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ABSTRACT The Set Partitioning Problem (SPP) aims to obtain non-empty disjoint subsets of objects
such that their union equals the whole set of objects, and the partition meets some prespecified criteria.
The ubiquity of SPP is impressive, given that it has a lot of theoretical and practical motivations. In the
theoretical side, the study of the SPP is closely related to Bell numbers, Stirling numbers of the second
kind, integer partitions, Eulerian numbers, Restricted Growth Strings (RGS), factoradic number system,
power calculations, etc. In the practical side, SPP is intimately related to classification problems, clustering
problems, reduction of dimensionality problems, and so on. In this work, three representations for instances
of SPP are presented, these representations use: Restricted Growth Strings (RGS), factoradic number system,
and a number system with a fixed base. Two cases for these representations will be presented: where the
number of subsets is unbounded (i.e. the number of subsets can be the number of objects); and where
the number of subsets is less than the number of objects. Bidirectional mappings between these three
representations will be introduced, also the mapping among these three representations and the power
of a base is defined. Given, that these three representations can be used to solve instances of SPP using
exact, greedy, and metaheuristic algorithms, that require to do small changes to one possible solution and/or
recombination of two possible solutions, definitions of mutation and recombination operators for the three
representations will be shown. In order to motivate the use of the three representations for the solution of
particular instances of SPP, it was decided to present their application to solve an instance of a set partition
of integers problem (SPIP) using a simple genetic algorithm.

INDEX TERMS Bell numbers, factoradic number system, restricted growth strings number system, stirling
numbers of the second kind, Eulerian numbers.

I. INTRODUCTION
The set partitioning problem (SPP) aims to obtain non-empty
disjoint subsets of objects such that their union equals the
whole set of objects, and the partition meets some prespec-
ified criteria. SPP is ubiquitous, it has a lot of theoretical
and practical motivations. In the theoretical side, the study of
SPP is closely related to: Bell numbers [1] (page 4), Stirling
numbers of the second kind [2] (chapter 9), integer partitions
[3], Eulerian numbers [2] (chapter 10), Restricted Growth
Strings (RGS) [4] (page 81), factoradic number system [5],
and power calculations [2] (chapters 9, 10, 15). In the prac-
tical side, SPP is intimately related to classification prob-
lems [6], clustering problems [7], reduction of dimensionality
problems [8], self-organizing maps [9], text clustering for
web mining [10], and so on.
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In this work, three representations for instances of SPP
using: Restricted Growth Strings (RGS), factoradic number
system, and a positional number system with a fixed base
will be presented. Two cases for these representations will
be presented, the first one permits that the number of parti-
tions be equal to the number of objects, and the second one
restricts the number of partitions to a certain value less-than
the number of objects.

The three representations express each SPP possible solu-
tion with different redundancy degree (i.e., one solution in
one representation can be equivalent to many solutions in
another representation, and vice versa) to evidence this fact,
bijective mappings between the three representations will be
defined, also the three representations are bijectively mapped
to an integer.

Relevant features of the three representations, like: redun-
dancy degree for each representation; mutation of a solution
(i.e. do a small change in one partition); recombination of two
partitions (i.e. produce two child partitions using two parent
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TABLE 1. A short table for integer partitions of k with v parts p(k, v ), the last column indicates the value of p(k).

partitions); and repairing of a modified set partition, will be
highlighted. All these features are relevant for deciding which
representation to use, according the SPP to be solved and the
algorithm that will be used to solve it. In order to motivate the
use of the three representations, it is presented the solution of
an instance of a set partition of integers problem(SPIP) using
a simple genetic algorithm.

The remaining of this work is organized in additional five
sections. Section II presents definitions of items that will be
used for the three representations (i.e. Integer partitions, Set
partitions, Bell numbers, Stirling numbers of the second kind,
Eulerian numbers, positional number system with a fixed
base, and sum of powers). In Section III the three representa-
tions based on Restricted Growth Strings, factoradic number
system, and a positional number system with fixed base, are
presented; the mappings between them and the redundancy
degree of each representation, will be highlighted. Section IV
shows how to implement mutation and recombination oper-
ators using the three representations and how to repair the
resulting set partition (in case it is necessary). Section V
was devoted to present the solution of one instances of a set
partition of integers problem (SPIP) using a simple genetic
algorithm. Finally Section VI shows some conclusions that
can be extracted from the presented work.

II. DEFINITIONS NEEDED FOR THE THREE
REPRESENTATIONS
This section presents definitions of concepts that are rele-
vant to the three representations based on: Restricted Growth
Strings, Factoradic Number System, and a Positional Number
System with fixed base, that will be presented in Section III.
The definitions in this section are: integer partitions, set
partitions, Bell numbers, Stirling numbers of the second kind,
Eulerian numbers, counting of number of functions, compu-
tation of an integer power, and summation of integer powers.
A table with a summary of the formulas of this section is
presented to end the section.

A. INTEGER PARTITIONS
Counting the ways in which a positive integer k can be
expressed as sums of positive integers is known as the integer
partition problem [11] and is denoted as p(k). For instance
there are five integer partitions of 4:

{4, 3+1, 2+2, 2+1+1, 1+1+1+1}

As is commonly used, the integer partitions will be expressed
in vector notation in descending order, then the partitions of
4 are:

{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}.

The number of partitions of the integer k in exactly v parts
is expressed by p(k, v), its definition is given in (1), a short
table for p(k, v) is given in Table 1.

p(k, v) =


0 if (v = 0) ∨ (k = 0)
1 if (v = 1) ∨ (v = k)
p(k-1, v-1)
+p(k-v, v) otherwise

(1)

The relation of p(k) in terms of p(k, v) is given in: (2)

p(k) =
k∑
v=1

p(k, v) (2)

When it is needed to use the explicit partitions of an integer
k or the explicit partitions of an integer k in v parts, these
problems are referred by P(k) and P(k, v) respectively. Con-
sidering that X ∈ P(k), then the number of elements (or size)
of X is expressed by |X|. In order to define how to compute
explicit partitions of size k using explicit partitions of size k-1
the next definitions are needed: the symbol ⊕ indicates the
concatenation of one element to a partition; the last element
of a partition X is defined by λ(X); and the last element of a
partition X is removed by the expression X\λ(X). The base
case is P(1) = {(1)}, the explicit partitions of an integer k are
defined by (3).

P(k) = ∅;
∀X ∈ P(k-1){
P(k) = P(k)∪(X⊕ 1);

Y = X\λ(X);
if (Y = ∅) P(k) = P(k)∪(λ(X)+1);
elseif (λ(Y) ≥ λ(X)+1)
P(k) = P(k)∪(Y⊕(λ(X)+1));

} (3)

The integer partitions of k in exactly v parts in terms of
P(k-1, v-1) and P(k-1, v) are defined in (4), please consider
that P(1, 1) = {(1)}, and P(i, 0) = {∅}. A table for P(k, v) for
small values of k is given in Table 2, the last column of this
table indicates the value of p(k).
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TABLE 2. A short table of P(k, v ), the last column indicates the value of p(k).

P(k, v) = ∅;
∀X ∈ P(k-1, v-1) P(k, v) = P(k, v)∪(X⊕ 1) ;

∀X ∈ P(k-1, v){
Y = X\λ(X);
if (Y = ∅) P(k, v) = P(k, v)∪(λ(X)+1);
elseif (λ(Y) ≥ (λ(X)+1))
P(k, v) = P(k, v)∪(Y⊕(λ(X)+1));

} (4)

B. BELL NUMBERS
Respect to counting the number of set partitions, the Bell
numbers B(k) solves the issue [1] (page 4). A recursive
definition for B(k) is in (5). Using (5), B(1) = 1, B(2) = 2,
B(3) = 5, B(4) = 15, B(5) = 52.

B(k) =
k−1∑
i=0

(
k-1
i

)
B(i),B(0) = 1 (5)

C. STIRLING NUMBERS OF THE SECOND KIND
When it is desired to count the number of set partitions of k
elements in exactly v parts, the Stirling numbers of the second
kind S(k, v) [2] (chapter 9) can be used. A recursive definition
for S(k, v) is given in (6). Using this formula, for instance,
S(5, 3) = 25. Awell known identity that relates Bell numbers
and Stirling numbers of the second kind [1] (page 5) is given
in (7)

S(k, v) =



0 if (v = 0) ∨ (v > k)
1 if (v = 1)∨

((v = 0) ∧ (k = 0))
S(k-1, v-1)
+v·S(k-1, v) otherwise

(6)

B(k) =
v∑
i=1

S(k, i) (7)

A short table for S(k, v) is given in Table 3, the last column
indicates the summation of the row elements, i.e., the value
of B(k).

The numbers S(k, v) can be used to compute the powers of
an integer [2] (page 116), the expression to do that is shown
in (8).

vk =
k∑
i=0

(
v
i

)
·i!·S(k, i) (8)

Manipulating the expression in (8), it can be concluded
that: S(k, 2) = 1

2!

(
2k -
(2
1

))
= 2k−1-1, S(k, 3) = 1

3!

(
3k -
(3
1

)
·

2k +
(3
2

))
, and generalizing this result [2] an expression for

S(k, v) as a summation of powers of integers with alternated
signs is obtained, see (9).

S(k, v) =
1
v!

v−1∑
i=0

(-1)i·
(
v
i

)
·(v-i)k (9)

Connections of Stirling numbers of the second kind and
integer partitions were treated in [12] and references herein.
In particular, it is interesting to express the value of S(k, v)
in terms of P(k, v), this was done in Theorem 13.2 of [3]
(page 215), the formula that describes this relation is pre-
sented in (10) as S(k, v,X), where X is one of the integer
partitions needed. The function η(X) returns the elements of
the partition X that are distinct, the function µ(l,X) returns
the number of times that the element l appears in partition X,
and each component of a partition X is denoted by Xi.

S(k, v,X) =
k!

v∏
i=1

Xi!
∏

l∈η(X)
µ(l,X)!

, X ∈ P(k, v) (10)
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TABLE 3. A short table of Stirling numbers of the second kind S(k, v ), the last column indicates the value of B(k).

Henceforth, the notation S(k, v,X) will be used to refer
to the number of set partitions of k elements in v parts that
follows the part-distribution specified by the integer partition
X ∈ P(k, v). Then, the expression in (11) is obtained. For
instance S(4, 2) = S(4, 2, (3, 1))+S(4, 2, (2, 2)) = 4+3 = 7.

S(k, v) =
∑

∀X∈P(k,v)
S(k, v,X) (11)

Given that S(k, v) is at least the number of elements present
in P(k, v), S(k, v) ≥ p(k, v) and using the fact that B(k) can
be computed as the summation of S(k, v) for 1 ≤ v ≤ k ,
the computation of Bell numbers B(k) in terms of the explicit
integer partitions P(k), is expressed in (12). Then, it can be
concluded that B(k) ≥ p(k).

B(k) =
k∑
v=1

∑
∀X∈P(k,v)

k!
v∏
i=1

Xi!
∏

l∈η(X)
µ(l,X)!

(12)

The explicit partitions whose cardinality is defined by
Stirling numbers of the second kind (S(k, v), S(k, v,X)), and
Bell numbers (B(k)), will be defined using Restricted Growth
Strings (RGS) in Section III.

D. EULERIAN NUMBERS
The Eulerian numbers [2], denoted by E(k, v), count how
many permutations of size k have exactly v-1 ascents.
An ascent occurs when an element in the permutation is
greater than the previous elements.
Example 1: Assuming k = 3 the permutations are:

(1, 2, 3) has 2 ascents countsfor E(3, 3)

(1, 3, 2) has 1 ascents countsfor E(3, 2)

(2, 1, 3) has 1 ascents countsfor E(3, 2)

(2, 3, 1) has 1 ascents countsfor E(3, 2)

(3, 1, 2) has 1 ascents countsfor E(3, 2)

(3, 2, 1) has 0 ascents countsfor E(3, 1)

Then, E(3, 1) = 1;E(3, 2) = 4;E(3, 3) = 1. 4

The Eulerian numbers E(k, v) satisfies the relation given
in (13),

k∑
v=1

E(k, v) = k! (13)

Eulerian numbers E(k, v) can be computed according to
[2], see (14), and also an interesting relation is that E(k, v) =
E(k, k-v+1)
E(k, v)

=



0 if (v = 0) ∨ (v > k)
1 if (v = 1)

∨ ((v = 0) ∧ (k = 0))
(k-(v-1))·E(k-1, v-1)
+v·E(k-1, v) otherwise

(14)

A short table of Eulerian numbers is presented in Table 4
It is well known [2] (page 139) that Eulerian numbers

E(k, v) can be used to compute powers of an integer, in par-
ticular in (15) an expression to fulfill this end is given.

vk =
k∑
i=0

(
v+i-1
k

)
·E(k, i) (15)

Manipulating the expression in (15), it can be concluded
that: E(k, 2) = 2k -

(k+1
1

)
,E(k, 3) = 3k -

(k+1
1

)
·2k+

(k+1
2

)
,

and generalizing this result [2] (page 140) an expression for
E(k, v) as a summation of powers of integers with alternated
signs is obtained,see (16).

E(k, v) =
v∑
i=0

(-1)i·
(
k+1
i

)
·(v-i)k (16)

The explicit elements counted by E(k, v) can be listed
using the factoradic notation that will be presented in detail
in Section III.

E. NUMBERS TO COUNT CARDINALITY OF FUNCTIONS
In [13] (Section 5.2) a deep treatment of Catalan combina-
torics is presented, in particular is of interest the definition of
Endomorphisms given in page 168 and reported as sequence
A090657 in [14]. This numbers will be designated by N (k)
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TABLE 4. Table of Eulerian Numbers, the last columns is the summation of the values of each row and is equal to k!.

and refers to the total number of functions from {0, . . . , k-1}
to {0, . . . , k-1}. They are defined in (17).

N (k) =
k∑
v=0

v!·S(k, v)·
(
k
v

)
(17)

The value of N (k) is exactly kk , and the calculation of
this number with v parts is denoted with N (k, v), it has the
meaning of the cardinality of functions from {0, . . . , k-1} to
{0, . . . , k-1} such that the image contains exactly v elements,
see (18).

N (k, v) = v!·
(
k
v

)
·S(k, v) (18)

And also, it can be stated the relationship shown in (19)

S(k, v) =
N (k, v)

v!·
(k
v

) (19)

Example 2: N (3, 2) counts the numbers with 3 digits
that have 2 different symbols. According (18) N (3, 2)) =
2!·S(3, 2)·

(3
2

)
= 2·3·3 = 18, the counted numbers are:

(0, 0, 1)(0, 0, 2)(1, 1, 0)(1, 1, 2)(2, 2, 0)(2, 2, 1)

(0, 1, 0)(0, 2, 0)(1, 0, 1)(1, 2, 1)(2, 0, 2)(2, 1, 2)

(1, 0, 0)(2, 0, 0)(0, 1, 1)(2, 1, 1)(0, 2, 2)(1, 2, 2)

4

A connection between integer partitions and N (k, v) is
easily established, replacing (10) in (18), and it is obtained
(20).

N (k, v) = v!·
(
k
v

)
·

∑
∀X∈P(k,v)

k!
v∏
i=1

Xi!
∏

l∈η(X)
µ(l,X)!

(20)

The N (k, v) numbers can be used to compute integer pow-
ers as is stated in (21).

vk =
v∑
i=0

(v
i

)(k
i

) ·N (k, i) (21)

The direct calculation of N (k, v) in terms of sums of pow-
ers is given in (22)

N (k, v) =
(
k
v

)
·

v∑
i=0

(-1)i·
(
v
i

)
·(v-i)k (22)

A formula for N(k, v) involving N(k-1, v-1) and N(k-1, v),
can be easily derived using (6), (18) and (19), this is done
in (23).

from (18)

N (k, v) = v!·
(
k
v

)
·S(k, v)

using (6)

N (k, v) = v!·
(
k
v

)
·
(
S(k-1, v-1)+v·S(k-1, v)

)
using (19)

N (k, v) = v!·
(
k
v

)
·
(N (k-1, v-1)

(v-1)!·
(k-1
v-1

) +v·N (k-1, v)

v!·
(k-1
v

) )
simplifying

N (k, v) = k·N (k-1, v-1)+
k·v
k-v
·N (k-1, v) (23)

Then the recursive definition for N (k, v) is taken from (23)
and is presented in (24), this also corresponds to the sequence
A090657 of [14].

N (k, v)=



0 if (v = 0) ∨ (v > k)
1 if (v = 1)∨

((v = 0) ∧ (k = 0))
k·N (k-1, v-1)

+
k·v
k-v
·N (k-1, v) otherwise

(24)

A short table for N (k, v) is given in Table 5.
The explicit elements that are counted by N (k, v) will

be presented in Section III, using numbers expressed in a
positional number system with a fixed base.

F. POWERS OF AN INTEGER
The powers of an integer are presented here for its direct
relationship with S(k, v), E(k, v), and N (k, v). Few values of
vk are shown in Table 6, the last column contains the result
of
∑k

v=1 v
k . A definition for vk in terms of vk−1 is simply:

v·vk−1. S(k, v),E(k, v) and N (k, v) can be used to compute
values of vk as is stated in (8), (15) and (21).

G. ADDITION OF INTEGER POWERS
The problem of computing the result of adding consecutive
integers from 1, . . . , k raised to a power r is expressed in (25).

A(k, r) =
k∑
v=1

vr (25)
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TABLE 5. Table for N(k, v ), last column contains the summation of all the elements of each row, and is equal to kk .

TABLE 6. Table for vk , the last column contains the summation of the row values.

The computation of A(k, r) has attracted the attention of
many important mathematicians like Jakob Bernoulli, instead
of giving a general expression for A(k, r) using Bernoulli
numbers [2] (chapter 15), S(k, v), E(k, v) and N (k, v) will be
used.

In [2] (page 212) A(k, r) is expressed using Stirling num-
bers of the second kind (S(k, v)), see (26).

A(k, r) =
r∑
i=1

(
k+1
i+1

)
·i!·S(r, i) (26)

In [15] the computation of A(k, r) is given using Eulerian
numbers, see (27)

A(k, r) =
r∑
i=1

(
k+i
r+1

)
·E(r, i) (27)

Using (18) and (26), an expression forA(k, r) usingN (k, v)
is given in (28)

A(k, r) =
r∑
i=1

(k+1
i+1

)
·i!(k

i

)
·i!
·N (r, i) =

r∑
i=1

k+1
i+1
·N (r, i) (28)

H. TABLE OF NUMBERS DEFINED IN THIS SECTION
A little manipulation of the formulas given for S(k, v),
E(k, v), N (k, v), vk , and A(k, r) enables the creation of a
table that summarizes the formulas given in this section, see
Table 7. The last row of the table contains the summation of
each of the labels of the columns.

III. THREE REPRESENTATIONS FOR SET PARTITIONS
In this section explicit objects that are counted by the num-
bers: S(k, v), E(k, v), and N (k, v), are presented. These
objects are based on Restricted Growth Strings (RGS), fac-
toradic number system, and a positional number system with
a fixed base. The names of the explicit objects can be viewed
as sets, for this reason the names: S(k, v) for S(k, v), E(k, v)

for E(k, v), and N(k, v) for N (k, v), will be used. It is impor-
tant to say that members of a set are represented enclosed
between { and }, and can be processed in any order; and
members of a sequence are represented enclosed between
[ and ], and must be processed sequentially.

A. REPRESENTATION USING RESTRICTED GROWTH
STRINGS
The Restricted Growth Strings (RGS) are a kind of number
system in which the positional value and the valid symbols in
each position depends on previous symbols, see [4] (page 81).
This number systemwill be designated as S(k), thenX ∈ S(k)
satisfies that:

(|X| = k) ∧ (X0 = 0)

Xi ∈ {0, . . . , 1+
i−1
max
j=0

(Xj)}

The numbers that belongs to S(k) can be used to represent
without redundancy, all the possible solutions for the SPP; for
instance, if X ∈ S(k) the i-th object goes in partition Xi. This
way, |S(k)| is described by (29).

|S(k)| = B(k) (29)

Example 3: The members of S(k) for k = 4 are:
{(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,1,0,0)

(0,1,0,1) (0,1,0,2) (0,1,1,0) (0,1,1,1) (0,1,1,2) (0,1,2,0)
(0,1,2,1) (0,1,2,2) (0,1,2,3)}

The cardinality is 15 that is the same as B(4) = 15 4

The number of solutions for SPP with v parts is described
exactly by S(k, v) as stated in (30).

|S(k, v)| = S(k, v) (30)

Example 4: The members of S(k, v) for k = 4,v = 2
are: {(0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,1,1) (0,0,1,1) (0,1,0,1)
(0,1,1,0)}

Seven members, that coincide with S(4, 2) = 7 4
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TABLE 7. Summary of formulas presented in Section II, the last row of the table contains the summation of each of the labels of the columns.

The cardinality of members of S(k, v) that have an specific
pattern X ∈ P(k, v) is described exactly by S(k, v,X) see
(10), then in (31) the cardinality of S(k, v,X) is obtained.

|S(k, v,X)| =
k!

v∏
i=1

Xi!
∏

l∈η(X)
µ(l,X)!

, X ∈ P(k, v) (31)

The construction of S(k, v) using S(k-1, v-1) and S(k-1, v)
is defined in (32), take into account that S(i, 1) =

{(0, 0, . . . , 0)} (i.e. i zeros), S(i, 0) = {∅} and k ≥ v.

S(k, v) = {∅}
∀X ∈ S(k-1, v-1) S(k, v) = S(k, v)∪(X⊕ (v-1));

∀X ∈ S(k-1, v){
∀ a ∈ η(X) S(k, v) = S(k, v)∪(X⊕a);
} (32)

Example 5: Assume we want to compute S(5, 3) we need
S(4, 2) and S(4, 3). Then, we have that:

S(4, 2) ={(0,0,0,1) (0,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,0,1)
(0,1,1,0) (0,1,1,1)}

And, S(4, 3) ={(0,0,1,2)(0,1,0,2)(0,1,1,2) (0,1,2,0)
(0,1,2,1)

(0,1,2,2)} Using S(4, 2) we have:
{((0,0,0,1)⊕2) ((0,0,1,0)⊕2) ((0,0,1,1)⊕2)
((0,1,0,0)⊕2) ((0,1,0,1)⊕2) ((0,1,1,0)⊕2)
((0,1,1,1)⊕2)}
And using S(4, 3), it is constructed:
{((0,0,1,2)⊕0) ((0,0,1,2)⊕1) ((0,0,1,2)⊕2)
((0,1,0,2)⊕0) ((0,1,0,2)⊕1) ((0,1,0,2)⊕2)
((0,1,1,2)⊕0) ((0,1,1,2)⊕1)
((0,1,1,2)⊕2)
((0,1,2,0)⊕0) ((0,1,2,0)⊕1) ((0,1,2,0)⊕2)
((0,1,2,1)⊕0) ((0,1,2,1)⊕1) ((0,1,2,1)⊕2)
((0,1,2,2)⊕0) ((0,1,2,2)⊕1) ((0,1,2,2)⊕2)}

Finally we have S(5, 3) ={(0,0,0,1,2) (0,0,1,0,2) (0,0,1,1,2)
(0,1,0,0,2) (0,1,0,1,2) (0,1,1,0,2) (0,1,1,1,2) (0,0,1,2,0)
(0,0,1,2,1) (0,0,1,2,2) (0,1,0,2,0) (0,1,0,2,1) (0,1,0,2,2)
(0,1,1,2,0) (0,1,1,2,1) (0,1,1,2,2) (0,1,2,0,0) (0,1,2,0,1)
(0,1,2,0,2) (0,1,2,1,0) (0,1,2,1,1) (0,1,2,1,2) (0,1,2,2,0)
(0,1,2,2,1) (0,1,2,2,2)} 4

The correctness of (32) is evident from two facts: for each
element of S(k-1, v-1) one element to S(k, v) is added; and for
each element of S(k-1, v) the addition of v elements to S(k, v)
is done (a consequence that η(S(k-1, v)) = v). Therefore,

|S(k, v)| = |S(k-1, v-1)| + v·|S(k-1, v)|

and this corresponds to the definition of the Stirling numbers
of the second kind see (6). Then, it is reiterated that that
|S(k, v)| = S(k, v)
A short table for S(k, v) in terms of S(k, v,X) is given in

Table 8, take note that each partition has as super index the
cardinality of set partitions that satisfy the pattern given by the
integer partition X, the final result (after equal sign) express
the value of |S(k, v)|.

By the name ranking it is meant to assign a set of con-
secutive 0-based integers to all the objects that are managed,
and by the name unranking it is meant to construct the object
that corresponds to an integer given as input. The ranking
and unranking [4] of elements of S(k) require the definition
of a table of positional values that depend on the maximum
number that has appeared in a partial RGS. The positional
values will be denoted byO(k) and the access to its elements
will be done byO(k)i,j, the size of this table is (k+1)×(k+1).
The construction of the table is defined in (33).

∀ j ∈ [0, . . ., k] O(k)0,j = 1;

∀ i ∈ [1, . . . , k] {

∀ j ∈ [0, . . . , k − 1] {

O(k)i,j = j·O(k)i-1,j+O(k)i-1,j+1;
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TABLE 8. Table for S(k) =
∑
∀X∈P(k,v ) S(k, v,X), the super index notation computes the value of: k!/(

∏v
i=1 Xi !

∏
l∈η(X) µ(l,X)!).

}

} (33)

The result forO(5) (i.e. the size is 6×6) is given in Table 9.
The ranking algorithm for X ∈ S(k) is given in (34) the

result is rank .

rank = 0; j = 1;

∀ i ∈ [1, . . . , k-1] {

rank = rank+Xi·O(k)k−i−1,j;

j = max(j,Xi+1);

} (34)

The unranking algorithm for the integer rank with k digits
is returned in X ∈ S(k) the computation is given in (35)

0 ≤ rank ≤ B(k)− 1

X0 = 0; j = 1;

∀ i ∈ [1, . . . , k-1] {

if (j·O(k)k-i-1,j ≤ rank) then {

Xi = j;

rank = rank-j·O(k)k-i-1,j;

j = j+ 1;

}

else{

Xi = b
rank

O(k)k-i-1,j
c;

rank = rank mod O(k)k-i-1,j;

}

} (35)

Next, some cases for rank and unrank algorithms are
shown:

(0, 1, 2, 3) H⇒ 14

(0, 1, 0, 2, 0, 3) H⇒ 75

(0, 0, 0, 0, 1) H⇒ 1

14 with k = 4 H⇒ (0, 1, 2, 3)

30 with k = 5 H⇒ (0, 1, 1, 1, 2)

B. REPRESENTATION USING FACTORADIC NUMBER
SYSTEM
The factoradic number system (also known as factorial num-
ber system) [5] is a positional number system with variable
base, and it will be used the notation E(k). Assuming that k is

TABLE 9. Table of O(5), positional values for ranking, unranking of
RGS/decimal number.

the number of digits, the cardinality of the distinct numbers
is k!, i.e. |E(k)| = k!.
By convenience, the members of E(k) are indexed 0-based

from left to right, and a member X ∈ E(k) consists always
of k digits, and the i-th digit denoted by Xi 0≤i≤k-1 satisfies
0≤Xi≤i.
Example 6: The members of E(3) are {(0,0,0) (0,0,1)

(0,0,2) (0,1,0) (0,1,1) (0,1,2)}
4

The factoradic system can be used to represent set parti-
tions in the next way, let X ∈ E(k), Xi, 0≤i≤k-1 indicates
the partition to which belongs the i-th element of the set.
Example 7: Let X ∈ E(6) be X = (0, 0, 2, 2, 1, 3), the

partition of the set {0, 1, 2, 3, 4, 5} is {{0, 1}, {2, 3}, {4}, {5}}
4

The members of E(k) that have v different symbols is
expressed by E(k, v).
Example 8: The member of E(1) is:

(0) ∈ E(1, 1)

The members of E(2) are:

(0, 0) ∈ E(2, 1)
(0, 1) ∈ E(2, 2)

The members of E(3) are:

(0, 0, 0) ∈ E(3, 1)
(0, 0, 1) ∈ E(3, 2)
(0, 0, 2) ∈ E(3, 2)
(0, 1, 0) ∈ E(3, 2)
(0, 1, 1) ∈ E(3, 2)
(0, 1, 2) ∈ E(3, 3)

4

The construction of permutations in factoradic notation
E(k, v) can be done using E(k-1, v) and E(k-1, v-1) as
is expressed in (36). Take note that: η(X) returns the
symbols without repetition that are in permutation X;
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X ⊕ a returns X concatenated with a, also consider that
E(i, 1) = {(0, 0, . . . , 0)} (i.e. i zeros), E(i, 0) = {∅} and
k ≥ v.

E(k, v) = {∅}
∀X ∈ E(k-1, v-1){
∀a ∈ ({0, . . . , k-1}\η(X)) E(k, v) = E(k, v)∪(X⊕ a);
}

∀X ∈ E(k-1, v){
∀a ∈ η(X) E(k, v) = E(k, v) ∪ (X⊕ a);
} (36)

It is easy to see in (36) that: the cardinality of
{0, . . . , k-1}\η(X) is exactly k-(v-1), then for each permu-
tation of E(k-1, v-1) the addition of k-(v-1) permutations of
size k to E(k, v) is performed; and it is obvious that η(X) for
X ∈ E(k-1, v) has cardinality of v, then for each permutation
of E(k-1, v) the addition of v permutations of size k to E(k, v)
is done.

Surprisingly, the cardinality of E(k, v) (as it can be
inferred yet) is the same as the Eulerian numbers E(k, v), i.e.
|E(k, v)| = E(k, v), this will be stated in Theorem 1.
Theorem 1: The cardinality of E(k, v) is described by

E(k, v).
Proof: The construction of E(k, v) is done (see (36))

adding v permutations for each element of E(k-1, v), and
adding k-(v-1) permutations for each element of E(k-1, v-1).
Then it is obvious that:

|E(k, v)| = (k-(v-1))·|E(k-1, v-1)|+v·|E(k-1, v)|

Comparing this expression with (14), an equivalent defini-
tion is obtained, then: |E(k, v)| = E(k, v) This finishes the
proof.
Example 9: For the construction of E(5, 3) using E(4, 2)

and E(4, 3) we have that:
E(4, 2) ={(0,0,0,1) (0,0,0,2) (0,0,0,3) (0,0,1,0) (0,0,1,1)

(0,0,2,0) (0,0,2,2) (0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1)}
E(4, 3) ={(0,0,1,2) (0,0,1,3) (0,0,2,1) (0,0,2,3) (0,1,0,2)

(0,1,0,3) (0,1,1,2) (0,1,1,3) (0,1,2,0) (0,1,2,1) (0,1,2,2)}
Using E(4, 2) we have:

((0, 0, 0, 1)⊕2)((0, 0, 0, 1)⊕3)((0, 0, 0, 1)⊕4)

((0, 0, 0, 2)⊕1)((0, 0, 0, 2)⊕3)((0, 0, 0, 2)⊕4)

((0, 0, 0, 3)⊕1)((0, 0, 0, 3)⊕2)((0, 0, 0, 3)⊕4)

((0, 0, 1, 0)⊕2)((0, 0, 1, 0)⊕3)((0, 0, 1, 0)⊕4)

((0, 0, 1, 1)⊕2)((0, 0, 1, 1)⊕3)((0, 0, 1, 1)⊕4)

((0, 0, 2, 0)⊕1)((0, 0, 2, 0)⊕3)((0, 0, 2, 0)⊕4)

((0, 0, 2, 2)⊕1)((0, 0, 2, 2)⊕3)((0, 0, 2, 2)⊕4)

((0, 1, 0, 0)⊕2)((0, 1, 0, 0)⊕3)((0, 1, 0, 0)⊕4)

((0, 1, 0, 1)⊕2)((0, 1, 0, 1)⊕3)((0, 1, 0, 1)⊕4)

((0, 1, 1, 0)⊕2)((0, 1, 1, 0)⊕3)((0, 1, 1, 0)⊕4)

((0, 1, 1, 1)⊕2)((0, 1, 1, 1)⊕3)((0, 1, 1, 1)⊕4)}

Using E(4, 3) it is obtained:

{((0, 0, 1, 2)⊕0)((0, 0, 1, 2)⊕1)((0, 0, 1, 2)⊕2)

((0, 0, 1, 3)⊕0)((0, 0, 1, 3)⊕1)((0, 0, 1, 3)⊕3)

((0, 0, 2, 1)⊕0)((0, 0, 2, 1)⊕1)((0, 0, 2, 1)⊕2)

((0, 0, 2, 3)⊕0)((0, 0, 2, 3)⊕2)((0, 0, 2, 3)⊕3)

((0, 1, 0, 2)⊕0)((0, 1, 0, 2)⊕1)((0, 1, 0, 2)⊕2)

((0, 1, 0, 3)⊕0)((0, 1, 0, 3)⊕1)((0, 1, 0, 3)⊕3)

((0, 1, 1, 2)⊕0)((0, 1, 1, 2)⊕1)((0, 1, 1, 2)⊕2)

((0, 1, 1, 3)⊕0)((0, 1, 1, 3)⊕1)((0, 1, 1, 3)⊕3)

((0, 1, 2, 0)⊕0)((0, 1, 2, 0)⊕1)((0, 1, 2, 0)⊕2)

((0, 1, 2, 1)⊕0)((0, 1, 2, 1)⊕1)((0, 1, 2, 1)⊕2)

((0, 1, 2, 2)⊕0)((0, 1, 2, 2)⊕1)((0, 1, 2, 2)⊕2)}

Finally E(5, 3) = {(0,0,0,1,2) (0,0,0,1,3) (0,0,0,1,4)
(0,0,0,2,1) (0,0,0,2,3) (0,0,0,2,4) (0,0,0,3,1) (0,0,0,3,2)
(0,0,0,3,4) (0,0,1,0,2) (0,0,1,0,3) (0,0,1,0,4) (0,0,1,1,2)
(0,0,1,1,3) (0,0,1,1,4) (0,0,2,0,1) (0,0,2,0,3) (0,0,2,0,4)
(0,0,2,2,1) (0,0,2,2,3) (0,0,2,2,4) (0,1,0,0,2) (0,1,0,0,3)
(0,1,0,0,4) (0,1,0,1,2) (0,1,0,1,3) (0,1,0,1,4) (0,1,1,0,2)
(0,1,1,0,3) (0,1,1,0,4) (0,1,1,1,2) (0,1,1,1,3) (0,1,1,1,4)
(0,0,1,2,0) (0,0,1,2,1) (0,0,1,2,2) (0,0,1,3,0) (0,0,1,3,1)
(0,0,1,3,3) (0,0,2,1,0) (0,0,2,1,1) (0,0,2,1,2) (0,0,2,3,0)
(0,0,2,3,2) (0,0,2,3,3) (0,1,0,2,0) (0,1,0,2,1) (0,1,0,2,2)
(0,1,0,3,0) (0,1,0,3,1) (0,1,0,3,3) (0,1,1,2,0) (0,1,1,2,1)
(0,1,1,2,2) (0,1,1,3,0) (0,1,1,3,1) (0,1,1,3,3) (0,1,2,0,0)
(0,1,2,0,1) (0,1,2,0,2) (0,1,2,1,0) (0,1,2,1,1) (0,1,2,1,2)
(0,1,2,2,0) (0,1,2,2,1) (0,1,2,2,2)} 4

It has been shown that |E(k)| = k!, |E(k, v)| = E(k, v),
an expression that relates the cardinality of factoradic num-
ber system respect to the integer partitions P(k, v), i.e.,
|E(k, v,X)|,X ∈ P(k, v) is shown in (37), take into account
that: λ(X) refers to the last element of the factoradic X;
µ(Xi-1,Y) returns how many times Xi-1 appears in the fac-
toradic Y; δλ(X),1 returns 1 if the last element of X is 1, oth-
erwise it returns 0, it is the Kronecker δ; and ρ(X,Xi,Xi-1)
returns the result of changing the Xi element with Xi-1 (this
does not modify X).

|E(k, v,X)|
= |E(k-1, v-1,X\λ(X))| · (k-(v-1)) · δλ(X),1+∑
∀Xi|(Xi 6=1)∧(Xi−1≥Xi+1),

Y=ρ(X,Xi,Xi−1)

|E(k-1, v,Y)| · µ(Xi-1,Y)

(37)

It is shown in Table 10 the values of |E(k, v,X)| as super
indices of the integer partition. In each cell it comes after the
equal sign the value of |E(k, v)| = E(k, v).
The ranking of X ∈ E(k) is given in (38) and is returned as

the value rank .

X ∈ E(k); rank = 0;

∀ i ∈ [1, . . . , k-1] rank = rank·(i+1)+Xi;

return rank (38)
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TABLE 10. Table for |E(k, v,X)| for x ∈ P(k, v ), see Equation (37).

The unranking of the number rank is done in (39) and
returned as X with k digits.

0 ≤ rank ≤ k!-1;

X0 = 0;

∀ i ∈ [k-1, . . . , 1]{

Xi = rank mod (i+1);

rank =
rank − Xi

i+1
;

}

return X (39)

Example 10: Assuming k = 5, X ∈ E(5) with X =
(0, 1, 1, 2, 4), the ranking done by (38) is equivalent to:

((((0·2+1)·3+1)·4+2)·5+4) = 94

The unranking for k = 5 and rank = 119 gives as result
X = (0, 1, 2, 3, 4).

It can be verified that in general:

k−1∑
i=0

i·i! = k!-1

4

Even we have proved that Eulerian permutations (accord-
ing the number of ascents) and factoradic representation
are equivalent, it was not shown how to convert an Eule-
rian representation to a factoradic representation and vice
versa. This gap will be filled next, let F represent a fac-
toradic number whose size is k and it has v different dig-
its; and let R be a permutation of size k that will have
v − 1 ascents (i.e. the permutation is a member of the per-
mutations counted by E(k, v)). First the mapping from F
to R will be presented and later the mapping in the other
direction.

In (40) the mapping from a factoradic representation F
to an Eulerian permutation R is presented. The factoradic
representation is an script that is traversed from position 0 to
position k-1, to do right rotations using the permutation R
that initially has zero ascents. In order to do the mapping
two sets C and Y are used, the set C contains the candidate
elements that are taken the first time a symbol appears in F
and determines the number of ascents that must be traversed
by a right rotation, once an element in C is processed it is
inserted in the setY, the setY is used to determine the number
of non-ascents that must be traversed by a right rotation when
it is processed an element in F that have been processed

previously.

F = Factoradic size k with v different digits;

R = {k, . . . , 1}; C = {1, .., k}; Y = ∅;
∀i ∈ [1, . . . , k]{

if (Fi 6= 0){

if (Fi ∈ C){
∀j ∈ [1, . . . , |C|] if (Fi = Cj) break;

l = 0; ∀c ∈ [i-1, . . . , 1]{

if (c = 1)∨(Rc−1>Rc) l = l+1;

if (l = j) break;

}

rotate right R, positions c and i;
C = C \ Fi;Y = Y ∪ Fi; sortY;
}

else{

∀j ∈ [1, . . . , |Y|] if (Fi = Yj) break;

l = 0; ∀c ∈ [i-1, . . . , 1]{

if (Rc−1<Rc) l = l+1;

if (l = j) break;

}

rotate right R, positions c and i;
}

}

} (40)

In (41) the mapping from a permutation R to a factoradic
representation F is presented. The construction of F undoes
the step made in (40). In order to not destruct the permutation
R a copy of it is used as R′. The mapping from R′ to F
also uses the sets C and Y. Essentially the process implies
the coding of left rotations that must be made over the per-
mutation R′ in order that it has 0 ascents. The first part of
the process (the one that uses the first ∀i ∈ [1, . . . , k]{. . .})
determines the positions to do left rotations, in F a zero value
indicates that it not needed to do a left rotation; a positive
number is recorded to indicate that set C must be used (i.e.
this implies to traverse a certain number of ascents when the
left rotation is done); and a negative number indicates that the
setYmust be used (i.e. this implies to traverse certain number
of non-ascents when the left rotation is done). The second part
(the one that uses the second ∀i ∈ [1, . . . , k]{. . .})transforms
the previous coding made in F (that contains positive and
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negative numbers) to the valid factoradic representation using
the sets (C) and Y.

R = Permutation size k with v-1 ascents;

R′ = R;
∀i ∈ [1, . . . , k]{

if (i = P′k−i+1) Fk-i+1 = 0;

else{

∀c ∈ [1, . . . , k] if (i = R′c) break;
if (c = 1) ∨ (R′c−1 > R′c+1){
l = 1;

∀j ∈ [c+1, . . . , k-i] if (R′j > R′j+1) l = l+1;

rotate left R′ positions c and k-i+1;
Fk-i+1 = l;

}

else{

l = 1;

∀j ∈ [c+1, . . . , k-i] if (R′j < R′j+1) l = l+1;

rotate left R′ positions c and k-i+1;
Fk-i+1 = −l;
}

}

}

C = {1, . . . , k};Y = ∅;
∀i ∈ [1, . . . , k]{

if (Fi > 0){

Fi = CFi; C = C \ Fi; Y = Y ∪ Fi; sort Y;
}

else if (Fi < 0) Fi = Y|Fi|;
} (41)

Example 11: Next some examples to transform from fac-
toradic with v different symbols to permutations with v-1
ascents is given:

(0, 0, 0, 3, 3) → (2, 1, 5, 4, 3)

(0, 0, 2, 0, 0, 5, 6, 0, 8, 6) → (2, 4, 1, 5, 8, 10, 9, 7, 6, 3)

Examples to transform permutations to factoradic notation
are given next:

(4, 2, 5, 3, 1) → (0, 1, 0, 1, 0)

(8, 2, 3, 10, 9, 7, 1, 4, 6, 5) → (0, 0, 2, 0, 0, 0, 3, 3, 7, 4)

4

C. REPRESENTATION USING A NUMBER SYSTEM WITH
FIXED BASE
A number system base k to represent the possible solutions
of SPP with k objects is referred as N(k). Each element
X ∈ N(k) has k digits with values in {0, . . . , k-1}, and Xi

indicates the number of partition to which belongs the i-th
object (0-based).
Example 12: Assuming k = 5, X ∈ N(5) the ele-

ment (4, 0, 0, 3, 2), represents the set partition of the objects
{0, 1, 2, 3, 4}: {{1, 2}{4}{3}{0}} 4

The cardinality of N(k) is |N(k)| = kk , and the cardinality
of the elements of N(k) that have v different symbols is
represented by N(k, v). The construction of N(k, v) in terms
ofN(k-1, v-1) andN(k-1, v) is given in (42), take into account
that N(i, 1) = {(0, 0, . . . , 0)} (i.e. i zeros), N(i, 0) = {∅}
and k ≥ v.

The construction of N(k, v) is shown in (42).
The first part of the construction uses N(k-1, v-1) and

works in two steps: firstly, for each member in N(k-1, v-1)
add k-(v-1) numbers resulting from concatenating at the end
each of the k-(v-1) symbols not in the member; secondly, for
each member add the result of replacing each distinct symbol
(in total v-1) in it with the symbol k-1 and concatenating to
the end the replaced symbol. This way, the net result is the
addition of k-(v-1)+(v-1) = k members for each element in
N(k-1, v-1).
The second part is more elaborated, and operates in two

main steps: firstly, for each member ofN(k-1, v), concatenate
each of the v symbols present inN(k-1, v), this result is stored
as T1 and added to N(k, v); secondly, each of the members
of T1 (in total v·|N(k-1, v)|) is subject to the next process:
for each element of T1 replace one of the v symbols with
the symbol k-1 generating v new elements (i.e. we generate
v2·N(k-1, v) elements), but many of the generated elements
are identical, in order to see how many elements are identical
consider that each solution has (k-1)-(v-1) = k-v solutions
that are almost identical (only are different in one symbol),
then the net number of non repeated elements is exactly:
v2·|N(k-1, v)|· 1k-v , henceforth, we have added in the sec-

ond part: v·|N(k-1, v)|+ v2
k-v ·|N(k-1, v)| = |N(k-1, v)|·(v+

v2
k-v )

simplifying we have that this second part contributes with:
|N(k-1, v)|· k·vk-v elements.
Example 13: In the second part of the previous analy-

sis assuming k = 5, v = 2 and that a member of
T1 is (0, 0, 1, 1, 0, 0) then there are in T1 the elements
(2, 2, 1, 1, 2, 2) and (3, 3, 1, 1, 3, 3) that are different only
respect one symbol. This three elements generate an identical
element: (4, 4, 1, 1, 4, 4) i.e the number of identical elements
are k-v = 5-2 = 3. 4

Finally we can conclude that:

k·|N(k-1, v-1)|+
kv
k-v
·|N(k-1, v)|.

N(k, v) = ∅; T1 = ∅;

∀X ∈ N(k-1, v-1){
∀a ∈ {0, . . . , k-1}\η(X) N(k, v) = N(k, v)∪X⊕ a;
∀a ∈ η(X){
Y = X;
∀i ∈ [0, . . . , k-2] if (Yi = a) Yi = k-1;

N(k, v) = N(k, v)∪(Y⊕ a);
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}

}

∀X ∈ N(k-1, v){ ∀a ∈ η(X) T1 = T1∪(X⊕ a); }
N(k, v) = N(k, v)∪T1;

∀X ∈ T1{∀a ∈ η(X){
Y = X;
∀i ∈ [0, . . . , k-1]if (Yi = a) Yi = k-1;

if(Y /∈ N(k, v)) N(k, v) = N(k, v)∪Y;
}} (42)

The value of |N(k, v)| is shown in (43). In Theorem 2 it will
be proved that |N(k, v)| = N (k, v)

|N(k, v)| =


0 if (v > k) ∧ (v < 1)
1 if (k = 1)
k·|N(k-1, v-1)|+
kv
k-v
·|N(k-1, v)| otherwise

(43)

Theorem 2: The cardinality of N(k, v) is equal to N (k, v)
i.e. |N(k, v)| = N (k, v).

Proof: Given that (43) is identical to (24) it is evident
that |N(k, v)| = N (k, v). Another way, to prove this, is that
|N(k, v)| counts the cardinality of numbers in base k with
k digits and v distinct symbols, this is exactly the number
of functions from {0, . . . , k-1} to {0, . . . , k-1} s.t. the image
contains exactly v elements. This finishes the proof.
Example 14: Compute N(4, 2) using N(3, 1) and N(3, 2)
N(3, 1) ={(0,0,0) (1,1,1) (2,2,2)}
N(3, 2) ={(0,0,1) (0,0,2) (0,1,0) (0,1,1) (0,2,0) (0,2,2)

(1,0,0) (1,0,1) (1,1,0) (1,1,2) (1,2,1) (1,2,2) (2,0,0) (2,0,2)
(2,1,1) (2,1,2) (2,2,0) (2,2,1)}

Using N(k-1, v-1) and processing ∀a ∈ {0, . . . , k-1}\η(X)
gives:

{((0,0,0)⊕0) ((0,0,0)⊕2) ((0,0,0)⊕3) ((1,1,1)⊕0) ((1,1,1)
⊕2) ((1,1,1)⊕3) ((2,2,2)⊕0) ((2,2,2)⊕1) ((2,2,2)⊕3)

Using N(k-1, v-1) and processing ∀a ∈ η(X) gives:
{((3,3,3)⊕0) ((3,3,3)⊕1) ((3,3,3)⊕2)}
In total we have 12 elements generated using N(k-1, v-1).
Now, using N(k-1, v) the elements stored in T1 are:
{((0,0,1)⊕0) ((0,0,1)⊕1) ((0,0,2)⊕0) ((0,0,2)⊕2) ((0,1,0)
⊕0) ((0,1,0)⊕1) ((0,1,1)⊕0) ((0,1,1)⊕1) ((0,2,0)
⊕0) ((0,2,0)⊕2) ((0,2,2)⊕0) ((0,2,2)⊕2) ((1,0,0)⊕0) ((1,0,0)
⊕1) ((1,0,1)⊕0) ((1,0,1)⊕1) ((1,1,0)⊕0) ((1,1,0)
⊕1) ((1,1,2)⊕1) ((1,1,2)⊕2) ((1,2,1)⊕1) ((1,2,1)⊕2)
((1,2,2)⊕1) ((1,2,2)⊕2) ((2,0,0)⊕0) ((2,0,0)⊕2) ((2,0,2)⊕0)
((2,0,2)⊕2) ((2,1,1)⊕1) ((2,1,1)⊕2) ((2,1,2)⊕1) ((2,1,2)⊕2)
((2,2,0)⊕0) ((2,2,0)⊕2) ((2,2,1)⊕1) ((2,2,1)⊕2)}

Now, using N(k-1, v), the part ∀X ∈ T1{∀a ∈ η(X)
produces:
{(0,0,3,0) (0,0,3,3) (0,3,0,0) (0,3,0,3) (0,3,3,0) (0,3,3,3)

(1,1,3,1) (1,1,3,3) (1,3,1,1) (1,3,1,3) (1,3,3,1) (1,3,3,3)
(2,2,3,2) (2,2,3,3) (2,3,2,2) (2,3,2,3) (2,3,3,2) (2,3,3,3)
(3,0,0,0) (3,0,0,3) (3,0,3,0) (3,0,3,3) (3,1,1,1) (3,1,1,3)

(3,1,3,1) (3,1,3,3) (3,2,2,2) (3,2,2,3) (3,2,3,2) (3,2,3,3)
(3,3,0,0) (3,3,0,3) (3,3,1,1) (3,3,1,3) (3,3,2,2) (3,3,2,3)}

In total for N(k-1, v) we have a total of 72 elements.
Then the final result for N(4, 2) has 84 elements, that are:
{(0,0,0,1) (0,0,0,2) (0,0,0,3) (0,0,1,0) (0,0,1,1) (0,0,2,0)

(0,0,2,2) (0,0,3,0) (0,0,3,3) (0,1,0,0) (0,1,0,1) (0,1,1,0)
(0,1,1,1) (0,2,0,0) (0,2,0,2) (0,2,2,0) (0,2,2,2) (0,3,0,0)
(0,3,0,3) (0,3,3,0) (0,3,3,3) (1,0,0,0) (1,0,0,1) (1,0,1,0)
(1,0,1,1) (1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,2) (1,1,1,3)
(1,1,2,1) (1,1,2,2) (1,1,3,1) (1,1,3,3) (1,2,1,1) (1,2,1,2)
(1,2,2,1) (1,2,2,2) (1,3,1,1) (1,3,1,3) (1,3,3,1) (1,3,3,3)
(2,0,0,0) (2,0,0,2) (2,0,2,0) (2,0,2,2) (2,1,1,1) (2,1,1,2)
(2,1,2,1) (2,1,2,2) (2,2,0,0) (2,2,0,2) (2,2,1,1) (2,2,1,2)
(2,2,2,0) (2,2,2,1) (2,2,2,3) (2,2,3,2) (2,2,3,3) (2,3,2,2)
(2,3,2,3) (2,3,3,2) (2,3,3,3) (3,0,0,0) (3,0,0,3) (3,0,3,0)
(3,0,3,3) (3,1,1,1) (3,1,1,3) (3,1,3,1) (3,1,3,3) (3,2,2,2)
(3,2,2,3) (3,2,3,2) (3,2,3,3) (3,3,0,0) (3,3,0,3) (3,3,1,1)
(3,3,1,3) (3,3,2,2) (3,3,2,3) (3,3,3,0) (3,3,3,1) (3,3,3,2)}

4

It has been shown that |N(k)| = kk , |N(k, v)| = N (k, v),
an expression that bounds the cardinality of factoradic num-
ber system respect to the integer partitions P(k, v), i.e.,
|N(k, v,X)|,X ∈ P(k, v) is shown in (44).

|N(k, v,X)| = v!·
(
k
v

)
·

k!
v∏
i=1

Xi!
∏

l∈η(X)
µ(l,X)!

,

X ∈ P(k, v) (44)

Table 11 presents, the values of |N(k, v,X)| as super
indices of the integer partition. In each cell after the equal
sign the value of |N(k, v)| = N (k, v) is shown.
Interesting values for |N(k, v)| are |N(k, 1)| = k ,
|N(k, k)| = k!, and

∑k
v=1 |N(k, v)| = kk

The ranking ofX ∈ N(k) is very easy, transform to decimal
a number with k digits in base k , see (45) the result is returned
as rank .

X ∈ N(k);
rank = X0;

∀i ∈ [1, . . . , k-1] rank = rank·k+Xi;

return rank (45)

The unranking of the number rank is done in (46) and
returned as X with k digits.

0 ≤ rank ≤ kk -1;

∀ i ∈ [k-1, . . . , 0]{

Xi = rank mod k;

rank =
rank − Xi

k
;

}

return X (46)

D. COMMENTS ABOUT THE THREE REPRESENTATIONS
Respect the redundancy of the three representations,
the S(k) representation has zero redundancy given that
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TABLE 11. Table for |N(k, v,X)| for X ∈ P(k, v ), super indices have the cardinality and the value of |N(k, v )| = N(k, v ) appears after equal sign.

|S(k)| = B(k), the E(k) representation has some redundancy
given that |E(k)| = k!, and N(k) has the greater redundancy,
given that |N(k)| = kk . See Example 15 to get insight in the
redundancy topic of the three representations.
Example 15:

For k ≥ 3 happens |S(k)|<|E(k)|<|N(k)|
For k = 2 occurs |S(k)| = |E(k)|<|N(k)|
For k = 1 satisfies |S(k)| = |E(k)| = |N(k)|

4

A comparison of |S(k, v,X)|, |E(k, v,X)| and |N(k, v,X)|
(see (44), (37) and (31)) leads to the conclusion that the
greater redundancy is in N(k),followed with less redundancy
E(k), and zero redundancy for S(k).
To see clearly this fact, assume that X ∈ S(k) then the

mapping of this elementX to corresponding elements in E(k)
and N(k) representations will be presented.
In (47) the process to transform X ∈ S(k) to N(k) can

be seen, take note that
{(k
v

)}
refers to the set of all v-wise

combinations taken from k , and
{
v!
}
refers to the set of

permutations of size v. Therefore, one element in S(k) maps
to v!·

(k
v

)
members in S(k).

X ∈ S(k);
v = |η(X)|;
R = ∅

∀V ∈
{(k
v

)}
{∀P ∈

{
v!
}
{

∀i ∈ [0, . . . , v-1] Zi = VPi;

∀i ∈ [0, . . . , k-1] Yi = ZXi;

R = R∪Y;
}}

return R; (47)

Example 16: Let X ∈ S(5, 3) be (0, 1, 1, 0, 2) the corre-
sponding elements that belong to N(5, 3) are:
{(0,1,1,0,2) (0,1,1,0,3) (0,1,1,0,4) (0,2,2,0,1) (0,2,2,0,3)

(0,2,2,0,4) (0,3,3,0,1) (0,3,3,0,2) (0,3,3,0,4) (0,4,4,0,1)
(0,4,4,0,2) (0,4,4,0,3) (1,0,0,1,2) (1,0,0,1,3) (1,0,0,1,4)
(1,2,2,1,0) (1,2,2,1,3) (1,2,2,1,4) (1,3,3,1,0) (1,3,3,1,2)
(1,3,3,1,4) (1,4,4,1,0) (1,4,4,1,2) (1,4,4,1,3) (2,0,0,2,1)
(2,0,0,2,3) (2,0,0,2,4) (2,1,1,2,0) (2,1,1,2,3) (2,1,1,2,4)
(2,3,3,2,0) (2,3,3,2,1) (2,3,3,2,4) (2,4,4,2,0) (2,4,4,2,1)
(2,4,4,2,3) (3,0,0,3,1) (3,0,0,3,2) (3,0,0,3,4) (3,1,1,3,0)
(3,1,1,3,2) (3,1,1,3,4) (3,2,2,3,0) (3,2,2,3,1) (3,2,2,3,4)
(3,4,4,3,0) (3,4,4,3,1) (3,4,4,3,2) (4,0,0,4,1) (4,0,0,4,2)
(4,0,0,4,3) (4,1,1,4,0) (4,1,1,4,2) (4,1,1,4,3) (4,2,2,4,0)
(4,2,2,4,1) (4,2,2,4,3) (4,3,3,4,0) (4,3,3,4,1) (4,3,3,4,2) } 4

X ∈ S(k);
R = ∅;F = ∅;V = ∅; I = ∅;T = ∅;Y = ∅;Z = ∅;
∀a ∈ η(X) if(Xa = a) F = F∪a;
∀i ∈ [0, . . . , k-1]{

if (Xi /∈F)∧(Xi /∈V){ V = V∪Xi; I = I∪i; }
}

if (V = ∅) R = X;
else{

∀ i ∈ I T = T×{V0, . . . , i};

∀ Y ∈ T if (|Y| > |η(Y)|) T = T\Y;
Z = X;
∀Y ∈ T {
∀i ∈ [0, . . . , k-1]{∀j ∈ [0, . . . , |V|-1]

{ if (Xi = Vj) Zi = Yj; }}

R = R∪Z;
}

}

return R; (48)

In (48) the process to transform X ∈ S(k) to E(k) is shown.
The process to do this is more complex than the process to
transform X ∈ S(k) to N(k). At the beginning, the search of
the first occurrence of symbol a ∈ X, 0 ≤ a ≤ k-1 is done,
if the index of the first occurrence of symbol a is a, henceforth
such symbol is fixed (this symbol will belong to the set F) and
will not be subject to a process of being replaced, the other
symbols will be subject to a process of being replaced (they
will belong to the set V and its indices will be stored in the
set I), in case all the symbols of X are fixed, R will contain
only X. Take note that ∀i ∈ I T = T×{V0, . . . , i}; computes
the cartesian product of the sets formed from the first element
that is not fixed through each index of the non-fixed elements,
the elements that contain duplicated elements are removed
from T with ∀Y ∈ T if(|Y| < |η(Y)| T = T∪Y;. A final
comment about (48) is that it is needed to replace in X, the
elements that belongs to V using the values stored in T.
Example 17: Let X ∈ S(7, 5) be (0, 0, 1, 2, 2, 3, 4) the

corresponding elements that belong to E(7, 5) are:
{(0,0,1,2,2,3,4)(0,0,1,2,2,3,5)(0,0,1,2,2,3,6) (0,0,1,2,2,4,3)

(0,0,1,2,2,4,5) (0,0,1,2,2,4,6) (0,0,1,2,2,5,3) (0,0,1,2,2,5,4)
(0,0,1,2,2,5,6) (0,0,1,3,3,2,4) (0,0,1,3,3,2,5) (0,0,1,3,3,2,6)
(0,0,1,3,3,4,2) (0,0,1,3,3,4,5) (0,0,1,3,3,4,6) (0,0,1,3,3,5,2)
(0,0,1,3,3,5,4) (0,0,1,3,3,5,6) (0,0,2,1,1,3,4) (0,0,2,1,1,3,5)
(0,0,2,1,1,3,6) (0,0,2,1,1,4,3) (0,0,2,1,1,4,5) (0,0,2,1,1,4,6)
(0,0,2,1,1,5,3) (0,0,2,1,1,5,4) (0,0,2,1,1,5,6) (0,0,2,3,3,1,4)
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(0,0,2,3,3,1,5) (0,0,2,3,3,1,6) (0,0,2,3,3,4,1) (0,0,2,3,3,4,5)
(0,0,2,3,3,4,6) (0,0,2,3,3,5,1) (0,0,2,3,3,5,4) (0,0,2,3,3,5,6)}
4

The transformation of one element X ∈ N(k) or X ∈ E(k)
to S(k) is very easy, only requires to do a relabeling of
the symbols in X (see (49)), the first different element that
appears inX is transformed to 0, the second different element
that appears in X is mapped to 1, and so on. It is easy to see
that in general, many elements in N(k) are transformed to the
same element in S(k) (this is also true for an element that
belongs to E(k)). See (49).

X to be mapped to S(k);
R = X;V = ∅;
∀i ∈ [0, . . . , k-1]{ if (Xi /∈V) V = V∪Xi; }

∀i ∈ [0, . . . , k-1]{

∀j ∈ [0, . . . , |V− 1|] if (Xi = Vj) Ri = j;

return R; (49)

Example 18: Let X ∈ N(4) be (3, 1, 0, 0), X is mapped to
(0, 1, 2, 2) ∈ S(4).

Let X ∈ E(4) be (0, 0, 2, 3), X is mapped to (0, 0, 1, 2) ∈
S(4). 4

The transformation of elements between N(k) and E(k)
can be made using as intermediate the transformation from
one representation to S(k), then transform S(k) to the other
representation.

E. CASE WHEN THE NUMBER OF PARTITIONS IS
BOUNDED
Until now if has been assumed that the number of partitions of
a set is not bounded, i.e. for k objects the number of partitions
can be from 1 to k . But, in some cases it is required to impose
a bound in the maximum number of partitions, say r .

1) CARDINALITY OF r-BOUNDED {S(k),E(k),N(k)}
The cardinality of r-bounded S(k) it is

∑r
i=1 S(k, i) instead

of B(k). The cardinality of r-bounded E(k) it is
∑r

i=1 E(k, i)
instead of k!. The cardinality of r-bounded N (k) is rk instead
of kk .

2) RANKING AND UNRANKING ALGORITHMS FOR
r-BOUNDED {S(k),E(k),N(k)}
The ranking and unranking algorithms for r-bounded S(k)
are controlled by the values of O(k), then only is required
to change the construction of this table, see (50).

∀ j ∈ [0, . . . , r]{ O(k)0,j = 1; }

∀ i ∈ [1, . . . , k]{

∀ j ∈ [0, . . . ,min(r, k-i)]{

O(k)i,j = j·O(k)i-1,j+O(k)i-1,j+1;

}

} (50)

The result for 3-bounded O(5) is given Table 12.

TABLE 12. Table of 3-bounded O(5), positional values for ranking,
unranking of RGS/decimal number.

The ranking and unranking for X ∈ r-boundedE(k), must
take into account that a set A =

⋃r
i=1 E(k, v) exists, and the

i-th factoradic notation is done using Ai 0 ≤ i ≤ |A| − 1,
then the unranking is very easy given that it is implicit in
the construction of A, for the ranking it is suggested to do
a binary search using the set A. See (51) and (52) for ranking
and unranking procedures respectively.

A =
r⋃
i=1

E(k, v);

X ∈ r-bounded E(k);
d = 0; t = |A|-1;
repeat{

rank = b
d + t
2
c;

if (X = Arank ) return rank;

if (X > Arank ) d = rank+1; else t = rank-1;

} (51)

A =
r⋃
i=1

E(k, v);

0 ≤ rank ≤ |A|-1;
return Arank ; (52)

The ranking and unranking algorithms for boundedN(k) is
presented in (53), (54).

X ∈ N(k); rank = X0

∀ i ∈ [1, . . . , k-1]{ rank = rank·r+Xi; }

return rank (53)

0 ≤ rank ≤ rk -1;

∀ i ∈ [k-1, . . . , 0]{

Xi = rank mod r;

rank =
(rank-Xi)

r
;

}

return X (54)

3) Mapping BETWEEN r-BOUNDED S(k), E(k), N(k)
The mapping for X ∈ r-bounded S(k) to r-bounded E(k) is
shown in (55), see that the only difference with (48) is the
computation of the cartesian product.

X ∈ S(k);
R = ∅;F = ∅;V = ∅; I = ∅;T = ∅;Y = ∅;Z = ∅;
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∀a ∈ η(X) if(Xa = a) F = F∪a;
∀i ∈ [0, . . . , k-1]{

if (Xi /∈F)∧(Xi /∈V){ V = V∪Xi; I = I∪i; }
}

if (V = ∅) R = X;
else{

∀ i ∈ I T = T×{V0, . . . ,min(i, r-1)};

∀ Y ∈ T if (|Y| > |η(Y)|) T = T\Y;
Z = X;
∀Y ∈ T {
∀i ∈ [0, . . . , k-1]{∀j ∈ [0, . . . , |V|-1]
{ if (Xi = Vj) Zi = Yj; }}

R = R∪Z;
}

}

return R; (55)

Example 19: Let X ∈ S(8) be (0, 0, 0, 1, 0, 1, 2, 3) with
r = 5, it is obtained:

E(8, 5) = {(0, 0, 0, 1, 0, 1, 2, 3)(0, 0, 0, 1, 0, 1, 2, 4)
(0, 0, 0, 1, 0, 1, 3, 2)(0, 0, 0, 1, 0, 1, 3, 4)

(0, 0, 0, 1, 0, 1, 4, 2)(0, 0, 0, 1, 0, 1, 4, 3)

(0, 0, 0, 2, 0, 2, 1, 3)(0, 0, 0, 2, 0, 2, 1, 4)

(0, 0, 0, 2, 0, 2, 3, 1)(0, 0, 0, 2, 0, 2, 3, 4)

(0, 0, 0, 2, 0, 2, 4, 1)(0, 0, 0, 2, 0, 2, 4, 3)

(0, 0, 0, 3, 0, 3, 1, 2)(0, 0, 0, 3, 0, 3, 1, 4)

(0, 0, 0, 3, 0, 3, 2, 1)(0, 0, 0, 3, 0, 3, 2, 4)

(0, 0, 0, 3, 0, 3, 4, 1)(0, 0, 0, 3, 0, 3, 4, 2)}

4

The mapping for X ∈ r-bounded S(k) to r-bounded N(k) is
shown in (56). See that the only difference with (47) is the
computation of

{(r
v

)}
instead of

{(k
v

)}
.

X ∈ S(k);
v = |η(X)|;
R = ∅

∀V ∈
{(r
v

)}
{∀P ∈

{
v!
}
{

∀i ∈ [0, . . . , v-1] Zi = VPi;

∀i ∈ [0, . . . , k-1] Yi = ZXi;

R = R∪Y;
}}

return R; (56)

Example 20: Let X ∈ S(6) be (0, 1, 0, 2, 2, 0) with r = 4,
we have:

N(6, 4) = {(0, 1, 0, 2, 2, 0)(0, 1, 0, 3, 3, 0)(0, 2, 0, 1, 1, 0)
(0, 2, 0, 3, 3, 0)(0, 3, 0, 1, 1, 0)(0, 3, 0, 2, 2, 0)

(1, 0, 1, 2, 2, 1)(1, 0, 1, 3, 3, 1)(1, 2, 1, 0, 0, 1)

(1, 2, 1, 3, 3, 1)(1, 3, 1, 0, 0, 1)(1, 3, 1, 2, 2, 1)

(2, 0, 2, 1, 1, 2)(2, 0, 2, 3, 3, 2)(2, 1, 2, 0, 0, 2)

(2, 1, 2, 3, 3, 2)(2, 3, 2, 0, 0, 2)(2, 3, 2, 1, 1, 2)

(3, 0, 3, 1, 1, 3)(3, 0, 3, 2, 2, 3)(3, 1, 3, 0, 0, 3)

(3, 1, 3, 2, 2, 3)(3, 2, 3, 0, 0, 3)(3, 2, 3, 1, 1, 3)

}

4

The procedure tomap from r-boundedE(k) or r-boundedN(k)
to r-bounded S(k) is the same as the unbounded case, and the
mapping from r-bounded E(k) to r-bounded N(k) and vice
versa, can be done using as bridge r-bounded S(k).

IV. OPERATORS FOR THE THREE REPRESENTATIONS
This section presents how to construct a random element
for each representation, apply a mutation operator (a slight
modification of a possible solution) to each of the repre-
sentations, and recombine two elements of each represen-
tation. These three operators (random generation, mutation,
and recombination) are key to implement optimization algo-
rithms (greedy, exact, and metaheuristic) to solve specific
SPP instances. In particular the mutation operators enables
to do small changes to one specific potential solution (in this
sense it enables to do exploration) and the recombination
operator takes advantage of two potential solutions to pro-
duce two new solutions that inherits features from the parent
solutions (this operation does in general more exploitation).

The random generation can be done in at least two ways:
generate a random number in the valid rank and then use the
corresponding unrank procedure, and the second way is to
generate a valid element each position-value at-a-time.

The mutation of one member X that belongs to one of
the three representations, is easy to implement, given that
the modification of only one element of X according to its
possible values is done, only for S(k) is needed to run over
the result the relabel operation see (49). The recombination
operator using two members X and Y belonging to one of
the three representations, is direct for E(k) and N(k), but for
S(k) a repair operation over the result of the recombination is
needed(relabel operation see (49)).

A. RANDOM GENERATION
In case the first method of generation is used, a number x with
a valid value is generated, and then corresponding unrank
procedure is used: (35), (39), (46), (52), or (54). The valid
ranks for x are shown in Table (13) for the unbounded and
r-bounded cases.
The other case to generate a random element for each

representation requires the generation one symbol at-a-time
for a member of each representation.

The procedure to generate a random element for S(k)
and r-bounded S(k) is given in (57), take note that for the
unbounded case r must be replaced by k , also it is relevant
to say that α = min(r, 2 + maxi−1j=0(Xj)), computes the

34618 VOLUME 9, 2021



J. Torres-Jimenez et al.: Three Representations for Set Partitions

TABLE 13. Table of valid ranks for the two cases (unbounded, and r -bounded) for the three representations S(k),E(k), and N(k).

FIGURE 1. A graphical representation of.

cardinality of the possible values that Xi could have.

X = {∅};X0 = 0;

∀i ∈ [1, . . . , k−1] {

α = min(r, 2+
i−1
max
j=0

(Xj));

Xi = rand() mod α;

}

return X; (57)

Example 21: A random element for S(10, 4) is X =

(0, 1, 2, 1, 3, 0, 0, 2, 3, 2), a graphic representation for it,
is given in Figure 1. 4

The procedure to generate a random element for E(k)
and r-bounded E(k) is given in (58), take note that for the
unbounded case r must be replaced by k , also note that α =
min(i+, r), computes the cardinality of the valid values that
Xi could have.

X = {∅};X0 = 0;

∀ i ∈ [1, . . . , k-1]{

α = min(r, i+1);

Xi = rand() mod α;

}

return X; (58)

Example 22: Let X ∈ E(10, 4) be X = (0, 1, 2, 0, 3, 1,
0, 3, 0, 3), its graphic representation in given in Figure 2.

4

The procedure to generate a random element for N(k)
and r-bounded N(k) is given in (59), take note that for the
unbounded case r must be replaced by k , again the value of
α = min(k, r) indicates the cardinality of valid values of Xi.

X = {∅};
α = min(r, k);

∀ i ∈ [0, . . . , k-1]{

FIGURE 2. A graphical representation of X = (0,1,2,0,3,1,0,3,0,3);
X ∈ E(10).

FIGURE 3. A graphical representation for X = (3,2,2,1,3,2,1,3,3,3);
X ∈ N(10) .

Xi = rand() mod α;

}

return X; (59)

Example 23: Let X ∈ N(10, 4) be X = (3, 2, 2, 1, 3, 2,
1, 3, 3, 3), see its graphic representation in Figure 3.

4

B. MUTATION OPERATORS
The mutation operator for X ∈ S(k) is shown in (60),
please note that α = min(r, 2 + maxi−1j=0(Xj)), compute the
cardinality of the possible values that could haveXi, also note
that: (Xi+1+rand() mod (α-1)) mod α, computes a random
value for Xi excluding its current value. It is possible that
some Xj for (j > i) need to be adjusted, for this reason, the
relabel operator is called to get a valid RGS (see (49)) (for
the unbounded case replace r with k . A final comment: given
that always X0 = 0 we exclude this position to be mutated
with i = 1+rand() mod(k-1).

X ∈ S(k) or X ∈ r-bounded S(k);
i = 1+rand() mod(k-1);

α = min(r, 2+
i−1
max
j=0

(Xj));

Xi = (Xi+1+rand() mod (α-1)) mod α;

X = relabel(X);
return X; (60)
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FIGURE 4. See in the left side X = (0,1,0,1,0,1,2,1,2,3) and mutated
X = (0,1,0,2,0,1,2,1,2,3) at the right side, both belong to S(10,4).

FIGURE 5. Figures of X = (0,1,1,0,0,2,3,0,1,0) at the left and mutated
X = (0,1,1,0,0,3,3,0,1,0) at the right, both belong to E(10,4).

Example 24: Let X ∈ S(10, 4) be X = (0, 1, 0, 1, 0, 1, 2,
1, 2, 3) and mutated X = (0, 1, 0, 2, 0, 1, 2, 1, 2, 3), Figure 4
show in the left side a representation for X and in the right
side its mutation.

4

The mutation operator for X ∈ E(k) is shown in (61),
replace the value of r with k for the unbounded case. Again
the value of α = min(r, i+1) indicates the cardinality of
the values for Xi; and (Xi+1+rand() mod(α-1)) mod α
computes a valid value for Xi excluding its current value. A
final comment: given that always X0 = 0 we exclude this
position to be mutated with i = 1+rand() mod(k-1).

X ∈ E(k) or X ∈ r-bounded E(k);
i = 1+rand() mod(k-1);

α = min(r, i+1);

Xi = (Xi+1+rand() mod(α-1)) mod α;

return X; (61)

Example 25: Let X ∈ E(10, 4) be X = (0, 1, 1, 0, 0, 2, 3,
0, 1, 0) and mutated X = (0, 1, 1, 0, 0, 3, 3, 0, 1, 0), Figure 5
show in the left side a representation for X and in the right
side its mutation.

4

The mutation operator for X ∈ N(k) is shown in (62),
the value of r is k for the unbounded case. The value of
α = min(k, r) indicates the cardinality of possible values,
and (Xi+1 + rand() mod(α-1)) mod α, computes a valid
random value for Xi excluding its current value.

X ∈ N(k) or X ∈ r-bounded N(k);
i = rand() mod k;

α = min(r, k);

FIGURE 6. X ∈ N(10,4) = (3,2,2,3,2,2,3,3,0,1) and its mutation
(3,2,2,3,2,2,3,3,1,1) see their graphical representation from left to
right.

Xi = (Xi+1+rand() mod(α-1)) mod α;

return X; (62)

Example 26: Let X ∈ N(10, 4) be X = (3, 2, 2, 3, 2, 2, 3,
3, 0, 1) and its mutated version be (3, 2, 2, 3, 2, 2, 3, 3, 1, 1),
Figure 6 shows a graphical representation of X at its left and
at its right the mutated version. 4

The mutation operator that offers the greatest exploratory
power is the mutation for N(k), given that the possible values
for one random position are not constrained (only for the
value of r). The mutation for E(k) has the constraint that the
value in one position depends heavily on the position itself
and the value for r , then the number of possible values in one
position are constrained a lot. But, the mutation operator for
S(k) is the most constrained, given that the set of possible
values in one specific position, depends totally on all the
previous elements to the position being modified. These facts
suggest that the best representation isN(k) but remember that
this representation has the biggest redundancy, and the zero
redundancy representation is S(k).

C. RECOMBINATION OPERATORS
The recombination of two solutions X and Y that belongs
to S(k) or r-bounded S(k) is presented only for one point
of recombination, but the procedure shown in (63) can be
easily extended for many points of recombination. After the
recombination of two solutions is done, the solutions may be
an incorrect RGS, then a repair is required, this is done using
relabel(R) and relabel(T).

R = ∅; T = ∅;
X ∈ S(k) or X ∈ r-bounded S(k);
Y ∈ S(k) or Y ∈ r-bounded S(k);
i = 1+rand() mod(k-1);

R = X0,...,i-1 ⊕ Yi,...,k-1;

T = Y0,...,i-1 ⊕ Xi,...,k-1;

R = relabel(R); T = relabel(T);
return R and T; (63)

Example 27: X,Y ∈ S(10, 4) are X = (0, 0, 0, 1, 2, 2, 3,
1, 3, 0), Y = (0, 0, 1, 1, 0, 2, 1, 3, 0, 3) and the recombina-
tion point exchanges the last three elements, then we have as
result: (0, 0, 0, 1, 2, 2, 3, 3, 0, 3) and (0, 0, 1, 1, 0, 2, 1, 1, 3, 0).
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FIGURE 7. X,Y ∈ S(10,4), X = (0,0,0,1,2,2,3,1,3,0) and
Y = (0,0,1,1,0,2,1,3,0,3) are shown at the left, at the right the
recombination exchanging the last three elements:
(0,0,0,1,2,2,3,3,0,3) and (0,0,1,1,0,2,1,1,3,0).

See at the left of Figure 7, X and Y and the result of
recombination at the right.

4

The recombination of two solutions X and Y that belongs
toE(k) or r-boundedE(k) is presented only using one point of
recombination, but the procedure shown in (64) can be easily
extended for many points of recombination.

R = ∅;T = ∅;
X ∈ E(k) or X ∈ r-bounded E(k);
Y ∈ E(k) or Y ∈ r-bounded E(k);
i = 1+rand() mod(k-1);

R = X0,...,i-1 ⊕ Yi,...,k-1;

T = Y0,...,i-1 ⊕ Xi,...,k-1;

return R and T; (64)

Example 28: Let X,Y ∈ E(10, 4) be X = (0, 1, 1, 2, 0, 3,
1, 3, 0, 1) and Y = (0, 0, 1, 3, 2, 0, 0, 2, 0, 2), assuming that
the recombination point exchanges the last 4 elements, this
results in: (0, 1, 1, 2, 0, 3, 0, 2, 0, 2) and (0, 0, 1, 3, 2, 0, 1, 3,
0, 1). See at the left of Figure 8 X and Y; and at the left the
result of doing the recombination. 4

The recombination for the N(k) representation is almost
identical to the one for E(k), see (65).

R = ∅;T = ∅;
X ∈ N(k) or X ∈ r-bounded N(k);
Y ∈ N(k) or Y ∈ r-bounded N(k);
i = 1+rand() mod(k-1);

R = x0,...,i-1 ⊕ yi,...,k−1;

T = y0,...,i-1 ⊕ xi,...,k-1;

return R and T; (65)

FIGURE 8. X = (0,1,1,2,0,3,1,3,0,1),Y = (0,0,1,3,2,0,0,2,0,2)
∈ E(10,4) are shown at the left, and the result of recombination of the
last 4 elements gives: (0,1,1,2,0,3,0,2,0,2),
(0,0,1,3,2,0,1,3,0,1)and are shown at the right.

FIGURE 9. The recombination exchanges the six last elements of
X,Y ∈ N(10,4). X = (2,0,0,2,1,0,0,1,3,3),
Y = (0,2,2,0,3,1,0,0,3,3) are shown at the left, and the results of
recombination: (2,0,0,2,3,1,0,0,3,3) and (0,2,2,0,1,0,0,1,3,3)are
shown at right.

Example 29: LetX,Y ∈ N(10, 4) beX = (2, 0, 0, 2, 1, 0,
0, 1, 3, 3), Y = (0, 2, 2, 0, 3, 1, 0, 0, 3, 3), and the
recombination exchanges the six last elements giving:
(2, 0, 0, 2, 3, 1, 0, 0, 3, 3) and (0, 2, 2, 0, 1, 0, 0, 1, 3, 3).
In Figure 9 at the left are shown X and Y. 4

The recombination for E(k) and N(k) does not require to
repair the results, i.e., all the recombinations are valid. Even,
the recombination for S(k) demands to repair (relabeling),
this procedure is easy to implement.

V. USE OF THE THREE REPRESENTATIONS WITH ONE
SPECIFIC PROBLEM
In order to get some insight about the performance of using
the three representations (N(k), S(k), E(k)) we will solve
an instance of the set partition of integers problem (SPIP)
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TABLE 14. The vertical axis indicates the minimum and maximum value of the function
∑σ -1

i=0
∑
∀a∈Si

|a-ζi |, ζi =
1
|Si |
·
∑
∀a∈Si

a; the horizontal axis
indicates the value of σ according the number of objects k ; the problem instance is P = {1, . . . ,k}.

using a simple genetic algorithm (one that uses only mutation
of one element in each possible solution, and recombina-
tion/crossover with one point).

A. SPIP SET PARTITION OF INTEGERS PROBLEM
Two problems will be defined next, one in which near-
optimal solution occurs with a large number of partitions
and other problem in which near-optimal solution requires
a small number of partitions, respectively we call the first
one minimization problem and the second one maximization
problem.

Minimization problem: Given a set P of positive inte-
gers, find σ subsets S0, . . . ,Sσ -1, 1 ≤ σ ≤ k ,
Si∩Sj = ∅,

⋃σ -1
i=0 Si = P, such that (66) is mini-

mized. Intuitively we minimize (66) using a large number
of clusters, i.e. almost one cluster for each number to be
partitioned.

Maximization problem: Given a set P of positive integers,
find σ subsets S0, . . . ,Sσ -1, 1 ≤ σ ≤ k , Si∩Sj = ∅,⋃σ -1

i=0 Si = P, such that (66) is maximized. Intuitively we
maximize (66) using a small number of clusters.

σ -1∑
i=0

∑
∀a∈Si

|a− ζi|, ζi =
1
|Si|
·

∑
∀a∈Si

a (66)

Example 30: Let P = {1, 4, 7, 10, 13, 16}.
The value of the function

∑σ -1
i=0

∑
∀a∈Si |a− ζi| is:

0 with the set partition: S0 = {1},S1 = {4}, S2 = {7},
S3 = {10}, S4 = {13}, S4 = {16}
9 with the set partition: S0 = {1, 4},S1 = {7, 10},S2 =
{13, 16}

TABLE 15. Maximum values of function in equation (66), the value of k ,
and the value(s) of number of partitions (σ ).

12 with the set partition: S0 = {1, 4, 7},S1 = {10, 13, 16}
4

With this small example, it can be created the intu-
ition that in order to minimize the value of the function:∑σ -1

i=0
∑
∀a∈Si |a− ζi| the number of required subsets (σ ) will

be large, and to maximize its value, the number of required
subsets will be small.

In order to verify the intuition related to the number of
partitions needed for the maximization and minimization
versions of SPIP, we have defined instances with 4 ≤ k ≤ 18
and P = {1, . . . , k}, for the 15 instances all the B(k) possible
solutions were constructed and determined the maximum and
minimum value of (66). The results are shown graphically in
Table 14 and in Table 15 are depicted the maximum value
of the function including the corresponding σ values (the
minimum is not shown in Table 15 given that always is zero
and occurs with a value of σ = k). It can be verified the initial
intuition that solutions with minimum values of the function
occurs with the maximum number of partitions (i.e. k) with
a zero value, and that solutions with maximum values of the
function occurs near the minimum number of partitions(i.e.
one partition) but in general the resulting σ values seems to
be greater than 1.
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TABLE 16. Results of population average and best results for minimizing and maximizing function in equation (66), each row contains the results for a
particular value of r ∈ {10,50,100,500,1000}. Lines in red, blue and green refers respectively to S, E and N representations.

B. A SIMPLE GENETIC ALGORITHM
We explore the maximization and minimization of the
function defined in (66) with a simple genetic algo-
rithm in order to test the capabilities of the three
representations to approximate good solutions requiring
a small number of partitions and a large number of
partitions.

The characteristics defined for the simple genetic algo-
rithm are:

• A problem instance P with size k = 1000, each member
of the problem instance is a random number in the rank
{0, . . . , 65535}

• The values for r-bounded representations are:
r ∈ {10, 50, 100, 500, 1000}.
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• Function to be maximized or minimized:∑σ -1
i=0

∑
∀a∈Si |a− ζi|, ζi =

1
|Si|
·
∑
∀a∈Si a.

• Population Size 100 (POPULATION = 100).
• Number of generations.
• Tournament selection of size 2, the elements for a recom-
bination are selected according the function (66) and
if the problem is the maximization or minimization
version (see variable case). Then for each generation
POPULATION tournament selections are done.

• POPULATION/2 recombinations are done (each
recombination produces two elements).

• For both elements resulting from a recombination a
mutation of one position is done.

• The best element of the current generation replaces the
worst element in the new generation (best and worst
changes its meaning considering if the problem is the
maximization or the minimization version).

Once the instance P is created, the operation of the simple
genetic algorithm is depicted in (67).

∀r ∈ {10, 50, 100, 500, 1000}{

∀i ∈ [0, . . . ,POPULATION -1]{

G0,i = random-{S,E, or N};
}

evaluate G0;

case = 0 for minimization,

1 for maximization;

∀i ∈ [0,GENERATIONS-1]{

∀j ∈ [0,
POPULATION

2
-1]{

select {a, b} a 6= b

using tournament(Gi−1, case);

{a′, b′} =

r-bounded{S,E, or N} recombination(a, b);

a′′ = r-bounded{S,E, or N} mutation(a);

b′′ = r-bounded{S,E, or N} mutation(b);

Gi,2·j = a′′; Gi,2·j+1 = b′′;

}

evaluate Gi;

a = best(Gi−1, case);

replace worst(Gi, case) with a;

}

} (67)

C. RESULTS OF THE PSIP USING A SIMPLE GENETIC
ALGORITHM
Each experiment expressed in (67) were ran 31 times, and
the results are depicted graphically in Table (16) a summary
of the results is presented in Table (17).

According to the results obtained some preliminary con-
clusions can be extracted:

TABLE 17. Best results for minimizing and maximizing function (66) using
a simple genetic algorithm, according the r -bounded representation; the
best value of the function and the best σ value for maximization and
minimization is indicated; best results indicated with bold font.

• the representation N is the best when the solution
searched has a large number of partitions;

• the representation S is the best when the solution
searched has a small number of partitions;

• the representation E has an average behavior in both
cases (maximization and minimization).

D. ADVICE ABOUT THE CONCLUSIONS OF PSIP RESULTS
It is important to say that the performance of the three repre-
sentations may change for another kind of SPP instances, i.e.
that the best representation for the PSIP instance may not be
the best representation for another kind of SPP instances.

VI. CONCLUSION
Important concepts related to the integer partition problem
and SPPwere presented, the focuswas in three possible repre-
sentations of SPP solutions. Remarkably, the three represen-
tations presented: S(k),E(k), andN(k), are based respectively
on: Restricted Growth Strings, factoradic number system, and
a positional number system with a fixed base. Also, the three
representations have a strong mathematical foundation based
on the Stirling numbers of the second kind (S(k, v)), Eulerian
numbers (E(k, v)), and the cardinality of functions (N (k, v)).
Two theorems related to the cardinalities of E(k) and N(k)
were proved, for completeness ranking and unranking func-
tions for the three representations and mapping procedures
between the representations were provided.

To help practitioners of optimization algorithms to use and
test the three representations: a) the case of r-bounded in the
number of set partitions was included for the three repre-
sentations; b) procedures to generate a random element for
each representation were detailed; c) mechanisms to mutate
(do a small change) to one member for each representation
were provided; and d) recombination procedures for the three
representations were presented.

The use of the three representations combined with a sim-
ple genetic algorithm was presented to solve an instance of
PSIP. The main conclusions of this exercise are that: a) the
representation N is the best when the solution searched has a
large number of partitions; b) the representation S is the best

34624 VOLUME 9, 2021



J. Torres-Jimenez et al.: Three Representations for Set Partitions

when the solution searched has a small number of partitions;
c) the representation E has an average behavior in both cases
(when the solution searched has a large or small number of
partitions).

Is is expected that many researchers will be benefited from
the possibility of using the three representations to solve
particular instances of SPP. Finally, and reiterating, we have
to say that the representation with zero redundancy is S(k, v)
and the one with more redundancy is N(k). But, it seems that
the exploratory power of N(k) and E(k) is better than the
exploratory power of S(k). This fact suggests that it will be a
good alternative to use the representation based on factoradic
number system (E(k)), given that it seems to provide a bal-
ance between redundancy and exploratory power.
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