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ABSTRACT Effective sinusoidal voltage regulation is of permanent importance for grid-forming converters.
Usually, the following two types of schemes are employed to achieve a high level of performance:
1) single-loop voltage and 2) dual-loop voltage-current control. The performance of both schemes has
comprehensively been evaluated in this work, based on the developed discrete-time model of the LC-filtered
grid-forming converter. The challenges of insufficient stability margin, constraint bandwidth, and high
sensitivity to parameter variation faced by the single-loop control scheme have been addressed, if the
high-performance resonant controllers are employed for voltage regulation. Alternatively, the dual-loop
control does not experience such issues with the inclusion of inner-current loop which provides active
damping for the overall system. The essence of the inner-current loop is identified based on the discrete
root locus analysis. Also, to obtain the highest damping and most enhanced stability, the criterion for current
loop design has been addressed and a method for optimal tuning of the inner-current loop is developed,
where the original plant with the one-sampling delay and the current gain are considered as the equivalent
plant for the voltage controller. Experimental results have verified the effectiveness of the developed method
for regulation of grid-forming converters.

INDEX TERMS Active damping, LC filter, resonance, voltage regulation, current loop.

I. INTRODUCTION
Effective sinusoidal voltage regulation is an aspect of
paramount importance for grid-forming converters (GFCs) to
achieve a high level of performance in a lot of different appli-
cations, such as virtual synchronous machine (VSG)/droop
control for grid-tied converters [1], [2], dynamic voltage
restorers [3], [4], ground power units for airplanes [5], [6],
uninterruptable power supplies [7]–[10], and auxiliary invert-
ers for rail trains [11], [12], just to name a few. In partic-
ular, for applications where GFCs with VSG/droop control,
or various enhancedmethods [13], the converter also provides
grid supporting for the grid or microgrid. Therefore, in these
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scenarios, GFCs presents as a voltage source to the load
and/or grid, which means a stable ac output voltage with high
waveform quality is generally required [5], [11]. In order to
reduce the high frequency switching ripples, LC filters are
commonly added to their output ac terminals [1], [12]–[25].
However, LC filters can cause stability problems related to
resonance, which theoretically, can be passively damped by
adding resisters in series or parallel with the capacitors, just
like the case of LCL filters which have been the subject of
significant researchers [26]–[30] in recent years. This way
of damping is however inefficient, and the filter effectiveness
can even be deteriorated. Therefore, active damping methods
have been prefered, where the basic idea is to improve damp-
ing through modifying the control strategy, in place of the
damping resisters [11]–[15], [26]. In this manner, additional
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power loss can be avoided, and more importantly, filter effec-
tiveness can still be retained.

Usually, either single-loop voltage or dual-loop voltage-
current control can be employed for active damping of GFCs,
depending on whether additional filter variables, which can
either be its inductor- or capacitor-current, are sensed and fed
back for regulation [5], [11], [12], [15], [31]–[34]. Regarding
the single-loop control method, only the capacitor voltage is
measured and fed back for regulation. This method avoids the
high-resolution current sensors, which is therefore cost effec-
tive and easy to implement, and has, in fact, been used with
same applications like in [5], [10] and [33]. It has been proved
in these studies that the single-loop control has been suffered
from the issue of poor stability, if resonant controllers are
employed for voltage regulation. This is because the pro-
portional gain has little help with improving the system’s
overall performance, but will reduce the stability margin
instead. As a result, only resonant term is suggested [5], [33].
The stabilizing mechanism underlying this method is further
investigated in [14], where it has been shown that the delays
related to digital computation and modulation lead to a crit-
ical frequency for the LC-filter resonance, above which the
system can be stabilized without any additional resonance
damping. A negated low-pass filter added to the feedback
path has also been suggested, which can be used to increase
the stability region equivalently. Despite that, single-loop
voltage control may still not an good choice for GFCs, which
this paper will prove with a comprehensive evaluation about
its performance, including the discrete root locus and Nyquist
diagram analysis.

Dual-loop voltage-current control has therefore been pref-
ered and implemented in [11], [15] and [31], where it has been
shown that inner current loop can provide active damping for
the overall control system. It therefore offers an effective way
to resolve the issues faced by single-loop control scheme.
In these studies, the one-sampling delay is approximated by
either the first- or second-order Padé expression. However,
this approximation may not appropriate for GFCs working
with a low pulse ratio, i.e. the ratio of the switching frequency
with respect to the frequency of the reference signal. This
case happens in high-power converters that operating at a
low-switching frequency, which is often required to reduce
switching losses of semiconductor devices in high-power
applications [35]. It is also the case for aeronautic appli-
cations, where fundamental frequency is between 400 and
800 Hz, like in [5] and [6]. It should be noted that even in
cases in which fundamental frequency ωe is not that high
with respect to the switching frequency, controllers targeted
for high frequency signal of hωe are usually included, in
order to reject harmonics introduced by nonlinearities such as
dead-time effect and/or nonlinear loads, resulting in improved
disturbance rejection performance. With this under consider-
ation, it is preferable to perform the study in the z-domain.
As a consequence, it is necessary to establish the discrete
model of LC-filtered GFCs, which has been addressed in
several works like in [15] and [34]. In these studies, the

capacitor voltage is treated as a disturbance and a feed for-
ward approach is employed. This is a common practice
for disturbance rejection in grid-following converters, which
present a current source to the grid instead. In this man-
ner, approximation is thus introduced, resulting in inaccurate
or even unreliable results. To solve this issue, the accurate
discrete-time model of LC-filtered GFCs is therefore devel-
oped in this paper. Performance evaluation of GFCs can then
be performed in the z-domain directly, including stability
analysis, current- and voltage-loop design.

On the other hand, regarding a dual-loop or multi-loop
system, in order to fulfill the signal-regulation speed require-
ment between different loops, the bandwidth of the inner
loop is commonly designed much higher than that of the
outer loop [5], [11], [14], [15], [31], [32]. This rule is also
followed by the literatures related to the dual-loop control of
GFCs. For instance, the bandwidth of the outer-voltage loop
is designed about to be one-tenth to one-fifth of that of the
inner-current loop [11], [31]. In this manner, the current loop
can be considered as an unity gain approximately within the
bandwidth of the voltage loop, which is, therefore, convenient
for the tuning of the voltage controller. This method is very
popular, and has, in fact, been used in some applications like
in [31] and [34]. However, the study in [5] claimed that for
cases where GFCs working with a low pulse-ratio, it is not
easy or even impossible to satisfy this requirement, as the
one-sampling delay related to digital control can significantly
deteriorate the performance and lead to a narrow bandwidth
of the inner current loop. Other alternatives include setting
the damping ratio of the current loop to 0.707 in [15] or
unity in [18]. The modeling and analysis of these methods
are however performed in the continues-time domain and the
approximation is introduced not only for the Padé expression,
but also for the inner-current loop transfer function, which
will be proved in the following sections of this work.

On the other hand, with regard to the outer-voltage loop,
resonant controllers (RCs) are commonly preferred for its
excellent performance of tracking sinusoidal references of
arbitrary frequencies with zero steady-state error for both
positive- and negative-sequences. Commonly, the following
two types of RCs are mainly employed to obtain high per-
formance: 1) proportional resonant (PR) and 2) vector pro-
portional integral (VPI). In particular, it has been proved that
VPI is superior to PR for the plant that have the form of
1
/
(sL + RL) in term of stability and overall parameter sen-

sitivity. This is however not valid for the case of LC-filtered
GFCs, because the frequency response of a L filter is quite
different from that of a LC filter, as proved in this work. Also,
in order to alleviate the adverse impacts of the delays intro-
duced by the digital control and original plant, it is preferable
to add a delay compensation technique to these controllers
to improve stability. However, the majority of the literatures
related to delay compensation have been dedicated to the
current control of grid-following converters, and few works
have addressed this issue concerning voltage regulation of
GFCs. Despite that, the essence of the delay compensation
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is the same for these two kinds of converters, i.e. to improve
the system’s stability and performance. Therefore, the tech-
niques developed from gird-following converters can also be
applied to GFCs. For instance, various predictive methods
including the Smith predictor [36], the state observer [37],
and the dead-beat control [38], have been developed. The
effectiveness of these methods is highly dependent on the
modeling accuracy built for the system. Other alternatives
including the multisampling strategy [39] and those based on
accurate derivatives [40], [41]. These methods mainly focus
on the minimization of the impact of the one-sampling delay,
leaving the delays related to the plant unconsidered. Particu-
larly, based on the Nyquist diagrams and sensitivity function,
the delay compensation of resonant controllers for current
regulation of grid-following converters is addressed in [35].
This method is now extended to the voltage regulation of
dual-loop controlled GFCs in this work, to obtain the desired
stability and avoidance of closed-loop anomalous peaks.

It should be emphasized that design of the inner-current
loop is the basis for that of the outer-voltage loop, which
hence has a great impact on the system’s stability and overall
performance. It is therefore of much interest to investigate
the principle to guide the tuning of the inner-current loop
for dual-loop controlled GFCs, which is the main objective
of this work. Specifically, for the inner-current loop design,
the constraints faced by the loop-bandwidth method is iden-
tified, and a method based on active damping optimization
is developed which addresses the original plant, the one-
sample delay, and the current gain as the equivalent plant
for the voltage controller, to obtain the highest damping and
most enhanced stability. Also, the delay compensation for
the voltage loop with PR controller employed is addressed.
To do that systematically, Section II begins by establish-
ing the model of LC-filtered GFCs in the z-domain. The
single- and dual-loop control for GFCs are then compared
more deeply in Section III, to better identify their features
and constraints. This is followed by Section IV, where the
creterion for the inner-current loop design is identified and
a method for optimum tuning of the current loop to obtain
the most enhanced stability is developed. The outer-voltage
loop with PR controller employed is then analyzed step by
step in Section V, where a delay compensation strategy is
also presented. Effectiveness of the proposed design method
is finally verified through experiments in Section VI, before
concluding the findings in Section VII.

II. SYSTEM MODELING AND DESCRIPTION
Fig.1 shows a three-phase voltage-source GFCs with an out-
put LC filter, where L is the filter inductor, and C is the filter
capacitor. After the filter is an output transformer T, which is
usually required for applications where isolation is essential.
It should be noted that RL is the series equivalent resistance,
which is usually used for emulating the power losses of the
converter (mainly from inductors and power switches). Also
shown in this figure is the corresponding control structure
with both single- and dual-loop control schemes included.

FIGURE 1. Three-phase GFCs with single- and dual-loop control schemes.

Specificly, if the current controller, whose feedback can either
be the inductor current iL or capacitor current iC , is employed,
the dual-loop control scheme results; otherwise, the single-
loop control scheme with the capacitor voltage feedback is
obtained.

To illustrate, the single- and dual-loop control schemes are
further represented in Figs.2 and 3 respectively, where the
continuous LC filter has been noted in the s-domain, and the
digital controller has been noted in the z-domain. It should
be noted that if RL is ignored, i.e. RL = 0, then it emulates
the worst case without any physical damping for the LC
filter. From the inspection of Figs.2 and 3, the only difference
noted between single- and dual-loop control schemes is the
employment of current loop, which theoretically, provides
active damping for the undamped LC filter. To better identify
these differences, it is preferable to derive transfer functions
in Figs.2 and 3 for representing the two different control
methods respectively, beginning with the function in (1) for
representing the plant{[

V PWM (s)− V (s)
] 1
sL
− IT (s)

}
1
sC
= V (s) . (1)

Transfer function for relating the controller output voltage
V PWM to the capacitor voltage V can therefore be derived as

FIGURE 2. Single-loop voltage control scheme for GFCs.

FIGURE 3. Dual-loop voltage-current control scheme for GFCs.
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follows:

GV (s) =
V (s)

V PWM (s)
=

1
s2LC + 1

=
ω2
res

s2 + ω2
res

(2)

where ωres =
√

1/L·C is the filter resonance frequency.
It should be noted that the load current IT is treated as

a disturbance and ignored both in Figs.2 and 3, which is
reasonable since GFCs have to work in the no-load condition.
This characteristic of GFCs, in fact, appears an antithetic
relationship with that of grid-following converters, where
grid voltage is considered as a disturbance instead. With
regard to Figs.2 and 3, ideally, either single- or dual-loop
control should have full rejection of this disturbance, which
means the steady-state value of V excited form IT will be
zero. This is usually achieved through the employment of
resonant controllers (RCs) for the voltage regulator CV (z),
whose open loop gain is infinite at the desired frequencies.

In this manner, as shown in Fig.3, feeding back IL or IC
will produce the same result, which have comprehensively
been studied in [15]. As a consequence, only the case of
IL feedback is considered in this paper, which can also be
employed for the over current protection of the converter.
For subsequent analysis, it is necessary to derive the transfer
functions related to the inner-current loop, beginning with the
expression of (3) shown below:

[
V PWM (s)− V (s)

]
·

1
s · L
= IL (s)

[IL (s)− IT (s)] ·
1

s · C
= V (s) .

(3)

Transfer function for relating the controller output voltage
V PWM to the inductor current IL can, therefore, be derived as
follows:

GiL (s) =
IL (s)

V PWM (s)
=

s · C
s2LC + 1

=
1
L

s
s2 + ω2

res
. (4)

Expressions (2) and (4) can next be transformed to the
z-domain by applying the zero-order holder discretization.
The resulting transfer functions, noted in Fig.4 as GV (z)
and GiL (z), are given from (5) to (6) respectively, where Ts
represents their common sampling period

GV (z) =
(z+ 1) · (1− cos (ωres · Ts))
z2 − 2z · cos (ωres · Ts)+ 1

(5)

GiL (z) =
1

ωres · L
·

sin (ωres · Ts) · (z− 1)
z2 − 2z · cos (ωres · Ts)+ 1

. (6)

On the other hand, with regard to RCs, transfer functions
related to PR and VPI in the s-domain are given in (7) and (8),

FIGURE 4. Structure of (a) single-voltage and (b) inner-current loop in the
z-domain.

respectively, where the delay compensation ϕ is included

GdPR (s) = Kp + Ki ·
s · cosϕ − ωe · sinϕ

s2 + ω2
e

= Kp + Ki · R1d (s) (7)

GdVPI (s) = K ·
(sL + RL)

(
s2 · cosϕ − ωe · sinϕ

)
s2 + ω2

e

= Kp · R2d (s)+ Ki · R1d (s) . (8)

In both expressions,ωe is their common fundamental angu-
lar frequency, at which the final steady-state tracking error
will be zero, while Kp and Ki are the proportional and reso-
nant gains. For VPI controller, in particular, Kp

/
Ki = L

/
RL

is generally required to cancel coupling terms produced by
the plant that can be modeled as 1

/
(sL + RL). The RCs of (7)

and (8) must also be discretized for digital implementation,
whose transfer function after prewarped Tustin transforma-
tion are GdPR (z)=Kp+KiR

1d
tp (z) and G

d
VPI (z)=KpR

2d
tp (z)+

KiR1dtp (z), respectively. The expression of R
1d
tp (z) and R

2d
tp (z)

can be appreciated from [35], which will not be elaborated
here. Where necessary, additional resonant terms with ωe
replaced by hωe can also be included for the rejection of the
h-order harmonic from the capacitor voltage, which can be
introduced by the dead-time effect and/or nonlinear loads.

Expressions from (5) to (8) can eventually be merged
to give the open-loop transfer functions for the analysis of
single- and dual-loop control of GFCs, which will be dis-
cussed in the following sections.

III. ANALYSIS OF SINGLE-LOOP VOLTAGE
CONTROLLED GFCs
As shown in Fig.4(a), if PR controller is employed for
CV (z), the open-loop transfer function for representing the
single-loop control scheme can be derived as follows:

GV1OL (z) = GdPR (z) · z
−1
· GV (z) . (9)

The resonant term R1dtp (z) is firstly ignored to evaluate
the influence of Kp on the system’s overall performance.
Therefore, GdPR (z) = Kp results, which together with (5)
substituted into (9), gives rise to

GV1OL (z) = Kp ·
(z+ 1) (1− cos (ωres · Ts))

z
(
z2 − 2z · cos (ωres · Ts)+ 1

) . (10)

Parameters of the LC filter are listed in Table 1. Then,
by varying the proportional gain Kp, root locus depicted
in Fig.5(a) representing (10) can be obtained. It can be noted

TABLE 1. Parameters of the LC filter.
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FIGURE 5. Root locus of (a) (9) with RL ignored; (b) detailed part of
(a) around p2

ol ; (c) (9) with RL considered; (d) detailed part of
(c) around p2

ol .

that the pair of conjugate poles p2,3cl = cos (ωres · Ts) ±
j · |sin (ωres · Ts)|, which are related to the filter resonance,
are located exactly on the unit circle, as shown in Fig.5(b)
for a clearer view. In particular, trajectories starting from
p2,3cl are always outside of the unit circle, which means the
close-loop system is certainly unstable. Alternatively, if RL
is considered, p2,3cl still reside very close to the unit circle,
whose damping ratio is approximately 0.0087, as shown in
Figs.5(c) and (d). Also, it can be noted from Fig.5(d) that
Kp < 0.0185 is required to ensure stability. Unfortunately,
the close-loop poles on cures 2© and 3© will move toward to
the unit circle with the increase of Kp, resulting in a reduced
stability margin, which is certainly undesired.

Proportional gain Kp is therefore not generally recom-
mended for the single-loop control of GFCs. In this manner,
GdPR (z) can be simplified to KiR1dtp (z), which upon substi-
tuted into (9), root locus of Fig.6 plotted by varying the
resonant gain Ki can be obtained. It can be noted that if RL
is ignored, trajectories starting from p2,3cl are still located at
the outside of the unit circle, as shown in Figs.6(a) and (b),
just like the direct application of Kp in Fig.5(a). Similarly,
in case RL is included, Ki<199 is required to ensure a stable
operation, which can be observed from Fig.6(d). However,
the system stability is still poor even if this condition is
satisfied, as the closed-loop poles on curves 2© and 3© still
lie very close to the unit circle. Similar analysis can also
be performed for the case that VPI is employed for CV (z),
where specifically, K < 47 is required to guarantee a stable
operation.

FIGURE 6. Root locus of (a) (9) with RL ignored; (b) detailed part of
(a) around p2

ol and p1
ol ; (c) (9) with RL considered; (d) detailed part of

(c) around p2
ol and p1

ol .

The challenge faced by single-loop controlled GFCs is
therefore its insufficient stability margin. This can further
be identified from the inspection of the system’s frequency
response, as shown in Fig. 7 where VPI with K = 25 is
employed for CV (z). It can be noted that the phase mar-
gin (PM) is 90.4 deg, as shown in Fig. 7(a). The system is
therefore seems quite stable. This is however not true, as the
system is very sensitive to the estimation error of RL and L,
which in practice, cannot be tracked precisely. For instance,
if the estimated value of RL deviates from its actual value by
30%, the minimum distance between the Nyquist trajectory
and the critical point (−1, 0j), i.e. η, is reduced to 0.18,
as shown in Fig.7(b). The system stability is thus seriously
deteriorated, even though PM remains the same. Therefore,
single-loop controlled GFCs has a poor robustness against
parameters detuning due to estimation errors in the value of
the LC filter. On the other hand, the closed-loop bandwidth
is only 1.31 Hz around the fundamental frequency, as shown
in Fig. 7(c), resulting in a slow transient response of the output
voltage, which is certainly unexpected.

IV. ANALYSIS AND DESIGN OF INNER-CURRENT LOOP
FOR DUAL-LOOP CONTROLLED GFCs
Commonly, proportional KC is employed for the current con-
troller. With (5) and CI (z) = KC now defined, the open-
loop transfer function of Fig.4(b) for representing the
inner-current loop can be derived. Performance evaluation
of the inner-current loop can then be performed, which
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FIGURE 7. (a) open-loop frequency response, (b) Nyquist diagram and (c) closed-loop frequency response of single-loop voltage control scheme.

in [5], [12], [15], [31], and [32], the frequency response
analysis is adopted. This method is however not suitable in
this case, as it is hard or even impossible to determine the
optimum gain for the current loop to get the most enhanced
stability of GFCs. Because of that, a method based on damp-
ing optimization through the discrete root locus analysis is
developed in this section, which addresses the original plant,
the one-sample delay, and the current gain as the equivalent
plant for the voltage controller, beginning with some analyt-
ical plots to better identify the constraints faced by existing
methods.

A. FREQUENCY RESPONSE ANALYSIS OF THE
INNER-CURRENT LOOP
To better identify the fundamental function of the
inner-current loop, the method presented in [11], [12]
and [31] is employed for comparison with the one devel-
oped in this work. The objective of this comparison can be
summarized into two aspects: 1) to verify of the accuracy of
the discrete model established previously and 2) to identify
the intrinsic function of the current loop. Firstly, the transfer
function related to the inner-current loop developed in [11]
can be expressed as follows:

IL =
KC · e−sTd

KC · e−sTd + sL

I∗L + V ref e−sTd − V︸ ︷︷ ︸
≈0

 (11)

where e−sTd ≈
(
1− s 12Td

)/(
1+ s 12Td

)
is the delay block

related to digital implementation and PWM modulation,
which is approximated by the first-order Padé expression.
It should be mentioned that Td is the total delay of 1.5 times
the sampling period, i.e. Td = 1.5Ts.
It can be noted from (11) that V = V ref

≈ V ref e−sTd ,
as long as high performance controllers are employed for
CV (z) to achieve a non-steady-state tracking error of the
output voltage V with respect to the reference signal V ref . In
this manner, the last term in the brace of (11) is approximated
to zero and can be ignored. This approximation is however
only true in the steady state, but not during transient. To better

FIGURE 8. (a) the root locus of (11) which is plotted by varying the
current gain KC, (b) the closed-loop frequency response of (11) with
K cmp

C = 1.072 employed.

understand this inaccuracy in a direct way, some analytical
plots are provided as follows.

With the parameters in Table 1 defined, the root locus of
(11) can be plotted, as shown in Fig.8(a), which is sketched
by varying the current gainKC . In particular, the study in [11]
and [12] proposed that the gain resulting in ξ = 0.707 can be
considered as the optimal choice, which in Fig.8(a), is noted
as K cmp

C = 1.072. Accordingly, the closed-loop frequency
response is illustrated in Fig.8(b), where the bandwidth of
375Hz can be appreciated, resulting in a good rejection of
the switching-frequency current ripple. On the other hand,
from the inspection of Fig.8(b), it can be observed that the
current loop has almost an unity gain at the lower frequencies.
In particular, the magnitude- and phase-response at the funda-
mental frequency is 1.003 and −16.8 deg respectively. This
is however not valid according to our findings, which can be
proved with the simulation results presented in Fig.9. It can
be noted that, actually, the magnitude of IL is significantly
reduced with respect to that of the reference signal I∗L , which
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FIGURE 9. Simulation results of the inner-current loop with KC = K cmp
C

employed.

is certainly different from the previous theoretical findings
draw from Fig.8(b).

The characteristic of the current loop is further investi-
gated with the employment of the discrete model developed
in this work. By substituting (6) into Fig.4(b), the transfer
function representing the current loop can easily be obtained.
Accordingly, the closed-loop frequency response is illus-
trated in Fig. 10, where KC = 2.3 is firstly employed which
will be proved in the following sections that it is the optimal
choice for the case of Table 1. Some observations noted from
the observation of Fig. 10 can be explained as follows.

• Magnitude response crosses through 0.707 at 524 Hz
and 1506 Hz respectively. Thus, the closed-loop band-
width can be deemed as 982 Hz, if the definition of
bandwidth that the amplitude of the tracked signal is
attenuated no more than 3 dB with respect to the original
input signal is employed. It can also be observed that the
magnitude response exhibits an amplification character-
istic within the bandwidth, and reaches its peak value
4.0 at 1125 Hz, which is related to the filter resonance
frequency ωres.

• Alternatively, the magnitude response has very limited
gain at lower frequencies. For instance, the magnitude is
only 0.021 at the fundamental frequency, as depicted in
the dotted box at the top-right corner of Fig. 10. Also,
it can be noted that the phase response is significantly

FIGURE 10. Closed-loop frequency response of inner-current loop.

different from that of a common system, which instead
of a phase-lag, is now a phase-lead characteristic, and it
reaches as high as 85 deg at the fundamental frequency.

In summary, the inner-current loop has a derivative char-
acteristic with extremely attenuated magnitude around the
fundamental frequency, which is in good agreement with the
simulation findings presented in Fig. 9. As a result, it can be
concluded that the current loop is not expected for accurate
signal tracking in this case, which is totally different from the
current regulation of grid-following converters. Therefore,
performance evaluation based on the Bode diagram and loop
bandwidth criterion, which is developed from grid-following
converters, is no longer suitable for the current loop design
of dual-loop controlled GFCs. It is therefore of permanent
interest to develop an effectivemethod to perform the analysis
and design of the inner-current loop in this case.

B. ANALYSIS AND DESIGN OF THE INNER-CURRENT
LOOP BASED ON THE DISCRETE ROOT LOCUS ANALYSIS
It is well known that the magnitude and damping ratio charac-
teristics are commonly employed to evaluate the performance
of a closed-loop pole. With the fact that the current loop
is not developed for signal tracking identified previously,
the magnitude characteristic which is related to the signal
convergence speed, can therefore be ignored. Alternatively,
the damping ratio which is directly related to stability, can
be employed to investigate the active damping characteristic
of the inner-current loop. Therefore, based on the discrete
model of the plant established previously, a method for the
current-loop design is developed in this section, which is
achieved through damping optimazation with the help of
the discrete root loci analysis. For subsequent analysis, it is
necessary to establish the connection of the damping ratio of
a close-loop pole in the z-domain with its correspondence in
the s-domain, beginning with (12) for representing a general
pole pscl in the s-domain

pscl = a± j · b = ω0 ·

(
−ξ ± j ·

√
1− ξ2

)
(12)

where a, b, ω0, ξ are the real part, imagery part, magnitude
and damping ratio of pscl , respectively. It should be mentioned
that a < 0, b > 0 is assumed here, which means pscl is at the
left half part of the s-plane, and hence stable.

Noting that z=es·Ts , which upon combinedwith (12), gives
rise to

pzcl = e−ξ ·ω0·Ts ·
[
cos

(
ω0 · Ts ·

√
1− ξ2

)
± j · sin

(
ω0 · Ts ·

√
1− ξ2

)]
. (13)

Therefore, expression for relating the magnitude charac-
teristic of a closed-loop pole in the z-domain and its corre-
spondence in the s-domain can be derived from (13), which
is given as follows: ∣∣pzcl ∣∣ = e−ξ ·ω0·Ts . (14)
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Further noting that a = −ξ ·ω0, which combines with (14),
yields

a = −ξ · ω0 =
ln
∣∣pzcl ∣∣
Ts

. (15)

On the other hand, expression related to phase characteris-
tic of (13) can be derived as follows:

ω0 · Ts ·
√
1− ξ2 = arctan

(
Im
(
pzcl
)

Re
(
pzcl
)) . (16)

Finally, the expression related to ξ can be derived from (15)
and (16), which is expressed as follows:

ξ =

√√√√√ 1{
arctan

(
Im(pzcl)
Re(pzcl)

)
·

1
ln|pzcl |

}2
+ 1

. (17)

Therefore, with regard to a specified closed-loop pole pzcl ,
its damping ratio can be determined with (17) conveniently.
To begin with, some observations noted from the inspection
of Figs.2 and 3 for representing single- and dual-loop control
schemes, can be explained as follows:
• As shown in Fig.2, for the single-loop control scheme,
the original plant V (z)

/
V PWM (z) along with z−1, i.e.

V (z)
/
V0 (z), can be viewed as the equivalent plant of

the voltage controller CV (z).
• Similarly, for dual-loop control scheme, the original
plant V (z)

/
V PWM (z) together with z−1 and CI (z),

which is noted as V (z)
/
I∗ (z) in Fig.3, can be consid-

ered as the equivalent plant of the voltage controller
CV (z).

As proved earlier, for the single-loop voltage control,
the equivalent plant V (z)

V PWM(z)
· z−1 has two critical-stable

conjugate poles resulted from filter resonance, which hence,
makes the system hard to stabilize, as shown in Figs.5(a)
and 6(a). Conceptually, if these poles cab be actively damped
in the equivalent plant V (z)

/
I∗ (z) with the current gain KC,

an improved performance compared to that of single-loop
control can be expected.

Under this consideration, the damping characteristic of
V (z)

/
I∗ (z) is investigated, beginning with (18) for rep-

resenting the equivalent plant of the voltage controller of
dual-loop controlled GFCs

GEqu
PL (z) =

CI(z) · [1− cos (ωresTs)] · (z+ 1)
z3 − 2z2 cos (ωresTs)+ (1+ a) z− a

(18)

where a = CI (z) · sin (ωresTs)
/
(ωresL).

The corresponding root locus of (18) is depicted
in Fig.11(a), which is plotted by varying the current gainKC at
different resonance frequency ωres. Some observations noted
can be explained as follows:
• Trajectories started from p2,3ol are different from that of
Figs.5(b) and 6(b), which instead of always lie outside
of the unit circle, is now moving inside of the unit circle
at the beginning. Therefore, the pair of critical-damped
poles p2,3ol resulted from the filter resonance in (5), are

FIGURE 11. (a) root locus of (18) with the variation of KC for different
resonant frequency ωres; (b) the detailed part of (a) around p2

ol ; (c) the
relationship between damping ratio with respect to KC.

actively damped and become stable in the equivalent
plant of (18).

• However, with KC continuous increasing, the trajecto-
ries will move toward to the unit circle, which means
the damping ratio of the equivalent plant is decreasing.
An interesting phenomenon can be noted that trajecto-
ries starting from p2ol (or p

3
ol) of different ωres will cross

the boundary of the unit circle at the same point, which
in Fig.11(b), is noted as point A. Also, if KC increases
continuesly, the trajectories will eventuallymove outside
of the unit circle, which means the equivalent plant has
become a non-minimum phase system with regard to
the voltage controller CV (z). This certainly should be
avoided, as it will make the voltage loop hard to stabilize
in this case.

• It worth noting that if p2ol is located at the left part of
the common crossing point A, then the plant cannot be
damped by the employment of current loop any longer,
as shown in Fig.11(b) for the case of ω4

res. One way to
overcome it is to reduce the resonance frequency and/or
increase sampling frequency from (10).

To illustrate, the poles on the cures initiated from p2ol can
next be substituted into (17). The obtained damping ratio ξ
with respect to KC is depicted in Fig.11(c), where a parabolic
shape representing the poles of Fig.11(b) within the unit circle
can be noted. After that, damp ratio ξ increase sharply, which
in practice, is related to the poles outside of the unit circle of
Fig.11(b), and hence not considered. Regarding the parabolic
shape, it can be noted that for a given ωres, the damping ratio
ξ reaches its peak value at a certain KC, at which the plant
is mostly damped. This value of KC can thus be deemed as
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the optimal gain K opt
C , which theoretically, results the most

enhanced stability for dual-loop controlled GFCs.

V. VOLTAGE LOOP DESIGN FOR DUAL-LOOP
CONTROLLED GFCs
Following the method proposed above, the optimal gain
K opt
C =2.24 can be determined for the case of Table 1, which

actually, is also the case of ω3
res in Fig.11, resulting in a

determined equivalent plant in (18). Design of the voltage
controller CV (z) in Fig.3 can then be continued. In partic-
ular, PR controller is employed for voltage regulation, whose
parameter tuning is explained as follows, beginning with Kp
to determine the overall stability margin.

As shown in Fig.12(a), Nyquist diagram of Kp · G
Equ
PL (z)

for positive frequencies with different Kp is illustrated. The
minimum value of the distance between the diagram at differ-
ent frequencies and the critical point (−1, j0), which is noted
as η = min

∣∣∣1+ Kp · GEqu
PL (z)

∣∣∣, is employed as a compact

indictor of relative stability [35].
It can be noted that the Nyquist diagram exhibits an oval

shape and η decreases sharply as Kp increases. It is worth
noting that η=0.5 for the case ofKp=0.028. A good tradeoff
between stability and avoidance of closed-loop anomalous
peaks is thus achieved.

The next step is to decide the delay compensation ϕ for the
resonance term in (7), which is also critical to the system’s
stability. In other words, the stability margin defined by Kp
previously could be deteriorated if an inappropriate value
of ϕ is employed. As shown in Fig.12(b), a asymptote at
ωe appears with resonance term R1dtp (z) included. It can be
noted that, for the case of ϕ = 0, η is reduced to 0.38,
instead of 0.5 defined by Kp, which is certainly undesired.
The solution is to adjust the angle between the asymptote and
the real axis, which in Fig.12(b), is noted as θ = π

/
2+ ϕ +

6 GEqu
PL (z). Typically, when the asymptote becomes vertical

to the real axis, the system with most enhanced stability
results, which have comprehensively been studied in [35].
The resulting Nyquist diagram with ϕ=−6 GEqu

PL (z) has also
been illustrated in Fig.12(b), where η = 0.5 is still retained.
High frequency resonance terms with ωe replaced by

hωe can then be included, whose delay compensation is
ϕ = − 6 GEqu

PL (z) with z = ej·h·ωe·Ts accordingly. In this
manner, the asymptotes at each resonance frequency hωe
will cross the real axis vertically, as shown in Fig.13(a)
where h up to 19 are included. Regarding the close-loop
frequency response, as shown in Fig.13(b), unity gains with
no anomalous peaks at each of the desired frequencies have
been achieved. Additionally, it should be emphasized that
unless very large value of Ki is employed, it usually only
influences the open-loop gains around its own resonance
frequency. Therefore, Ki of different resonant terms can be
tuned individually. In this work, Ki of the fundamental res-
onant term is tuned relatively larger than that of the higher
frequency resonant terms, resulting in a higher bandwidth
around the fundamental frequency than that of other harmonic

FIGURE 12. Nyquist diagram of (a) Kp · G
Equ
PL (z) and (b) Gd

PR (z) · GEqu
PL (z)

for positive frequencies.

frequencies, as depicted in Fig.13(b). In this manner, a fast
transient response of the output voltage can be expected.

VI. EXPERIMENTAL RESULTS
The experimental setup is shown in Fig.14(a), where it can
be noted that it consists of an input- and output-transformer,
a diode rectifier, and an inverter. The input transformer,
whose input- and output-voltage is 10kV and 500V at 50Hz
respectively, as shown in Fig.14(b). Also shown in this fig-
ure is the output transformer, which is 1/Y connected and
the rated input- and output-voltage are both 380V at 50Hz,
as shown in Figs.14(a) and (b). It should be noted that the
primary voltage of the output transformer (i.e. the capacitor
voltage), instead of the output voltage of the transformer,
is sensed and fed back for regulation in this work. This is
because the location of the output transformer is far from
that of the converter, which is, therefore, inconvenient for
signal sensing of the transformer output voltage. In this case,
theoretically, the voltage droop cross the impedance of the
transformer and the transmission line cannot be compensated
by the controller. Therefore, for cases in which the load is
very sensitive to this voltage droop, the output voltage of
the transformer or the load voltage can be measured for
regulation. Finally, the diode rectifier, the inverter, and the
digital controller are depicted in Fig.14(c). The digital con-
troller is mainly made of a DSP (TMS320F28335), an FPGA
(EP2C5), and other auxiliary circuits for signal conditioning,
analog to digital conversion and communication. Measuring
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FIGURE 13. (a) Nyquist diagram and (b) closed-loop frequency response
of voltage loop with resonant controller up to 19 are included.

equipment include a DL750 ScopeCorder, a PW3198 power
quality analyzer, three differential probes and three current
probes. Parameters of the setup are the same as those shown
in Table 1. The signal sampling is performed at both peaks
and valleys of the triangular carrier signal, which means the
sampling frequency is twice of the switching frequency, as
shown in Table 1. In particular, the ScopeCorder is set as
follows: 1) CH1: dc-link voltage with 250V/div; 2) CH2 to
CH4: Vab, Vbc, and Vca with 375V/div; 3) CH5 to CH7: ia, ib,
and ic with 100A/div.

Firstly, the performance of single-loop and dual-loop reg-
ulated GFCs are investigated. For the dual-loop method, K opt

C
is employed to achieve the optimum damping. As shown
in Fig.15a, with the single-loop method employed, the output
voltage exhibits a slow transient response when the converter
is loaded, and the settling time is about 300ms. The reason
for this lies in the constraint bandwidth as addressed in
section III. This issue is however avoided by the employed
of dual-loop method, as depicted in Fig.15b, where the mag-
nitude of the output voltage is stable when the converter is
loaded.

Then, the developed tuning method for the inner-current
loop is investigated. The method derived from the
loop-bandwidth criterion that is widely employed in the exist-
ing studies, i.e. K cmp

C = 1.072, is employed for comparison,
which in Fig.11, is noted as ‘‘�’’ for the case of ω3

res. It can
be observed that the damping ratio ξ of K cmp

C is significantly
reduced compared to that of K opt

C which is noted as ‘‘•’’ for
ω3
res in Fig.11.

FIGURE 14. (a) block diagram and (b) (c) photograph of the experimental
setup.

FIGURE 15. Experimental results for (a) single-loop and (b) dual-loop
regulated GFCs.

Experimental results for the converter with three-phase
balanced load is shown in Fig.16. It can be noted that there is a
noticeable voltage sag with the load added for the case K cmp

C ,
which is, theoretically, related to the low damping character-
istic of the converter. In contrast, withK opt

C employed, the out-
put voltage has almost no fluctuation when the converter is
loaded, resulting in an improved performance compared to
that ofK cmp

C . The root mean square (RMS) value of the output
voltage for K cmp

C and K opt
C are both 387.5V.

In case of load imbalance, the experimental results are
illustrated in Fig.17, where phase a is unloaded. Similarly,
the transient performance of the output voltage for K opt

C is
much improvedwith respect to that ofK cmp

C , which is resulted
from the enhanced damping provided by K opt

C . The RMS
value of the output voltage for both cases are 387.6V, which
can be noted form the left corner of Figs.17(a) and (b),
respectively.
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FIGURE 16. Experimental results for the converter with balanced load of
(a) K cmp

C and (b) Kopt
C .

FIGURE 17. Experimental results for the converter with unbalanced load
of (a) K cmp

C and (b) Kopt
C .

The converter with nonlinear load is also investigated,
which in this work, is a three-phase diode rectifier. If K cmp

C
is employed, the maximum h for resonant term is 7 for

FIGURE 18. Experimental results for the converter with non-linear load of
(a) K cmp

C and (b) Kopt
C .

CV (z) to retain the stability margin defined by Kp, due to the
limited damping of the equivalent plant in (18). In this case,
the output voltage is high distorted, whose total harmonic
distortion (THD) is 5.4%, as shown in Fig.18a. Alternatively,
resonant terms of h up to 19 can be included for CV (z)
if K opt

C is employed, as shown in Fig.13. In this manner,
the quality of the output voltage is much improved, as shown
in Fig.18b, where the THD is reduced to 0.23%. It should
be emphasized that the high-frequency signals up to 950 Hz
are under control in this case, and the pulse ratio is extremely
low with respect to the switching frequency which is 3 kHz,
as shown in Table1.

VII. CONCLUSION
In this work, the single- and dual-loop control schemes for
GFCs are deeply compared. The limitations of insufficient
stability margin, constrained bandwidth and high sensitivity
to parameter variation faced by single-loop voltage control
are identified, if the resonant controllers are employed for
voltage regulation. The essence of the inner-current loop
is identified based on the discrete root locus analysis, and
the criterion for current loop design has been addressed.
To obtain the highest damping and most enhanced stability,
a method for optimal tuning of the inner-current loop is devel-
oped, where the original plant with the one-sampling delay
and the current gain are considered as the equivalent plant
for the voltage controller, resulting in improved performance
and disturbance rejection to the load.
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