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ABSTRACT Although traffic conflict techniques have proven to be effective means for road safety analysis,
they still suffer from incomplete conceptualization, observer subjectivity, and high data collection cost.
To address these problems, video analysis has been increasingly applied to gain a better understanding
of the behaviors of road users based on detailed motion data. However, the motion patterns underlying
these data are rarely extracted to study the safety of their interactions. This article presents a vision-based
method of traffic conflict detection through learning motion patterns from trajectories, for which an original
algorithmwas established through clustering and subsequent modeling. Using the extracted path and velocity
information, we clustered trajectories hierarchically by applying an improved fuzzyK -means algorithmwith
a modified Hausdorff distance. Each obtained cluster was taken as a labeled set to determine the structure
and train the parameters of a hidden Markov model (HMM) that encoded the spatiotemporal characteristics
of the trajectories as motion patterns. Based on the targeted trajectory predictions by the learned HMMs
following the conflict development, a probabilistic model was developed to estimate the collision likelihood
between vehicles to identify traffic conflicts. The experimental results obtained using actual traffic videos
demonstrated the applicability of the algorithms for learning motion patterns and the feasibility of the
approach for traffic conflict detection. The predicted trajectories were sufficiently accurate to calculate the
collision probability, which was qualified as an indicator for measuring the conflict severity. These findings
will have important implications for effective improvements in active road safety.

INDEX TERMS Collision estimation, hidden Markov model (HMM), motion pattern, traffic conflict
detection, trajectory learning, video analysis.

I. INTRODUCTION
Road safety analysis is traditionally conducted based on
traffic crash data. However, it is well recognized that such
data suffer from quantity and quality problems. Additionally,
because analysis can only be applied following the accumula-
tion of sufficient crash data, it generally has to be conducted
in a passive manner. These shortcomings have led to the study
of traffic conflict techniques (TCTs) in an attempt to establish
active methods accordingly [1]–[3]. Traffic conflict analysis
involves the assessment of inter-vehicle interactions that are
broadly similar to collisions and therefore has the advantages
of large sample sizes, short analysis time intervals, high
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reliability, etc. Traffic conflicts are conventionally identified
by groups of trained observers who analyze the interactions
between two ormore vehicles approaching each other. In such
cases, if either one of the vehicles does not change its motion,
the vehicles will collide, and the situation is defined as a
traffic conflict [4]. However, owing to imperfect conceptu-
alization, the high cost of training observers, data availability
problems, and the subjectivity and questionable reliability of
the observers, TCTs have developed relatively slowly over
time.

The recent rapid growth of computer vision and machine
learning, along with the powerful abilities of these techniques
to collect and analyze motion vision information, has made
it possible to address the problems that have restricted the
development of TCTs. Furthermore, as noted in the Highway
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Safety Manual [5], it is necessary to replace conventional
statistical models with microscopic models that can more
clearly reflect the mechanisms of collisions in future road
safety studies. Numerous researchers have already applied
detailed microscopic vehicle motion data obtained via video
analysis to detect traffic conflicts. However, they differ signif-
icantly in the manner in which they have addressed the core
problem of vehicle trajectory learning and prediction. Some
researchers [6]–[12] have proposed a range ofmetrics that can
describe the degree of interaction between vehicles in detail
(e.g., time-to-collision (TTC), post-encroachment time, time
advantage, and time gap). Nonetheless, these metrics are only
calculated using direct approaches inwhich the vehicle trajec-
tories are extrapolated by constant velocity and direction. In a
structured roadway scenario, vehicles actually neither move
at random, nor do they move at constant velocities. Instead,
they follow underlying motion patterns that correspond to
driver intent, which can be learned and used to predict future
motions. Correspondingly, other researchers [13]–[17] have
sought to detect traffic conflict using the estimated collision
possibility, TTC, and other indicators via trajectory learning.

Trajectory learning algorithms for predicting the motion
of road users can be classified into two primary categories:
discrete state-space model-based and neural network-
based approaches. The former algorithms generally clus-
ter trajectories and learn the clustering results by applying
discrete state-space models to obtain the vehicle motion
patterns closest to the trajectory prototypes. The cluster-
ing algorithms used for this purpose include K-means
clustering [18], [19], hierarchical clustering [20], [21],
graph cutting [22], pairwise clustering [23], [24], spectral
clustering [25], [26], and expectation-maximization-based
clustering [27]. Regarding model selection, a trajectory
cluster is commonly developed as a path model [19]–[23],
[26], [28], which is characterized by an average central
spline with two lateral extremal boundaries that define
the variations of the trajectories within the cluster. The
width of the path is determined using a deterministic or
probabilistic method. Other existing models [18], [27],
[29]–[31] are primarily based on hidden Markov models
(HMMs) in which space and time are regarded as discrete
variables and spatiotemporal trajectory patterns are learned
using several discrete states.

Neural networks are probably the most widely used alter-
natives to discrete state-spacemodels. Johnson and Hogg [32]
first applied a multilayer self-organizing network to learn
object trajectory patterns. In their method, a set of flow
vectors constituting the prototype trajectories was input into
the network and quantized using two competitive learning
networks connected by a layer of leaky neurons: one to learn
the distribution of flow vectors and another to learn the dis-
tribution of trajectories. A similar neural network was devel-
oped by Sumpter and Bulpitt [33], who added a feedback loop
to the network to improve the motion prediction accuracy.
Hu et al. [34] further improved on this work by designing a
hierarchical self-organizing neural network in which the side

neurons in the output layer were linked to form an internal net
that replaced the leaky network layer. Subsequently, they [13]
developed a more concise self-organizing neural network for
learning activity patterns. Although research on suchmethods
seems to have stalled in recent years, lately some researchers
have attempted to apply recurrent neural networks with long
short-term memory model [35], [36] or multilayer percep-
trons [37] to strengthen trajectory learning. A different frame-
work proposed by Stauffer and Grimson [38] involved the
construction of a co-occurrence matrix for trajectories in each
motion pattern, which are learned by applying a hierarchical
classification to the matrix. Other researchers [39], [40] have
simplified traffic conflict detection into two-class problems
that can be solved without trajectory prediction using super-
vised learning and the recognition of conflict trajectories.

Among the solutions for traffic conflict detection through
video analysis techniques, the most promising ones are those
that rely on trajectory learning algorithms rather than direct
extrapolation to predict trajectories in a more realistic and
accurate fashion [41], [42]. Unlike neural network-based
methods, discrete state-space models can learn the variable
lengths of trajectories as sequence data in a natural manner
[30]. However, the existing models rarely consider both the
space and time uncertainties of trajectories, with majority of
them focusing on the discrete state analysis of space rather
than time. This deficiency inevitably limits the applicability
and flexibility of such models and hinders their ability to
perform thorough statistical analyses of motion patterns, par-
ticularly in terms of vehicle-speed prediction.More seriously,
some models rely on destructive trajectory pre-processing
techniques, such as resampling via linear interpolation
[27], [28], [43] or padding with default values [13], [19],
to normalize the trajectory lengths. These operations lead
to the distortion of spatial information and loss of temporal
information. Consequently, the trajectory predictions made
by such models are even more difficult to conduct at the time-
discrete state level than other discrete state-space models.

The objective of this study is to develop a methodology for
the visual detection of traffic conflict through the learning
of vehicle trajectories to explore fully their usefulness in
characterizing motion patterns. In general, trajectory learning
is best performed automatically in an unsupervised manner
to construct the motion pattern of an object in a given sce-
nario [44]. However, if the complex and variable vehicle
trajectories are clustered in advance and the results are used
to guide trajectory modeling, the original blind unsupervised
work will be transformed into a supervised one, thereby
improving the efficiency and accuracy of learning. With this
aspect in mind, we present an original cluster-and-model
method for trajectory learning. Without the need for distorted
pre-processing of trajectories, an improved fuzzy K -means
algorithm with a modified Hausdorff distance is proposed
to cluster them hierarchically based on their implied paths
and velocity characteristics. Then, the HMM is employed to
model comprehensively the spatiotemporal uncertainties of
trajectories in each obtained cluster, the mixture of which
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FIGURE 1. Overview of the proposed traffic conflict detection approach.

represents all underlying motion patterns. Based on the
characteristics of conflict development, a more targeted algo-
rithm for the prediction of trajectory covering varying veloc-
ities than the usual absolutely statistical distribution of paths
with constant velocity was established and merged into a
probability model to estimate collisions for the detection
of traffic conflicts. The results of this study can be used
to exploit trajectories fully for effective detection of traffic
conflicts and provide insights into the improvement of the
visual analysis and understanding of vehicle motion behavior.

II. METHODOLOGY
For any given road environment, the proposed method
acquires raw trajectories by detecting and tracking vehicles
across multiple frames extracted from video. After resam-
pling n times at a larger time interval (once every1t frames),
a sample vehicle trajectory can be represented by the set Fl
comprising n flow vectors Fl = {f1, f2, . . . , ft , . . . , fn−1, fn},
where ft =

(
xt , yt , δxt , δyt

)
. In each vector ft , pt = (xt , yt)

and Vt =
(
δxt , δyt

)
respectively represent the world coor-

dinates of the centroid and velocity of the vehicle at the
t-th sampling interval. The collection of individual F is
then used to compile a set of sample trajectories � =

{F1,F2, . . . ,Fl, . . . ,FJ }, where J denotes the number of
sample trajectories and Fl is the l-th trajectory. The pro-
posed approach consists of three components: the learning
of motion patterns (i.e., hierarchical clustering of trajectories
and training HMMs with trajectories in the corresponding
cluster); trajectory prediction; and traffic conflict detection
(as shown in Figure 1).

A. HIERARCHICAL TRAJECTORY CLUSTERING WITH
IMPROVED FUZZY K-MEANS ALGORITHM
A natural approach to identifying potential motion patterns
involves applying a clustering algorithm to assign similar tra-
jectories to the same group [45]. If there are numerous highly

diverse samples, the direct implementation of trajectory clus-
tering will involve a heavy computational load for calculating
the distance between trajectories, resulting in significantly
slower the process. Considering the purpose of clustering and
the need for efficiency, a hierarchical clustering algorithm for
trajectories based on spatiotemporal information of vehicle
motion can be applied instead. The proposed method first
applies path clustering according to the spatial position of
each trajectory. It then clusters the results further according to
the vehicle velocity to produce a set of trajectory clusters with
spatial and temporal differentiation. As there will inevitably
be an overlap between some trajectories in addition to the
presence of abnormal trajectories in the samples, hard clas-
sification results produced by the common clustering method
will inevitably deviate from the actual situation. Although
the fuzzy K -means algorithm can address the overlapping
trajectory problem, it is, in several respects, restricted in
terms of practical use [19]. By contrast, the improved fuzzy
K -means algorithm can not only address the existence of
wild values, but is also insensitive to pre-defined numbers
of clusters, owing to its relaxed membership conditions. The
enhanced robustness and applicability of the improved fuzzy
K -means make it quite suitable for performing clustering at
each layer.

1) PATH-BASED CLUSTERING
A path is defined as a geometric curve described by
the coordinates of each point on a trajectory and reflects
the most important position and curve shape characteris-
tics of the trajectory. The proposed method initially clus-
ters trajectories in terms of their path information. For
a set of sample trajectories �, the corresponding set of
intermediate trajectories for path-based clustering can be
represented as �′ =

{
F ′1,F

′

2, . . . ,F
′
l , . . . ,F

′
J

}
, where

F ′l =
{
f ′1, f

′

2, . . . , f
′
t , . . . , f

′
n
}
. To improve the efficiency
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of clustering, only the coordinates of points f ′t = (xt , yt)
(t = 1, 2,. . . ,n) on each trajectory of each set F ′l are retained,
as they can adequately reflect the path characteristics.

The improved fuzzy K-means-based algorithm is used to
create a mapping between the intermediate trajectories and
their cluster centroids, which retain the spatial distribution of
the trajectories. To compare the trajectories, a reliable dis-
tance metric must be first introduced. In this case, the Haus-
dorff distance [22], [25]was preliminarily selected rather than
metrics such as the Euclidean distance, dynamic time warp-
ing, and longest common subsequence similarity, because
it is more suitable for measuring distances between point
sets (e.g., trajectories) [44]. As the measurement error of the
traditional Hausdorff distance increases with the difference
in lengths between trajectories, the modified one [46], which
specifically addresses this problem, is used to measure the
distance between trajectories F ′i and F

′
j :

DH
(
F ′i ,F

′
j

)
= min

(
Dh
(
F ′i ,F

′
j

)
, Dh

(
F ′j ,F

′
i

))
1 ≤ i, j ≤ J (1)

with
Dh
(
F ′i ,F

′
j

)
= max

f ′i,k

(
min
f ′j,l

dE
(
f ′i,k , f

′
j,l

))
, ∀k, l

Dh
(
F ′j ,F

′
i

)
= max

fj,l

(
min
fi,k

dE
(
f ′j,l, f

′
i,k

))
, ∀l, k

(2)

where dE
(
f ′i,k , f

′
j,l

)
is the Euclidean distance between the

k-th and l-th characteristic vectors f ′i,k and f ′j,l , respectively.
The reasonable clustering results should be separated by
a certain distance, and the farther the better. Because the
improved fuzzy K-means-based algorithm is sensitive to the
initial values of cluster centroids, the K-means ++ algo-
rithm is employed to initialize them to obtain satisfactory
results. After a sample is chosen as the first cluster centroid
θ1 randomly, the following c–1 centroids are determined by
roulette wheel selection according to the probability that each
sample is selected as the next one P(Fi), which is calculated
as follows:

P(Fi) =
D2
Fi

n∑
i=1

D2
Fi

(3)

whereD(Fi) is the shortest modified Hausdorff distance from
a data sample to the closest center already determined. Subse-
quently, based on the modified Hausdorff distance, the fuzzy
membership ϕcl(t) of each sample F ′l to each cluster centroid
θc is calculated as follows:

ϕcl(t) =
J
/
D2
H

(
F ′l , θc

)
K∑
c=1

J∑
l=1

(
1
/
D2
H

(
F ′l , θc

)) . (4)

The cluster centroid vectors are then adjusted iteratively using

θc (t + 1) =

J∑
l=1
ϕ2cl (t)F

′
l

J∑
l=1
ϕ2cl (t)

(5)

until the following constraint condition is satisfied:

max
1≤c≤K

[DH (θc(t + 1), θc(t))] < ε. (6)

2) VELOCITY-BASED CLUSTERING
Although the subsets of �c (c = 1, 2,. . . , K ) can represent
different motion paths of vehicles, they are not sufficient to
characterize the motion patterns of vehicles, because in actual
scenarios, vehicles can stop, worm, or rush along a given path.
To fulfill the clustering goal of learning and predicting the
motion patterns of vehicles, it is necessary to cluster trajec-
tories further within the subsets of �c based on their speed
information. Therefore, the modified Hausdorff distance can
be extended to measure the temporal similarities between
trajectories, whose original flow vector f already contain
speed information. In this regard, a clustering algorithm based
on the improved fuzzy K -means algorithm performs identi-
cally to path-based clustering. Notably, because the scale of
a subset of�c is considerably smaller than that of the overall
set �, the computational complexity of the subset clustering
process is much lower than that of direct clustering. When
this velocity-based clustering process is completed, each �c
is further divided into different subsets, and the overall set of
sample trajectories is correspondingly clustered into Z sets of
trajectories:

� =
{{
F1,1, . . . ,F1,M1

}
, . . . ,{

Fr,1, . . . ,Fr,Mr

}
, . . . ,

{
FZ ,1, . . . ,FZ ,MZ

}}
Z∑
r=1

Mr = J

(7)

where Mr is the number of original trajectories in the r-th
trajectory subset �r .

B. LEARNING AND PREDICTING TRAJECTORIES
USING HMMS
Clustering can only be used for inferencing after establishing
an appropriate representation model. The discrete nature of
trajectories makes discrete-state models (e.g., HMM) quite
suitable for the approximate analysis of continuous motion
[18], [19], [31]. HMMs can not only flexibly reflect the uncer-
tainty in the positions throughwhich a vehicle passes, but also
describe the time dependencies between successive points.
Through training, all trajectory samples can be mapped
to hidden state parameters and state transition matrices of
HMMs so that clustering can occur in a parameter space.
To enable vehicle motion prediction, the trajectory clusters
acquired using the approach described in Section II-A are
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FIGURE 2. Left-to-right HMM for trajectories.

utilized as the basis for learning the HMMs with the proba-
bility distribution of the HMMs representing different motion
patterns encoded by the number distribution of the trajectories
belonging to the corresponding clusters.

1) HMM-BASED LEARNING ALGORITHM
a: HMM NOTATION AND STRUCTURE
AnHMM is a random state machine [47], [48] that essentially
consists of a two-layer system model in which a hid-
den first-order Markov process produces a visible obser-
vation sequence with a certain probability. The first layer
describes the unobservable homogeneous Markov chain pro-
cess according to the state transition matrix, whereas the sec-
ond layer represents the random mechanism between the
observed variables and the state. HMMs can effectively
model sequences with complex spatiotemporal changes,
varying length and noise characteristics without changing
their time-order characteristics [49], [50]. For a detailed
overview of HMMs, readers are directed to [48]. To define
the HMMs used under the proposed method, we apply the
following notations. The complete specification of a first-
order HMM with N states {S1, S2, . . . , SN } and a Gaussian
observation density function for each state are formally given
by the following probabilistic parameters:

1) The prior state probability distribution π = {πi}, where

πi = P (q1 = Si) and
N∑
i=1
πi = 1, 1 ≤ i ≤ N ;

2) The state transition probability distribution A =
{
ai,j
}
,

where ai,j = P
([
qt = Sj

]
|[qt−1=Si]

)
and

N∑
j=1

ai,j=1,

1 ≤ i, j ≤ N ;
3) The observation probability density B =

{
bj(ot )

}
,

where bj(ot ) = P
(
[Ot = ot ]

∣∣[qt = Sj
] )
= N(

ot , µj,
∑

j

)
for 1 ≤ j ≤ N , where µj and

∑
j are

the mean and covariance, respectively, of the Gaussian
of state Sj and ot and qt are the observation and state
variable, respectively, at time t .

The full set of parameters describing the HMM is com-
monly denoted as λ = (π,A,B). The essential precondi-
tion for ensuring the acquisition of reliable HMM is that
the HMM structure must be properly determined before the
trajectories can be learned. To reflect the transfer charac-
teristics of vehicle trajectory dots, we adopt a structure in
which the states move from left to right in one direction, as
depicted in Figure 2. A vehicle can remain in a given state

for a short time or proceed in continuous or jumping modes.
Although trajectories are characterizedmore clearly when the
number of HMM states is increased, increasing the number
of states will increase the model size. Hence, the number
of states was determined by the complexity of the trajectory
samples and computational limitations in this study.

b: LEARNING THE PARAMETERS
Parameter learning occurs after the structure of the HMM has
been determined. Intrinsically, this task can be considered a
maximum likelihood problem in which the trajectory sam-
ples belonging to a cluster are used to optimize the HMM
parameters so that they match the samples with maximum
probability. Although the Baum–Welch formulas do not yield
a global optimal solution, the HMM learning algorithm still
mainly uses them to calculate parameters recursively to guar-
antee convergence to a local optimum. Using trajectory F
as an observation sequence O, we can re-express the clus-
tering of �r in (7) as

{
O1,O2, . . . ,OMr

}
, where Ol ={

ol1, o
l
2, . . . , o

l
Tl

}
= Fl, 1 ≤ l ≤ Mr and ot = ft , 1 ≤

t ≤ Tl . If we denote the maximum length of all trajectories
in cluster �r as Lr and the sampling distance as 1, then the
total number of states in the HMM is given by Er = dLr/1e.
Each set of successive points within the length range of 1
can then be considered as observable signals emitted by the
corresponding state, and the transfer characteristics between
them can be captured by the state transitionmatrix. According
to the maximum likelihood principle, the trajectories in set
�r can eventually be mapped to the set of HMM parameters
λ = (π,A,B) using the likelihoods of each state and transi-
tion belonging to the optimal HMM as weights to update it as
the following steps.

1) Initialize the state prior probabilities π and transition
matrix A.

2) Input all trajectories Ol =

{
ol1, o

l
2, . . . , o

l
Tl

}
,

1 ≤ l ≤ Mr .
3) For every time t in Ol , compute the forward and back-

ward probabilities:

αlt (i) = P
(
ol1, o

l
2, . . . , o

l
t , qt = si |λ

)
(8)

β lt (i) = P
(
olt+1, o

l
t+2, . . . , o

l
Tl |qt = si , λ

)
. (9)

4) Calculate the probabilities of being in state Si at time t
and Sj at time t + 1 (ξ lt (i, j)) and of being in Si at time
t (γ lt (i)), as follows:
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ξ lt (i, j) = P
(
qt = Si, qt+1 = Sj

∣∣∣Ol, λ) (10)

γ lt (i) =
N∑
j=1

ξ lt (i, j) = P
(
qt = Si

∣∣∣Ol, λ) . (11)

5) For each discrete state Si, re-estimate the state prior π̂i,
mean µ̂i, and covariance 6̂i of the Gaussian as follows:

π̂i =
1
Mr

Mr∑
l=1

γ l1 (i) (12)

µ̂i =

Mr∑
l=1

Tl∑
t=1

γ lt (i)o
l
t

Mr∑
l=1

Tl∑
t=1

γ lt (i)

(13)

6̂i =

Mr∑
l=1

Tl∑
t=1

γ lt (i)(o
l
t − µi)(o

l
t − µi)

T

Mr∑
l=1

Tl∑
t=1

γ lt (i)

. (14)

6) Adjust the transition probability in A as follows:

âij =

Mr∑
l=1

Tl∑
t=2

ξ lt−1 (i, j)

Mr∑
l=1

Tl∑
t=2

γ lt−1 (i)

. (15)

7) Determine whether the convergence condition of the
HMM is met, as follows:

|logP(�r |λt+1)− logP(�r |λt ) | < η, (16)

where 

P (�r |λt+1 ) =

Mr∏
l=1

P
(
Ol |λt+1

)

P (�r |λt ) =

Mr∏
l=1

P
(
Ol |λt

) . (17)

If the convergence condition is true, then the learning
procedure terminates; otherwise, return to Step 2 for the next
learning iteration.

2) TRAJECTORY PREDICTION
The trajectory covering the velocity of a vehicle can be
predicted by utilizing the HMMs learned using the process
described in Section II-B1. For a time-varying trajectoryO =
{o1, o2, . . . , ot }, this prediction is performed as follows.
For a new observation, the current belief state for the

vehicle is calculated using

P (qt |ot ) =
1
G
P (ot |qt )

∑
qt−1

[
P (qt |qt−1 )P (qt−1 |ot−1 )

]
(18)

FIGURE 3. Prediction of collision between vehicles.

where G is the normalizing variable. By extrapolating this
belief state R time steps into the future, a prediction can be
made using the following recursive equation:

P (qt+R |ot ) =
∑
qt−1

[
P (qt+R |qt+R−1 )P (qt+R−1 |ot )

]
.

(19)

The development of a traffic conflict between vehicles
generally undergoes four distinct stages: formation, exac-
erbation, mitigation, and elimination [14], [51]. In general,
the severity of a conflict between vehicles entering a
monitoring area increases over time. During this process,
the movement trends of the respective vehicles become
gradually clearer as the observed partial trajectory length
increases, eventually enabling reliable motion prediction.
As only severe conflicts are closely related to road safety
[7], [52], [53], by utilizing the state distribution of vehicles at
different times estimated using (19), the probability weighted
mean of each state calculated with (20) is taken as the pre-
dicted trajectory of the vehicle:

φ(t+R) =

N∑
i=1

P (qt+R = si |ot ) µi. (20)

C. DETECTING TRAFFIC CONFLICTS
After the trajectories of two vehicles in an interaction have
been predicted, it is possible to infer whether they will collide
at a future time. Assuming that the trajectories of vehicles
A and B (HA and HB, respectively, in Figure 3) have been
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FIGURE 4. Two sets of trajectory samples in real test scenes. (a) freeway
entrance. (b) urban road T-intersection.

predictedR time steps ahead, then, if from the current time t to
t+ R, the distance between HA and HB falls below the safety
distance threshold ρ once or multiple times, it is estimated
that the vehicles will collide at the first TTC. Although this
deterministic analysis can predict whether the vehicles will
collide, it does not consider the differences in terms of driver
risk control abilities under different TTCs. In fact, as the TTC
increases, it is more likely that one or both drivers will be
able to adjust the motions of their vehicles and finally avoid a
collision. Therefore, following [13, eq. (26)], we can estimate
the collision probability for vehicles A and B at time t as

Pt (HA,HB) = exp-
TTC2

2σ2 ∈ [0, 1] , (21)

where σ is a normalizing factor that is equal to a perception
and brake reaction time of 1.5 s [54]. After the collision prob-
abilities of all interactions have been calculated, all traffic
conflicts can be detected by setting a filter threshold on the
conflict severity indicator.

III. RESULTS AND DISCUSSION
The proposed traffic conflict detection scheme algorithms
were implemented using the Intel OpenCV library on a
VS 2010 platform. Experiments were conducted based on
several sets of video data obtained at different traffic scenes.
Two typical results acquired at a freeway entrance and an
urban road T-intersection were chosen to analyze the per-
formance of our algorithms. Over the course of the 30-min-
long video recording, 352 and 1095 vehicles passed through
the entrance and T-intersection, respectively. A background
differencing and blob-tracking system based on [55] was used
to collect the raw vehicle trajectories. To acquire sample
trajectories, the raw trajectories were first smoothed with an
averagemoving filter and then validated in terms ofminimum
length and speed. Figure 4 illustrates the obtained trajectory
sets of the freeway entrance and intersection, containing
405 and 1264 trajectories, respectively. The number of trajec-
tories is slightly higher than the number of vehicles, because
tracking failure caused some of the trajectories to split.

A. LEARNING HMMS
The sample trajectories were first clustered hierarchically
using the improved fuzzy K -means algorithm described

TABLE 1. TSCs of clusters obtained by different algorithms.

FIGURE 5. HMM structures learned in test scenes. (a) freeway entrance.
(b) urban road T-intersection.

in Section II-A. Then, to determine the effectiveness of the
improved algorithm, the clustering results were quantita-
tively compared with those of two other un-improved algo-
rithms, which were based on the general K -means and fuzzy
K -means algorithm [19], respectively, by the Tightness and
Separation Criterion (TSC). Table 1 shows the TSCs of the
clusters for the test scenes obtained by the algorithms with
different initial cluster centroids and convergence conditions.
As can be seen in the table, the improved algorithm was less
affected by the initial cluster centroids and achieved much
lower values of TSC than the un-improved ones. This finding
indicates that our approach can cluster trajectories better
than the other two algorithms. After modeling the clusters,
the structures of the HMMs for the freeway entrance and
T-intersection were acquired, as shown in Figure 5. During
the learning process, the related parameters were tested by
trial and error and finally set to ε = 0.01,1 = 1.0 m, and
η = 1 × 10−4. Although, as stated in [14], it is generally
difficult to evaluate unsupervised work, such as trajectory
learning, the established structures appear to provide a sat-
isfactory division of the trajectories reflecting their spatial
distribution by visual judgment. In addition, the identified
vehicle motion patterns are consistent with the intentions of
drivers to move on, into, or out of the freeway at the entrance
and T-intersection.

B. TRAJECTORY PREDICTION AND
ACCURACY EVALUATION
The learned HMMs were validated further by testing their
performances in trajectory estimation. Two typical examples
of this process are shown in Figure 6, which illustrates how
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FIGURE 6. Two examples of trajectory prediction for a vehicle moving in the scenes. (a) freeway entrance sequence. (b) urban road
T-intersection sequence.

the prediction method works within the prediction time range
for time steps R from 1 to 15. The predicted trajectories
for the two vehicles show that they will initially most likely
move ahead in a straight line along the current lane and then
tend to turn left, which became more evident as the motion
progressed. Furthermore, the consistency presented between
the observed trajectory and predicted trajectory qualitatively
demonstrates the validity of the algorithms for predicting
trajectories.

In addition to the aforementioned qualitative analysis,
the mean estimation error was calculated to measure the
accuracy of the trajectory prediction based on two additional
test datasets differing from the learning samples and com-
prising 40 and 50 trajectories collected at the entrance and
T-intersection, respectively. In this case, the mean estimation
error was defined as the distance between the predicted point
for the time horizon R and its corresponding position on the
actual trajectory ot+R:

E(R) =
1
W

W∑
l=1

1
Tl − R

Tl−R∑
t=1∥∥∥∥∥olt+R −
N∑
i=1

P
(
qt+R = si

∣∣∣olt )µi
∥∥∥∥∥
1/2

(22)

whereW is the number of test trajectories.
To measure the trajectory prediction performance more

accurately, two other technologies using a fuzzy K -means
(FKM) clustering [19] and the Expectation-Maximization
(EM) algorithm [23] were implemented, and their prediction
results were compared with those of our approach based

FIGURE 7. Mean error of trajectory estimation using different
percentages of overall trajectory.

on the improved fuzzy K -means (IFKM) clustering. For all
the algorithms, the initial number of clusters was set to 40.
The mean errors of the three approaches calculated for the
entrance and T-intersection over different percentages of the
overall trajectory length are plotted in Figure 7. It can be seen
that the mean errors of the proposed approach are lower than
those of the other two approaches in both scenes, which illus-
trate that the proposed approach can provide more accurate
prediction results. Moreover, this error decreases steadily as
more of the trajectory is observed, with the predictions made
using 50% and 80% of the total trajectory producing mean
errors of less than 1.3 and 1.0 m, respectively. This accuracy
appears to be satisfactory for trajectory estimation with the
objective of detecting traffic conflicts.
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FIGURE 8. Test sequence of traffic conflict at freeway entrance.

FIGURE 9. Test sequence of traffic conflict at urban road T-intersection.

C. DETECTING TRAFFIC CONFLICTS WITH
COLLISION ESTIMATION
Based on the trajectories predicted by the learned HMMs,
the collision probabilities at different times of a develop-
ing interaction can be estimated using (21). Figures 8 and 9
show two manually identified traffic conflicts at the free-
way entrance and T-intersection, respectively. In the entrance
sequence, a truck first moves nearly parallel to a minivan
and then accelerates to overtake it when gradually converging
into the mainline. In this situation, the minivan driver does
not initially adjust his or her driving, which leads to a rapid
reduction in the distance between the two vehicles that exac-
erbates the conflict. Eventually, the driver has to decelerate
to mitigate the high risk of collision. The calculated collision
probability in this process, which is shown in Figure 10,
begins at zero and then increases slightly but remains below
10% from frame 720 to frame 840. Thereafter, the prob-
ability begins to increase rapidly until it exceeds 60% at
approximately frame 900. It remains at that levelmomentarily
and finally decreases. In the T-intersection sequence, a car
moving straight ahead approaches another one turning left as
time goes on, with the degree of interference between the two
increasing until the former has to decelerate to avoid colli-
sion. The collision probability corresponding to this process
increases from 5.92% to 66.19% and thereafter sharply drops
to 0, as shown in Figure 10.

From the two collision probability curves, it can be seen
that the calculated results effectively reflect the ground truth
of the corresponding vehicle interaction, suggesting that the
proposed HMM-based algorithm for learning and predicting

FIGURE 10. Collision probabilities of two manually identified traffic
conflicts.

trajectories is suitable for collision probability calculation.
The collision probability can be used as an indicator to
reliably measure the degree of interference between vehi-
cles. Furthermore, it is noteworthy that in terms of the high
levels of collision probabilities in both the entrance and
T-intersection sequences, conditions are undoubtedly created
for easy identification of conflicts based on the severity
indicator.

To further verify the effectiveness of the collision possi-
bility calculated by the proposed method for traffic conflict
detection, in addition to the two sequences analyzed earlier,
an expanded experiment using entrance and T-intersection
videos having durations of approximately 1 h each was per-
formed. Tests were conducted on all interactions in which
the vehicle separation became less than a specific distance.
For each interaction, the collision probability between vehi-
cles was calculated using the predicted trajectories. Then,
an appropriate threshold was set to determine whether the
interaction constituted a traffic conflict. To evaluate the effec-
tiveness of the detection method, both videos were further
analyzed by experienced observers, who determined that
81 and 107 traffic conflicts occurred at the entrance and
T-intersection, respectively.

Table 2 lists the traffic conflict detection results obtained
at the freeway entrance and T-intersection using different
discriminant thresholds. It can be seen that, although the rate
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TABLE 2. Traffic conflict detection results under different discriminant
thresholds.

of correct traffic conflict detection increases steadily with
the discriminant threshold, it does so at the expense of the
success rate because the number of unidentified traffic con-
flicts increases simultaneously. This finding indicates that the
discriminant threshold choice is crucial to both the quantity
and quality of detected traffic conflicts. In this experiment,
the most significant decrease in the success rate for the
entrance occurs between τP = 0.3 and τP = 0.5, whereas
the most significant growth in the correct rate occurs between
τP = 0.1 and τP = 0.3, suggesting that a discriminant
threshold (τP) of 0.3 is an appropriate tradeoff between com-
pleteness and practicality, because this value can identify
at least 60% of conflicts while obtaining an correct rate of
approximately 70%. Furthermore, in terms of the collision
probability being an effective index formeasuring the severity
of a traffic conflict, selecting a higher threshold would be
conducive to the identification of serious conflicts, which are
the focus of road safety analyses. Accordingly, 0.1 appears to
be a reasonable discriminant threshold for the T-intersection.
Thus, by setting different discriminant thresholds for col-
lision probability, the method proposed in this study can
flexibly detect traffic conflicts while achieving results similar
to those of human evaluations in terms of success rate.

IV. CONCLUSION
In this article, we presented a motion-pattern-based method
of detecting traffic conflicts using trajectories extracted from
video sensors. In particular, the generally overlooked use-
fulness of trajectories in characterizing motion was fully
exploited using an original cluster-and-model algorithm.
An improved fuzzyK -means algorithm that utilized the mod-
ified Hausdorff distance was proposed to cluster trajectories
hierarchically based on their contained path and velocity
information. By modeling the spatiotemporal characteristics
of the trajectories in the obtained clusters, HMMs represent-
ing motion patterns were established and applied to predict
trajectories having varying velocities as the weighted proba-
bility means of estimated states at different instances of time
instead of the conventional distributions of all possible paths
with respective constant velocities. Combining the prediction
algorithm and the differences in terms of interaction safety
under different TTCs, a probabilistic model for estimating
collision probability was developed to detect traffic conflicts.

The experimental results obtained using actual traffic video
data indicated the feasibility and flexibility of the proposed
method in identifying traffic conflicts from all vehicle inter-
actions. The algorithm used for learning has advantages, such
as avoiding the destructive pre-processing of trajectories, full
usage of probabilistic approaches to model the spatiotempo-
ral uncertainty of trajectories, and optimized targeting rather
than absolute statistical predictions of trajectories covering
velocity along with the development of traffic conflict.

Further, several limitations of this study should be noted.
The proposed approach still relies on people to perform work
in validating the trajectories and selecting the number of
clusters, which to a certain extent restricts the degree of
automation. Although the obtained results have proven the
advantages of our algorithms, more experiments on differ-
ent scenarios would be necessary to strengthen the conclu-
sions. Future studies using historical crash data will also
be required to validate the proposed traffic conflict detec-
tion approach further and to reveal the relationship between
interactions with different collision probabilities and actual
crash instances. A more challenging study would involve an
exploration of how the proposed approach could be improved
to allow for collision warnings between intelligent vehicles in
actual traffic environments.
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