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ABSTRACT Medical image fusion technology has been widely used in clinical practice by doctors to better
understand lesion regions through the fusion of multiparametric medical images. This paper proposes an
automated fusion method based on a U-Net. Through neural network learning, a weight distribution is
generated based on the relationship between the image feature information and the multifocus training target.
The MRI image pair of prostate cancer (axial T2-weighted and ADC map) is fused using a strategy based
on local similarity and Gaussian pyramid transformation. Experimental results show that the fusion method
can enhance the appearance of prostate cancer in terms of both visual quality and objective evaluation.

INDEX TERMS Medical image, image fusion, U-Net network, Laplacian pyramid, prostate cancer.

I. INTRODUCTION
With the rapid development of medical imaging technology,
medical imaging has become an integral part of clinical dis-
ease diagnosis and treatment planning. Doctors may need to
use multimodal medical imaging modalities, such as com-
puted tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), and single-photon
emission computed tomography (SPECT), to comprehen-
sively diagnose diseases. Due to its advantages of high
soft-tissue contrast, high image resolution, and no radiation,
MRI has been widely used in clinical diagnosis. Different
tissue contrasts can be achieved by selecting pulse sequence
scan parameters for MRI. It is difficult to detect prostate
cancer withoutMRIwhen the prostate-specific antigen (PSA)
level increases and/or there is a suspected abnormal digital
rectal examination. Prostate cancer can be localized only
through systematic gland-puncture sampling [1]. The gold
standard for prostate cancer diagnosis is biopsy. The most
widely used prostate biopsy technique is performed under
the guidance of a trans-rectal ultrasound probe (TRUS).
Although TRUS-guided prostate biopsy is the standard
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method for the diagnosis of prostate cancer, its false-negative
rate is high due to the inaccuracy of sampling [2]. MRI pro-
vides high-quality images for doctors to observe pelvic tissue,
such as structures surrounding the prostate and the anatomical
area around the gland [3]. Multiparametric MRI (mpMRI),
which combines T2-weighted imaging (T2W) and functional
pulse sequences (such as diffusion-weighted imaging (DWI)
and dynamic contrast-enhanced (DCE) imaging), shows a
better capability of detecting prostate cancer than regular
MRI [4]. BiparametricMRI (bpMRI), including T2-weighted
and apparent diffusion coefficient (ADC) maps generated
from DWI, has been proposed as an accurate tool for localiz-
ing prostate cancer [5]. Internationally recognized consensus
documents have been developed, such as prostate imaging
reports and data system versions (PIRADS), and these have
standardized the collection and reporting of prostate MRI
results [3].

With the development of imaging technology, the role
of mpMRI has been extended to tumor detection, disease
monitoring and therapy follow-up. Some studies have con-
firmed the joint role of T2W MRI, DWI, and DCE-MRI
in determining the invasiveness of prostate tumors [6]–[8].
Li et al. compared the performance of mpMRI and the Partin
table and concluded that mpMRI achieves high accuracy
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in prostate cancer staging [9]. There is an unmet need for
intelligent mpMRI data processing for clinical applications.
The traditional method used to diagnose prostate cancer is
to manually browse different mpMRI images and switch
between them. In a study by Steenbergen et al., the tumor
contours drawn by six observers in mpMRI (T2W imag-
ing, DWI, and DCE-MRI) were compared using the data
of 20 patients. The results showed that 69 satellite lesions
were missed by all observers [10]. This variability among
observers emphasizes the importance of the automatic fusion
of prostate multimodal MRI images to enhance the appear-
ance of satellite lesions to assist diagnosis. Prostate cancer
may exhibit different signal intensity features in MRI images
compared with normal prostate tissues. In a T2W image, for
example, the prostate cancer region typically has lower SI
than the surrounding tissue due to its higher cell density in
T2W images (Figure 1). In an ADC map, low ADC value
indicates limited diffusion, while high ADC value comes
from tissue with relatively free diffusion [11]. It has been
shown that incorporating ADC images with T2W images
significantly improves the performance of prostate cancer
detection compared with using T2W images alone [12]. Fig-
ure 1 shows that the relationship between the prostate and
the surrounding tissue can be observed from the T2W image;
however, the tumor boundary may be unclear due to benign
diseases. The tumor boundary is more obvious in the ADC
image; however, the surrounding tissue information may be
lacking. The purpose of this experiment is to combine T2W
images andADC images through effective image fusion algo-
rithms to help doctors more conveniently determine tumor
location and size.

FIGURE 1. (a) The low-signal area of the ADC image of patient 4 shows
the real cancer tissue. (b) The hypointense area in the T2W image alone is
difficult to distinguish between benign prostatic hyperplasia and prostate
cancer (red arrow). The appearance of patient 6’s prostate cancer lesions
(red arrows) in an axial ADC image (c) and axial T2W image (d).

The multiscale decomposition [13] method and sparse rep-
resentation method [14] are commonly used image fusion
methods based on the transform domain. Typical multiscale

decomposition methods include pyramid transformation [15]
and wavelet transformation. The image obtained by the mul-
tiscale decomposition method contains much detailed infor-
mation and exhibits high image contrast [16].

Medical image fusion is the process of merging and com-
bining multimodal or multiparametric images to improve
the applicability of medical images to clinical diagnosis and
therapeutic monitoring [17]. There are two main types of
image fusion methods: spatial domain-based and transform
domain-based methods. The spatial domain-based methods
are intuitive, simple, and performed directly on the image
space but are sensitive to noise. The image fusion methods
based on the transform domain are less sensitive to noise and
more robust [16]. In recent years, image fusion research has
focused on the transform domain, which has the advantages
of good structure and distortion avoidance [14]. The Lapla-
cian pyramid transform based on the Gaussian transform is
widely used in medical image fusion [18]–[20].

With increased data generation speed and amount of
imaging data, there is an urgent need for computerized
methods to automatically extract clinical information from
mpMRI data [21]. In recent years, convolutional neural net-
works (CNNs) have been used in diagnostic imaging of the
urogenital tract [22], [23]. A CNN has been proved to be a
powerful method for adaptive pattern recognition [24]. Image
fusion based on deep learning has been widely used in multi-
parametric medical imaging [25], infrared and visible imag-
ing [26], and remote sensing imaging [27]. The application of
deep learning-based fusion of medical images is concentrated
on multimodal image fusion (e.g., CT, PET, MRI) [16], [25].
Deep learning enables a better strategy for designing fusion
rules than the traditional image fusion method—i.e., where
the U-Net algorithm extracts relevant information from two
source images and generates a weighted image using the end-
to-end characteristics. Li et al. applied an artificial neural
network at the pixel level for the fusion of multifocus images
obtained from the same scene [28]. Liang et al. input the
two source images into a deep learning network through
MCFNet [16] and output fused images. The training dataset
and labels needed for the neural network are difficult to
obtain, which is a major limitation of MCFNet in applica-
tions. Liu et al. developed a medical image fusion algorithm
based on a CNN [29], which outputs a fusion weight vector
through a trained CNN model. This algorithm averaged the
overlapping patches to convert the weight vector into a weight
map with the same size as the input image. Wang et al. pro-
posed a multiparametric segmentation and fusion network by
utilizing 3D context information [30]. The method averaged
the softmax output of a single task to fuse the segmentation
results from three orthogonal views.

The method automatically learns image features from a
large amount of labeled data. U-Net is an efficient end-to-
end neural network structure, which is famous for its ‘‘U’’
shape. Due to its excellent performance inmedical image seg-
mentation and its elegant architecture [31], [32], U-Net has
quickly become the mainstream method for the segmentation
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FIGURE 2. Flowchart of image fusion steps. The blue region represents Gaussian pyramid decomposition, and the green region represents
Laplacian pyramid decomposition. The innovation of the algorithm is that the fusion weight map generated by U-Net, represented by the
orange region, is brought into the fusion rules represented by the pink region, and the fusion image is then reconstructed by an inverse
Laplacian pyramid.

of medical images and pathological images. For example,
in the promise12 competition, U-Net performed well in seg-
menting the prostate [33], [34]. In recent years, CNNs and
U-Net have been applied to medical image fusion [35].

Inspired by the above work, we propose an algorithm to
fuse mpMRI images. This study combines the traditional
Gaussian pyramid transform fusion framework in the trans-
form domain with U-Net based on deep learning as a novel
method for fusing medical images. The Laplacian pyramid
has the advantage of enhancing salient image features (such
as contrast and intensity), but it is sensitive to noise and can-
not effectively process the edge information of images [18].
It is difficult to establish an appropriate fusion rule to pro-
cess the semantic information of the image. U-shaped and
other types of convolutional networks are also used to reduce
noise and improve the quality of medical images [36], [37].
U-Net can effectively process and extract semantic image
information [38]. The main contribution of this paper can be
summarized as follows:
•We propose a method for fusion of mpMRI images. It is

hoped that this application can aid doctors in finding prostate
lesions in fused MRI images.
• This study applies the developed fusion method by

combining the Laplacian pyramid transform and U-Net
to fuse dual-parameter magnetic resonance images of the
prostate.
• The experiment shows that our proposed method can

provide fusion results with better tumor appearance in terms

of subjective quality assessment and objective evaluation than
other methods used for comparison in this article.

The remainder of this article is organized as follows. The
second section introduces the design scheme of the algo-
rithm and the proposed method for data generation. The third
section introduces training methods and objective evaluation
indicators. At the end of the third section, the fusion results
are introduced. A comparative analysis and future directions
are discussed in the fourth section. The conclusion is pre-
sented in section 5.

II. THE PROPOSED ALGORITHM
This research proposes an mpMRI fusion framework based
on the Laplacian pyramid transform, in which the fusion rules
used are the weight maps generated byU-Net. Figure 2 shows
the structure of the entire fusion framework. The fusion pro-
cess is mainly composed of four steps, which are represented
by different colors in the figure. The first step (orange arrows)
indicates that U-Net is used to generate a weight map based
on two source images. The details of this step are shown
in Figure 2. (In the experiment, the Gaussian pyramid has a
total of 8 layers, and only 4 layers are shown in the figure.)
The second step is to perform Gaussian image decomposition
on the weight map (indicated by blue arrows) and Laplacian
pyramid decomposition on the two input source images (indi-
cated by green crops). Gaussian pyramid decomposition is
performed by first using the Gaussian window function and
image to perform the convolution operation (indicated by~),
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TABLE 1. The networks structure of U-Net.

and interlacing and inter-column downsampling operations
(indicated by ↓©) are then performed on the results obtained.
Each time Gaussian gold tower decomposition is performed,
the image size decreases 4-fold. The Gaussian pyramid con-
sists of images G0,G1,. . . , G7. Taking G0 (i.e., the bottom
of the Gaussian pyramid) as the source image, the other
layer image Gk is the result of Gaussian pyramid decom-
position on the k-1 layer image Gk−1. The two operations
(Gaussian blur and downsampling) in the Gaussian pyramid
construction process will lose part of the high-frequency
details of the image. The pyramid is used to describe this
lost high-frequency information. The process of constructing
the Laplacian tower requires an upsampling operation (rep-
resented by ↑© ), and Gk increases 4-fold to restore it to the
same size as Gk−1. The same Gaussian kernel w is then used
in downsampling to perform the convolution operation onGk
to obtain Gk’, and the difference between Gk−1 and Gk ’
(represented by �) is assessed to obtain Lk.
In the third step, the purple arrow is used to indicate that

the local energy similarity is calculated for each layer of the
image obtained by the pyramid decomposition, the weights in
the weight map obtained in the first step are then brought into
the calculation according to the similarity, and the results of
each image layer are synthesized. Then, through the inverse
Laplacian transform, the composite image of each layer is
iteratively converted into the final fused image. The specific
details and calculation formula are introduced in Part II.B of
the article.

A. NETWORK STRUCTURE
U-Net was proposed by Ronneberger et al. and exhibits a
strong ability to represent and extract features [39]. The net-
work is used for pixel-level regression and end-to-end image
segmentation with robustness and generalizability. We used
U-Net to generate a graph of fusion weights in this study.
Synthesized multifocus image datasets are used to train

U-Net to generate a fusion weight map, as shown in Figure 3
(256× 256).

The multifocus image pairs are superimposed as the input
of the neural network for feature extraction and fusion. The
network automatically extracts relevant image information
from the input image pair and outputs a weighted image
with the same size as the input image. Two images with a
size of 256 × 256 are merged into dual-channel input data.
Seven upsampling layers and seven downsampling layers are
used in the U-shaped network. As shown in Figure 3, the left
side is a shrinking path composed of repeated convolution
blocks and maximum pooling layers. The ReLU activation
function is used after each convolutional layer. During the
downsampling process, the number of channels gradually
increases.

The upsampling process of the gradual expansion of the
image size is on the right. Each layer is skip connected with
the feature maps of the corresponding shrinking layer, and the
deconvolution is then gradually expanded. In the upsampling
process, the generated high-dimensional features are merged
with the low-level features to preserve the details of the image
to the greatest extent.

In the structure, the light-yellow box represents the mul-
tichannel feature map after convolution, and the blue box
represents the copied feature map. The number of channels
is displayed at the bottom of the box. The red box represents
the feature map generated after the 2 × 2 maximum pool-
ing downsampling operation with strides of 2. The network
uses the Dice coefficient as the cost function to increase the
speed of the weight update, thereby effectively increasing the
training speed. In the last layer, to obtain a single-channel
weight map, we assign a sigmoid convolutional layer, which
is represented by the purple box in the figure.

Due to the limitation of GTX 1060 GPUmemory, the batch
size was selected as 32 in this experiment. To select the appro-
priate learning rate for this batch size, we set three learning
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FIGURE 3. The architecture of the U-Net proposed in our work. The input of the network is a dual-channel grayscale image, and the
output is a single-channel weighted image. The number of channels of each layer of convolution is identified below the corresponding
convolution block. The arrow indicates skip connection.

rates of 0.01, 0.001 and 0.0001 for comparison. The results
show that when the learning rate is large (0.01), the curve
of target loss function fluctuates. When the learning rate is
small, the training time is long. Therefore, we use 0.001 as the
initial learning rate of the Adam optimizer for training. After
U-Net training for 30 epochs, the Dice coefficient can reach
more than 0.98. To balance the training effect and training
time, we set the number of epochs to 30. The training process
is performed within the Keras deep learning framework.

B. GENERATION OF A COLLECTION OF MULTIFOCUS
IMAGES FOR TRAINING
Due to the lack of a ground truth for medical image fusion,
medical images cannot be used as a training dataset. In this
experiment, the contents of the ImageSets and Segmentation-
Class folders in the PASCAL VOC 2012 dataset are used to
synthesize multifocus images for training U-Net. There are
2913 original images in the JPEGImages folder, which are
deemed to be the ground-truth images. The corresponding
segmentation images in the SegmentationClass folder are
used to define target and background areas within the original
images. Themultifocus image synthesis process includes four
steps: (1) conversion of source images into grayscale images,
(2) Gaussian filtering of grayscale images for the generation
of blurred images, (3) generation of focused regions (target
and background) by using binarization of the segmented
images, and (4) synthesis of multifocus images. To mimic
grayscale medical images, the color images in the JPEGIm-
ages folder are converted into grayscale images. For each
grayscale image, we use a Gaussian filter (with its standard
deviation set to 2 and window size set to 7) to generate
blurred images. Next, we binarize the segmented image in

the SegmentationClass folder and define a mask. In the mask,
the background pixels have a value of 0, and the target
pixels have a value of 1. Finally, the grayscale image and the
blurred image are superimposed onto one another according
to the mask to generate focus image A, in which the value of
the background-area pixel equals the value of the unblurred
grayscale-image pixel, and the target-area pixel corresponds
to the blurred-image pixel. Similarly, focus image B is gener-
ated by setting the value of the background-area pixel equal
to the value of the blurred-image pixel, where the target-area
pixel corresponds to the unblurred grayscale-image pixel.

The production of the training dataset by using the above
steps is equivalent to generating two focus images (A and
B) from an unblurred grayscale image. The mask separating
the target from the background is deemed the ground-truth
training target. The task of U-Net is to find pixels in the target
area from the multifocus images (A and B) and generate a
weight map, in which the pixels with a value of 1 represent
the greatest possibility of being located in the target area, and
the pixels with a value of 0 represent the greatest possibility
of being in the background area.

C. IMAGE PYRAMID FUSION STEPS
The entire image fusion process is divided into four steps:
generation of aweightmap byU-Net, Gaussian transform and
Laplacian transform of images, rule-based fusion, and image
reconstruction.
Step 1: Calculation of the fusion weight map. Multi-

parametric medical images A and B are combined into a
dual-channel image and sent to the trained U-Net to obtain
a weight map. The pixel values in the weight map represent
the focus attributes at the pixel positions of the source images.
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The closer the weight value is to 1, the greater the represen-
tation of the pixel intensity in A, and the closer the weight
is to 0, the greater the representation of the pixel intensity
in B. A weight of 0.5 indicates that images A and B have an
identical weight at the pixel point. The gray values of A and B
at the pixel point are averaged to generate the fusion result.
The pixel value is used as a weight in step 3.
Step 2: Pyramid decomposition. The two source medical

images are decomposed according to the Laplacian pyramid.
Gaussian pyramid decomposition is performed on the weight
map obtained in the first step. The maximum number of
decomposition levels is determined according to the size of
the medical image. Let the image size be H×W. The maxi-
mum possible total number of decomposition levels for each
pyramid is log2min(h,w). The image size in this experiment
is 256; thus, the maximum number of decomposition lay-
ers is 8. In the Gaussian pyramid, the image size of the G0

layer is 256× 256. The image size of theG1 layer is reduced
2-fold in length and width—i.e., 128 ×128—and so on. The
image size of the G7 layer is 2 ×2.
Step 3: Image fusion based on the local energy features

and weight map. According to the fusion rules, image fusion
is performed at each decomposition level.

In the formulaic description, LAk and LBk represent the
Laplacian decomposition images corresponding to source
images A and B in layer k of the Laplacian pyramid, respec-
tively. At the highest pyramid level, the Gaussian decompo-
sition images of images A and B, GA

0 and GB
0, are calculated

and combined. In the experiment presented in this paper, the
threshold value of the similarity measure in Formulas 3 and
4 is set to 0.6, and the detailed explanation of the threshold
selection is provided in section III.E.

(1). Calculate the local energy features of the Laplacian (or
Gaussian for the final layer) images A and B. For each image,
the local energy at (i, j) is the sum of the squared pixel values
in the m× n window centered on the point.

EA =
∑
M

∑
N
LAk (i+ m, j+ n)

2

EB =
∑
M

∑
N
LBk (i+ m, j+ n)

2 (1)

(2). Calculate the matching degree of two images
MAB (i, j).

MAB (i, j) =

(
∑
M

∑
N
LAk (i+ m, j+ n)L

B
k (i+ m, j+ n))

2

EA × EB
(2)

(3). If the matching degree at this pointMAB (i, j) < thd ,
select the pixel with the highest energy at this point.

L {F} (i, j) =

{
LAk (i, j) , if EA > EB
LBk (i, j) , if EB > EA

(3)

(4). If the matching degree at this point MAB (i, j) > thd ,
the image is fused according to the fusion weight graph W

L {F} (i, j) = GWk (i, j)L
A
k (i, j)+ (1−)Wk (i, j)LBk (i, j) (4)

Step 4:Laplacian pyramid reconstruction. The fused image
obtained in the third step is reconstructed according to the
Laplacian pyramid inverse transform.

Algorithm 1 Fusion

EA =
∑
M

∑
N

GA0 (i+ m.j+ n)
2

EB =
∑
M

∑
N

GB0 (i+ m.j+ n)
2

MAB (i, j) =

(
∑
M

∑
N
GA0 (i+ m, j+ n)G

B
0 (i+ m, j+ n))

2

EA × EB
If MAB (i, j) > thd then

M1 (i, j) = 1
else then

M1 (i, j) = 0
If EA > EB then

M2 (i, j) = 1
else then

M2 (i, j) = 0

YP (i, j) = M1 (i, j) (GW0 (i, j)G
A
0 (i, j)

+ (1− GW0 (i, j))G
B
0 (i, j)

YQ (i, j) = (1−M1 (i, j))(M2 (i, j)GA0 (i, j)

+ (1−M2 (i, j))GB0 (i, j)

Y0 (i, j) = YP (i, j)+ YQ (i, j)

for k=1 to nlev do (nlev is the decomposition level of the
Gaussian pyramid)

EA =
∑
M

∑
N

LAk (i+ m.j+ n)
2

EB =
∑
M

∑
N

LBk (i+ m.j+ n)
2

MAB (i, j) =

(
∑
M

∑
N
LAk (i+ m, j+ n)L

B
k (i+ m, j+ n))

2

EA × EB
If MAB (i, j) > thd then
M1 (i, j) = 1
else then

M1 (i, j) = 0
If EA > EB then

M2 (i, j) = 1
else then

M2 (i, j) = 0

YP (i, j) = M1 (i, j) (GWk (i, j)L
A
k (i, j)

+ (1− GWk (i, j))L
B
k (i, j)

YQ (i, j) = (1−M1 (i, j))(M2 (i, j)LAk (i, j)

+ (1−M2 (i, j))LBk (i, j)

Yk (i, j) = YP (i, j)+ YQ (i, j)Yk−1 (i, j)

end
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III. EXPERIMENT AND RESULTS
In the training phase, the network is trained using synthetic
multifocus images. Specifically, multifocus images A and B
are combined into an H × W × 2 matrix pair as input and
sent to U-Net. U-Net generates an H × W weight map and
performs the corresponding ground-truth supervision.

A. MRI IMAGE
The MRI data were downloaded from I2CVB (http://i2cvb.
github.io/#prostate-data). The dataset includes a total
of 17 patients with prostate cancer confirmed by biopsy.
Of these 17 patients, 12 had prostate cancer in the peripheral
zone (PZ), 3 had prostate cancer in the central gland (CG),
and 2 had infiltrating prostate cancer in both the PZ and CG
areas. An experienced radiologist segmented the prostate and
prostate cancer areas in the image.

All data were obtained using a 3-T MR scanner with
a pelvic phased-array coil (Magnetom Trio and Skyla,
Siemens Healthcare, Erlangen, Germany). The T2W image
on the axial plane was obtained using a three-dimensional
T2W fast spin-echo sequence (TR: 3600 ms, TE: 143 ms,
ETL: 109, slice thickness: 1:25 mm). The nominal matrix
and FOV of the 3D T2W fast spin-echo image were
320 mm×256 mm and 280 mm×240 mm, respectively. The
single-shot spin-echo echo-planar imaging (EPI) technique
was used to obtainDWI images. The diffusion-coded gradient
was obtained by the pulse-gradient spin-echo technique, and
the diffusion image was obtained in three orthogonal direc-
tions. Sequential sampling in k-space was used, with TE =
101 ms, TR = 4200 ms and bandwidth = 1180 Hz. Other
parameters include the following: FOV, 240 mm; acquisition
matrix size, 128 × 128; and slice thickness, 3.5 mm. ADC
mapping was performed by the Siemens workstation directly
from the original data of each pixel.

B. PARAMETER SETTING
The mean squared error loss function is used as the training
target. For each convolutional layer, we initialize the weights
using the variance scaling method and initialize the bias to 0.
The optimizer uses adaptive moment estimation (Adam), and
its basic learning rate is set to 0.001. We use a batch learning
strategy to train the model with the parameter batch size
set to 32. We train the model from scratch on 30 epochs of
data. The performance evaluation during training uses Dice
coefficients.

C. EXPERIMENTAL ENVIRONMENT
Our experiment was conducted on a PC with an Intel
Core i5-6500 CPU at 3.20 GHz, 16 GB of RAM, and an
NVIDIA GeForce GTX 1060 GPU with 6 GB of mem-
ory. In the Python 3.5 environment, U-Net model training
and feature extraction experiments were performed using
the TensorFlow framework to generate weight maps. Image
pyramid decomposition and Laplacian inverse transformation

were implemented using MATLAB R2016a to complete the
final fusion process.

D. EVALUATION METHODS
The evaluation methods of image fusion use five indexes:
information entropy (EN), the similarity measure based on
the gradient (QAB/F ), structural similarity (MS_SSIM), the
mutual information measure (MI), and feature-mutual infor-
mation (FMI_w). For each index, the higher the value, the bet-
ter the quality of the fused image.

EN is a measure of the amount of data contained in an
image [40]. The EN of the discrete random variable i is
defined as follows:

EN = −
∑L

i=1
h (i) log2h(i) (5)

where L is the number of gray levels, and h(i) denotes the
normalized histogram of the fused image. In this study, L is
set to 256.
QAB/F is a gradient-based measurement that evaluates

fusion quality by measuring the spatial details of the source
image and the fused image [41]. It is defined as follows:

QAB/F

=

∑N
n=1

∑M
m=1QAF (n,m)ωA(n,m)+ QBF (n,m)ωB(n,m)∑N

n=1
∑M

m=1(ωA(n,m)+ ωB(n,m))
(6)

where N and M are the length and width of the input images,
respectively. QAF (n,m) and QBF (n,m) are edge informa-
tion retention values, weighted by ωA (n,m) and ωB (n,m),
respectively.

Structural similarity (SSIM) is a measure of the similarity
between two images [42]. Its definition is as follows:

SSIMF
AB =

SSIMAF + SSIMBF

2
(7)

SSIMAF =
(2µAµF + C1)(2σAF + C2)

(µ2
A + µ

2
F + C1)(σ 2

A + 2σ 2
F + C2)

(8)

MI is a measure of the total information transferred from
the input images to the fused image and is denoted as fol-
lows [43]:

MI =
MIAF +MIBF

2
(9)

MIAF =
∑

m

∑
n
pAF (m, n)log2

pAF (m, n)
pA(m)pF (n)

(10)

FMI is a measure of MI between the features of the input
image and the features of the fused image, with the following
definition [40]:

FMI =
FMIAF + FMIBF

2
(11)

FMIAF =
2
L

∑L

i=1

MIAF
ENA + ENF

(12)

FMI_ w is defined as the value of FMI, which is calculated
after thewavelet transform of the image is performed by using
a sliding window. In this study, the default 3 × 3 sliding
window is used.
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E. LOCAL SIMILARITY
In the image pyramid fusion process, the third step involves
the calculation of local similarity and the selection of
the matching-degree threshold. Taking different thresholds,
fusion results are checked by applying objective evaluation
criteria (Table 2). It is concluded that the optimal threshold
is between 0.4 and 0.6. In this experiment, 0.6 is selected for
the image fusion process.

TABLE 2. Average score of the objective evaluation of various fusion
thresholds.

F. RESULTS
In the experiment, we selected a total of 30 pairs of MRI
images (axial T2W andADC images) from 10 prostate cancer
patients as experimental data (3 pairs per patient).

In the training stage, the synthesized multifocus image
dataset is used to train the network. To expand the image
data and increase the robustness of the network, for the MRI
image and the corresponding label image in the training set,
we randomly select several operations for the image from
the following strategies: random rotation in the range of 0 to
10 degrees, from 0 to randomly move along the X and Y
axes between 0.1 times the image size, and randomly flip
the image horizontally or vertically, stretching 1 to 1.2 times
randomly along the X and Y axes. A total of 30 epochs are
trained, each requiring approximately 75 s. The 30 rounds of
training take a total of 38 min. After 30 epochs of training,
the Dice coefficient is 0.9826. This shows that U-Net can
effectively segment the clearest parts from the multifocus
gray image. Then, the MRI image is input into the trained
U-Net to generate a weight map.

T2W images are sensitive but not specific to prostate can-
cer. It is difficult to distinguish prostate cancer from prostatic
intraepithelial neoplasia, hemorrhage, changes after radio-
therapy or prostatitis in T2W images. The ADC value of
prostate cancer is lower than that of the surrounding healthy
prostate tissue, showing a low signal in the ADCmap. By fus-
ingADC and T2W images, the location of prostate cancer and
the relationship between tumor and surrounding tissue can be
identified, and the image specificity of prostate cancer can
be improved. It is convenient for doctors to judge the tumor
stage and determine the location of the tumor, which reduces
the workload of doctors who read the map.

Our proposed algorithm and some comparison algorithms
are used to perform image fusion on all test image pairs with
an objective and subjective evaluation of the fusion results.

The compared algorithms include the weighted average algo-
rithm (AVE) [46], domain multiparametric medical image
fusion method (NSCT) [47], zero-learning fast medical
image fusion method (ZLF) [48], and CNN-based method
(CNN)[29].

Figures 4 and 5 show the fusion results from two pairs
of images. The mpMRI images are T2W and ADC images,
which are usually used for prostate tumor diagnosis. The
red areas in Figure 4(b) and Figure 5(b) define the prostate
tumor regions as marked by the radiologist. The ADC image
is converted into a pseudo-color image and superimposed on
T2W images (Figure 4(c) and Figure 5(c)).

Figure 4 shows the fusion of the ADC map and T2W
image of patient 4. The tumor is located in the PZ and CG
of the prostate. The normal PZ of the prostate presents two
symmetrical crescent-shaped high-signal areas in the T2W
image. In the ADC image, the tumor area has a low signal,
which has a clear contrast with the surrounding normal area
signal, but the tissue structure cannot be displayed well in the
image. In the T2W image, the tumor area shows a low signal,
and the rectum below the tumor and the bladder tissue above
the tumor are clearly displayed.

The main disadvantage of image (d) is the limited ability to
retain details, with poor contrast and brightness. The overall
brightness value of the image is lower than that of the source
image. The feature of some fat on the hip is missing. Image
(e) has good overall performance, and the details such as
fat texture on the hip are clear. However, the bladder area
with high gray values in the ADC image and T2W image
is mainly merged, so the contrast of the prostate area is not
significantly improved. Image (f) contains some undesirable
artifacts, and the overall image fusion effect is distorted.
Image (g) performs well in the details of the prostate area,
but the overall low-frequency components of the image show
less detail than the source image, and the surrounding tissue
structure is not clearly visible, which affects the diagnosis.
Image (h) not only contains complete details but also has
good contrast and clarity. The contrast of the prostate area is
increased, and the gray value division is more uniform, which
is of great help in identifying prostate cancer. The lower part
of the tumor has grown to the junction of the prostate and
rectum. The image corresponds to a tumor larger than T2.

Figure 5 shows the fusion the ADC map and T2W image
of patient 3. This tumor’s shape is irregularly and has invaded
both the PZ and CG. In the T2W image, the tumor area
represented by the low signal can be seen in the PZ on both
sides. However, there is a suspected area between high and
low signals in the lower right part of the prostate area in
the image. ADC images are needed to help confirm whether
there are malignant lesions at this location. In the ADC
image, the suspected domain presents a high signal, and it
is judged that there are no malignant cells in this area. The
overall brightness of image (d) is lower than that of the source
image, but the prostate cancer area can be better distinguished
from the surrounding area. The overall image (e) contrast is
relatively high, and the image texture and other details are
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FIGURE 4. Fusion of magnetic resonance images from the ADC sequence and T2W sequence of patient 4. (a) Source 1 (ADC). (b) Source 2
(T2W). (c) Superposition of the ADC pseudocolor image and the T2W gray image. (d) AVE. (e) NSCT. (f) ZLF. (g) CNN. (h) Our proposed method.

FIGURE 5. Fusion of magnetic resonance images from the ADC sequence and T2W sequence of patient 3. (a) Source 1 (ADC). (b) Source 2 (T2W).
(c) Superposition of the ADC pseudocolor image and the T2W gray image. (d) AVE. (e) NSCT. (f) ZLF. (g) CNN. (h) Our proposed method.

clear. The contrast of the prostate area is not significantly
improved. The lower right corner of the red area of prostate
cancer in the figure shows a low signal, but there is no tumor
in this part, which affects the diagnosis. Image (f) contains
some undesirable artifacts, which can significantly reduce the
visual perception ability of the observers. There are black
blocks, and the overall image fusion effect is distorted. Image
(g) performs well in the details of the prostate area, with high
contrast. The main disadvantage is that some details are lost,

and the muscles and fat tissues of the rectum and bladder
are not clearly visible. Image (h) not only contains complete
details but also has good contrast and clarity. The contrast
of the prostate area increases, so the low signal inside the
tumor boundary and the high signal of normal tissue outside
the boundary are visible, which can help the doctor confirm
the tumor boundary.

Table 3 shows the quantitative performance evaluation
of the different fusion methods. The proposed algorithm
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TABLE 3. Average scores in the objective evaluation of various fusion
methods.

achieves better performance than the other four algorithms for
most indexes except the QAB/F index (our method is second
only to CNN in this case). Our fusion algorithm is superior
to all other algorithms based on both visual perception and
objective evaluation.

Figure 6 shows the objective index values of the fusion
results for the images of 10 patients using the algorithm
presented in this article and the compared algorithms. We can
observe from Figure 6 that our method almost leads the
other methods in terms of scores. The quantitative results
are consistent with the visualization results described in the
above analysis.

IV. DISCUSSION
The AVE image fusion method is based on the manual selec-
tion of fusion rules. The weighted average fusion method
combines all pixels according to a simple weight. The AVE
algorithm is the fastest among the five methods due to its
simple calculation. Since the pixel value around the clear
area in the ADC image is 0, the contrast of the clear area in
the fusion image decreases as the weight increases. Because
the pixel value around the periprostate region in the ADC
image is 0, the contrast of the periprostate region in the fused
image decreases according to the overlap in the weight addi-
tions, and some information in the T2W image is lost. The
NSCT method uses a nonsubsampled, contoured transform
to decompose the image into low frequency and high fre-
quency, uses different fusion rules according to these frequen-
cies, separates the high-frequency part and the low-frequency
part of the image, and designs different fusion rules for the
high-pass subband and low-pass subband. The fused image
has rich information and clear edges. Subjectively, the fused
image is the closest to our fusion result. The MI value is
second only to our algorithm in objective evaluation, but the
calculation is complicated. The ZLF is a CNN trained by a
large amount of data, and it can directly input medical images
of different modalities to generate weight maps for fusion.
Our experiments show that for the fusion of multimodal MRI
images, there are many black spots in the images, and the
fusion effect is not impressive. In the dataset used for this
study, there are many black background areas around prostate
tissue in the ADC images, but there is image information
in the corresponding areas of the T2W images. This may
be because the ZLF algorithm directly convolutes the input
image and does not consider the difference in information

content between two images at the same pixel position.
Liu et al. proposed a method for medical image fusion, which
added the assistance of the CNN network in the framework of
the Laplacian pyramid. The CNN network is used to learn the
features of the two input images, and the learning results are
then inversely transformed into a weight map to participate in
the Laplacian pyramid fusion. From the intuitive comparison,
we can see that the fusion effect of the prostate region is
better; however, the information in the T2W image outside
the prostate region is ignored, and the fusion effect is too
concentrated on the prostate region. Thus, the Qabf value is
the greatest of all the methods, which is not conducive to
doctors observing the tissues around the prostate from the
image. We introduce U-Net into our method for the fusion
of prostate MRI images to allow doctors to clearly identify
prostate tumors. By using the characteristics of U-Net to
segment the image, the areas with clear details of the MRI
image are extracted and fused. In this paper, we add batch
normalization and cascading to U-Net, which deepens the
network structure and generates more accurate results than
other methods when processing image details.

There are some limitations to this study. This study is based
on a set of single-site MRI images. The method requires
further validation on multicenter image trials with differ-
ent anatomical areas, image resolution, or image quality by
adapting a more robust and generalized deep learning net-
work. Another limitation is that the study mainly focuses on
image fusion methods for the ADC map and T2W sequence.
Additional mpMRI images have been developed to detect
tumors, such as DCE-MRI, magnetic resonance elastogra-
phy, and chemical exchange saturation transfer MRI. Future
studies may investigate how our proposed fusion method
can be effectively applied to mpMRI images besides T2W
and ADC images. The training dataset in the U-Net training
experiment transforms the voc2012 dataset into a multifo-
cus image. In the future, the medical image dataset will be
changed to a multifocus image dataset for use in network
training, and the network obtained may be more suitable for
processing medical images. Based on the CNN method [29],
Wang et al. obtained better image fusion results by using
two sets of local similarity thresholds [51]. We can further
investigate how to set different local similarity thresholds
according to the image size of each layer of the pyramid to
improve the quality of the fused image. Qi et al. proposed
an algorithm based on EN to improve the quality of medical
image fusion [52]. An image with high EN may have more
meaningful information than an image with only high energy.
In step 3, we may use the local energy entropy around the
point (i, j) as the reference and take the random image blocks
into the fusion process, rather than just according to the
energy value at point (i, j). In this study, the main purpose of
fusion imaging is to assist doctors in identifying areas with
prostate cancer from the image. Radiologists may be invited
to blindly evaluate the quality of the fused image and further
optimize the fusion rules. Our method can be merged into
a computer-aided diagnosis system to achieve effective and
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FIGURE 6. Line graph of scores for each pair of source images in terms of each metric (A) EN. (B) FMI_w. (C) MI. (D) MS_SSIM. (E) Q_(AB/F).

accurate automatic recognition and segmentation of prostate
cancer.

V. CONCLUSION
this paper proposes an mpmri image fusion method based
on cnns to enhance the appearances of tumors inside the
prostate. inspired by its feature representation and extrac-
tion, a u-net is designed to generate weight maps based on
pixel information. to effectively train u-net, we synthesize
large-scale training samples with the voc 2012 natural image
dataset, design image pairs with multifocus areas (target and
background), and use the original unsmoothed images as
fusion targets. the main innovation of this method is that a
fusion weight map can be automatically generated through
a u-net based on the relationship between image feature
information and training targets. a weighted fusion strategy is
proposed based on the weight map with the goal of avoiding
artifact generation and energy loss. the effectiveness of this
method is illustrated by fusing t2w and adc mri images from
prostate cancer patients. the results show that our proposed
method is superior to other similar methods in terms of not
only overall visual perception but also the appearance of
prostate cancer in the images. the python implementation of
the proposed u-net image fusion method is available online at
https://github.com/huangxunan/medfusion-unet.
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