GT
landmarks were correspondingly transformed by the same
augmentations as the input images, with the mini-batch size
being 16.

For the heatmap generation described previously,
the supervision process could be considered as a classifi-
cation problem rather than a regression problem. We also
tested empirically, and found that the binary cross entropy
loss (BCE) (1), as shown at the bottom of the page, yielded
more accurate predicted heatmaps than the regression loss in
L1 (2), as shown at the bottom of the page, distance (the sum
of distance error in x and y axes) and L2 (3), as shown at
the bottom of the page, distance (the per-landmark Euclidean
distance error).

where B denotes the mini-batch-size, i the sample index
in each batch, (H ,W ) the sample shape, (x, y) the spa-
tial coordinates, G the GT heatmaps, and O the predicted
heatmaps. Although the network outputs a heatmap with
resolution down-sampled by a factor of 4, all experiment
results are based on the full resolution by multiplying 4 to
the coordinates of the predicted landmarks.

We trained our model with the Adam optimizer [30] by
setting β1 = 0.9, β2 = 0.999 and ε = 10−8 for both
landmark estimations and end-vertebrae detection. For the
endplate landmarks estimation, the base learning rate is set
as 1e−2, dropping to 1e−3 and 1e−4 at the 30th and 50th
epochs. Besides, the learning rate was gradually increased to
1e−2 from 1e−3 in the first 10 epochs (namely learning-rate
warm-up). The training process was terminated at
100 epochs.

To detect the end vertebra, the experiment settings were
similar, except that the initial learning rate was set to
2e−3; subsequently dropping to 2e−4 and 2e−5, respectively,
at the 30th and 50th epochs. We initialized both networks
from the ImageNet-pretrained checkpoint offered by HRNet
model zoo. Similarly, the end vertebrae detection network
was initialized with the trained endplate landmark estima-
tion network. We implemented our models in the PyTorch
framework, training these using 4 NVIDIA Titan Xp GPUs.
The network can be downloaded from the following link
(https://github.com/rovephoenix/automated-spine-analysis).

E. INFERENCE STAGE AND COBB ANGLE CALCULATION
At the inference stage, we firstly located every peak value
from each heatmap using the Non-Maximum-Suppression
(NMS) algorithm. For each end vertebra peak, 4 associated
endplate landmarks were grouped, by aligning the closest
4 endplate landmarks with the center points of the predicted
end vertebrae (Fig. 2). CAs were calculated via the detected
top endplate of the predicted top end vertebra, and the bottom
endplate of the predicted top end vertebra.

F. RELIABILITY ASSESSMENTS
Reliability assessments were conducted in a 5-fold cross-
validation manner to ensure a comprehensive and reliable
evaluation. The dataset was split into 5 exclusive folds
(73 images/fold). 5 independent experiments were conducted,
of which a randomly selected 4 folds were used for training
and 1-fold for testing. For the accuracy of landmark detec-
tions, we evaluated the landmark retrieval rate and the per-
landmark Euclidean distance (L2) errors. For CA predictions,
the recall, precision, and F1-score were evaluated to measure
the retrieval performance of our method. The absolute error
between the GT and the SpineHRNet predicted results were
evaluated. The prediction reliability was tested by regression
analysis and Bland-Altman plots of the GT with the results
pooled from the 5-fold cross-validation.

BCE = −
6B
i 6

H ,W
x,y

[
Gi [x, y]× logOi [x, y]+ (1− Gi [x, y])× log (1− Oi [x, y])

]
H ×W × B

(1)

L1 =
6B
i 6

H ,W
x,y ‖Gi [x, y]− Oi [x, y]‖1

H ×W × B
(2)

L2 =
6B
i 6

H ,W
x,y ‖(Gi [x, y]− Oi [x, y])‖2

H ×W × B
(3)
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FIGURE 3. Summary of the dataset labels. Panel A indicated the
frequency of each vertebra to be chosen as an end vertebra (x-axis:
vertebrae; y-axis: end vertebrae frequency). B indicated the number of
curves (y-axis) appeared as CAC, CAT or CAL respectively (x-axis).

III. RESULTS
In this dataset, the location of the end vertebrae (Fig. 3A)
and the number of major curves (Fig. 3B) was imbalanced.
End-vertebrae were more frequently identified at the 5th and
the 11th thoracic vertebrae (T5 and T11), as well as the 3rd and
the 4th lumbar vertebrae (L3 and L4). An increased number
of curves appeared in the thoracolumbar region (CAT=268;
CAL=212), compared to the cervicothoracic region (number
of CAC=97). The GT CAs of the dataset ranged from 10.08◦

to 82.48◦ (average 27.55◦±13.41, Table 1). Measurements
of the GT CAs had an absolute inter-rater variability of 4◦

to 6◦ between two spine specialists (mean = 4.5◦ ± SD 0.6,
ICC=0.91).

Using SpineHRNet, endplate landmarks detection was
accurate in visual evaluation (Fig. 4) and the average retrieval
rate (recall) in 5-fold cross-validation was 0.99 ± 0.009
(suggesting that almost all vertebral landmarks had been well
retrieved). The L2 error between the predicted landmarks and
the specialist-labelled ground truth landmarks was minimal,
being 2.8 pixels (Fig. 4).

TABLE 1. Summary of the ground truth CAs.

For the predictive accuracy of the CAs generated from our
newly proposed technology, the mean error of the predicted
CAs was a 3.73-4.48◦ difference from the GT with a standard
deviation of 3.11-3.64◦ (Table 2). The recall (0.62-0.83),
precision (0.78-0.88), and F1-score (0.69 - 0.88) had the
lowest predictive accuracy in the cervicothoracic curvature
(Table 2: CAC) and highest accuracy in the thoracic curvature
(Table 2: CAT).

The predictive reliability of the SpineHRNet based auto-
mated CAs was tested using a linear regression analysis
of predicted results against the GT (Table 3, Fig. 5). The
results were significantly correlated with the GT, with an
overall R2 of 0.833 and p <0.001 (Table 3). The slope of
the regression line for all CAs was 42◦ (Table 3, Fig. 5)
and close to the ideal value of 45◦ (indicating a perfect
match between the predicted results and the GT). However,
a relatively low R2 (0.787) and regression slope (38◦) was
found for the CACs predictive accuracy, whereas a high
R2 (0.83) and regression slope (42◦) was found during the
evaluation of CATs and CALs. The overall mean difference
between the GT and the predicted CAs was minimal being
-0.27 (Fig. 6). Similar to the regression tests, the largest
mean difference was also revealed in the reliability test of
CACs (-0.62), demonstrating that agreement rate between the

FIGURE 4. Four examples of comparison of the ground truth and the automated detections. The green points denote the ground truth (GT)
landmarks and the blue points denote the predicted landmarks. Red lines connect each predicted landmark and corresponding GT landmark,
demonstrating the small difference between the detection and the GT. The retrieval rate was 0.99 ± 0.009, thus the majority of the green ground
truth and blue predicted points are overlapped.
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TABLE 2. Evaluation metrics on CA prediction accuracy between the
ground truth and the SpineHRNet predicted CAs.

TABLE 3. Regression analysis of the correlation between ground truth
CAs and those predicted by SpineHRNet.

FIGURE 5. Regression analysis of the predicted alignment parameter
detections (y-axis) versus the ground truth results measured manually by
the spine specialists (x-axis). For CAs through the 5-folds of the predictive
reliability test, good agreement between the auto-detected degrees and
the ground truth was observed. All units are in degrees.

predicted results and the GTwas lowest in the cervicothoracic
region.

Close examination of the end vertebra predictive accuracy
was also conducted (Fig. 7). From the plotted heatmap,
it could be seen that despite the location of the curves
(Fig. 7A&B), the end vertebrae could be accurately pre-
dicted. No false positives were presented in the test dataset
(Fig. 7C). There was one interesting case of false negative
(Fig. 7D) in the cervicothoracic region. However, during a
close examination of the GT for this case, the CA was small
at 10.73◦.

IV. DISCUSSION
This is the first study to achieve accurate detection of 72
endplate landmarks and end vertebrae for C7-L5 on X-ray
images despite suboptimal and variable image qualities,

FIGURE 6. Bland-Altman plots comparing the agreement of CAs between
the SpineHRNet predictions and the ground truth. The Y-axis indicates the
difference between automated results and the ground truth. The X-axis
represents the average of these measures ((automated results + ground
truth)/2). Small mean differences from −0.62◦ to −0.35◦ with the overall
mean difference of −0.27◦ were shown between the auto-detected CAs
and the ground truth. All units are in degrees.

enabling auto-alignment for clinical analysis. While previ-
ous deep learning methods used other methods and original
high-quality X-rays yielded lower accuracy with limitation
of the curve patterns [24], [31]. Using our method, the CAs
could be automatically determined for variable patterns of the
curve. It may be due to the fact that the method we developed
is suitable for the task, and theGT landmarks were labelled by
spine specialists providing consistent output. To our knowl-
edge, this is the first and largest dataset of optical images
of coronal X-rays displayed on PACS for the application of
HRNet to detect the key landmarks. The image size, rotation
and quality variance of this dataset were large, representing
real-life scenarios in telemedicine. Thus, we can foresee the
application of this learning-based fully automated method
in accelerating follow-up, out of hospital consultation, large
scale clinical trials to avoid laborious manual assessment and
inter-rater variance.

Current manual or semi-automatic alignment assessment
software (including Surgimap, X-Align, Integrated Global
Alignment, etc.) utilize original X-rays for spine alignment
assessment. The existing software requires specialists to oper-
ate for landmark placing, whereas a system designed for fast
malalignment screening without specialists’ manual opera-
tions and original X-rays is not currently available. Essen-
tially, compared with traditional manual approaches, our
deep learning-based methods can be trained end-to-end in a
data-drivenmanner and can better handle different challenges
encountered to generate reproducible measurements.

Previous studies demonstrated that CAs could be com-
puted based on the original X-Rays [10], [14], [16]–[19],
[23]. One study even directly regressed CAs from input
images [23]. However, learning to detect CAs as a recogni-
tion/classification task is more stable than learning to predict
CAs directly as a regression task. Even trained specialists find
it difficult to determine CA from an image directly without
identifying the end vertebrae and measuring the slopes of
their endplates using measurement tools. Thus, the applica-
tion of intermediate supervision (using endplate landmarks)
can enhance the reliability and the interpretability of the
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FIGURE 7. Four case examples of end vertebrae detection. A: CAC and
CAT; B: CAT and CAL angle; C: normal with no curves; D: CAC and CAT and
CAL angle. For each part, the ground truth heatmap (1), predicted
heatmap (2) and original image merged with predicted heatmap (3) were
illustrated. A false negative in the cervicothoracic region was shown in D.

predicted results. Comparably, Horng et al. [19] performed
spine segmentation using a U-Net [32] and then computed
CAs from segmentation results, which did not result in
accurate detections of endplates compared to that of spine
specialists. The main reason is clinically the CAs are not
calculated based on the vertebral segmentation. Especially
for spines with deformities, the superior or inferior borders
of the segmented vertebrae are not always aligned with the
endplates, while the endpoints of the endplates are essential
landmarks for the CA computation. Thus, key point detec-
tions performed in our study mimicking the practice of spine
surgeons, although with low-resolution and non-original
X-rays, significantly improved the accuracy of the CA
computation.

Other AI-integrated methods include a semi-automated
algorithm for CA computation [22]. Unlike our fully auto-
mated approach, users are required to manually select sev-
eral patches of end-vertebrae used to directly regress CA.
Furthermore, a CNN-based network was used previously to
directly regress the pixel coordinates of vertebral landmarks
[21]. There are also other studies that have used multi-view
X-rays as the training dataset to predict alignment parameters
[24], based on original X-rays archived directly from PACS,
which is difficult to obtain for telemedicine. Our approach
has the advantage of being flexible and capable of handling
different CA patterns while generating consistent assessment
results.

The accurate detection of vertebral landmarks by our
method also improved CA predictive accuracy. CA prediction
(absolute mean error=3.73-4.15◦, standard deviation=0.8-
1.7◦) was significantly more accurate than previously
reported intra- and inter-rater variance (6.34-9.038◦) of mea-
surements by spine specialists using either manual or digital
tools [33]. Inconsistency between specialists for CAmeasure-
ments was reported with a range of 3-10◦ degrees resulting
from different end vertebrae selection and/or manually draw-
ing variable best-fit lines to the end vertebrae endplates [17].

This was comparable with the inter-rater variance of our
specialists. By eliminating the dependency of human input,
our method eliminated intra- and inter-rater variations in CA
computation. Compared to a recently published conventional
CNN-based deep learning method to predict CA using orig-
inal X-rays [24], with a standard error of 9.9◦ in the pre-
dicted CA, our method generated a significantly lower error
using low quality and variable aligned images, providing
possibilities of applying our method to clinical practice.

The reason of this accuracy improvement is two-fold.
Firstly, HRNet [25] is superior to other networks in detecting
key landmarks. Secondly, unlike the majority of previous
work, which formulated the vertebral landmark-detection as
single-spine landmark-detection, we formulated it as multi-
vertebra landmark-detection [29]. This approach was identi-
cal to the perception and workflow of spine specialists, since
we captured the hierarchical relation between spine, vertebrae
and endplates. Further, previous work focused on the accu-
racy of CA prediction, lacking examinations of intermediate
output to substantiate result reliability. Endplate heatmaps
serve as an intermediate supervision for interpretability,
enabling specialists to evaluate directly on the reliability.
It is necessary to note that consistent with the decreased
number of CAC (Fig. 3B: 97) and increased number of CAT
and CAL (Fig. 3B: 268&212) in our datasets, the predictive
accuracy and reliability of CA in the thoracolumbar region
was higher than the cervicothoracic region. Therefore, with
an increased number of images collected through our future
study, we expect an improved accuracy of the predicted CA.
A false negative detection of the end vertebra (Fig. 7D) in the
cervicothoracic region was noted, with the GT CA small at
10.73◦, at the border for normal. According to the current
clinical gold standard, a CA less than 10◦ is considered
as normal, whereas between 10-20◦ is mild and 20-40◦ is
moderate with a curve larger than 40◦ being severe.
To further justify the use of the landmark labels on re-

captured radiographs as GTs, the CAs measured by special-
ists in the PACS (mean= 29.47◦± SD 13.5) and the GT CAs
calculated based on landmarks labelled on the re-captured
images (Table 1) were compared and revealed no significant
differences (P value= 2.0, paired t-test). Additional compar-
ison was done between the CAs measured in the PACS and
the CAs predicted through the trained SpineHRNet (mean =
27.18◦± SD 13.6). No significant differences were observed
between these two sets of values. Moreover, a significant lin-
ear regression association (R2 = 0.79) was observed, which
is similar to the R2 between the CAs generated by GTs and
SpineHRNet (Table 3).

A limitation of this study is the lack of vertebral mal-
formation and congenital scoliosis in this dataset, as well
as lack of post-operative patients with spinal instrumen-
tation. We excluded these subjects because the number
of congenital deformities was small, usually with severely
deformed spine and vertebrae. To simplify the learning
task, congenital and post-operative patients were not col-
lected. A larger dataset consisting of post-operative X-rays
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and congenital deformities should be established for future
study.

V. CONCLUSION
Based on a collection of images of scoliosis X-rays using
smartphones, a fully automatic vertebrae landmark detec-
tion and CA prediction pipeline for AIS was developed.
This method can have significant clinical applications in
AIS screening, follow-up, as well as facilitating deformity
research by providing accurate and mobile CA detections for
telemedicine, reducing specialists’ burden for radiographic
measurements with increased assessment consistency.
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