
Received January 21, 2021, accepted February 14, 2021, date of publication February 22, 2021, date of current version March 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3060856

Design and Implementation of an Ethernet-Based
Linear Motor Drive for Industrial
Transport Systems
SEUNG-YONG LEE1 AND MINYOUNG SUNG 2, (Member, IEEE)
1Korea Electronics Technology Institute, Seongnam-si 13509, South Korea
2Department of Mechanical and Information Engineering, University of Seoul, Seoul 02504, South Korea

Corresponding author: Minyoung Sung (mysung@uos.ac.kr)

This work was supported by the 2019 Research Fund of the University of Seoul.

ABSTRACT Ethernet-based motor drives are hard real-time control systems used to operate servomotors
through the industrial Ethernet. Recently, Ethernet-based drives have drawn attention as a solution for
industrial transport systems where numerous linear motor drives move magnetic shuttles individually or
collectively to accurately position production parts. This paper presents the design and implementation of an
Ethernet-based motor drive that enables delay analysis for synchronized motor actuation and sensing to build
a scalable and precise industrial transport system. Our software design constructs the drive function using
periodic tasks run by a rate-monotonic real-time scheduler and performs worst-case response analysis to
determine the end-to-end delay required for the control host to actuate or sense the motor in the drive. Based
on the calculated drive delays, clock-based I/O using Ethernet-provided global time realizes synchronized
motor operation across multiple drives. In the Ethernet-networked control system, different phases of the
host cycle with respect to the drive cycle can result in different actuation and sensing delays. To reduce the
delay, we propose a phase-shifted loop method and present a heuristic to find the best phase that minimizes
the normalized drive delays. Experimental results obtained using a prototype EtherCAT drive show that
the phase-shifted loop significantly reduces the difference between the commanded and feedback currents
while properly managing tracking errors. Performance evaluations are performed to investigate the impact of
different Ethernet technologies on delays. Elaborated delay models are developed for EtherCAT and Ethernet
Powerlink, and a comparative study of delay performance is conducted for various parameters, such as the
number of drives, the message size, the network topology, and the bandwidth.

INDEX TERMS Linear motor drives, industrial Ethernet, actuation and sensing delay, phase-shifted loop,
industrial transport systems.

I. INTRODUCTION
Ethernet-based motor drives are hard real-time embedded
control systems used to actuate and monitor one or several
servomotors through industrial Ethernet [1]–[7]. Owing to
the deterministic communication delay and clock synchro-
nization of industrial Ethernet [4], [8]–[12], they are widely
used in robotics andmanufacturing [6], [13]–[15]. Among the
numerous industrial Ethernet solutions, EtherCAT and Ether-
net Powerlink (EPL) are gaining ground in motion control
systems. By requiring modification at the Ethernet data-link

The associate editor coordinating the review of this manuscript and

approving it for publication was Najah Abuali .

layer, they ensure deterministic communication delays. In
EtherCAT, a special host integrates multiple messages into
a single Ethernet frame and circulates the frames in a daisy-
chained network. Frames are relayed by a hardware switch
at each device, so that the delivery time of the message is
almost deterministic. In EPL, deterministic communication is
realized by sharing the network using a time-divisionmultiple
access method and, as in EtherCAT, all communication is
controlled by a management host. Precise clock synchroniza-
tion is another important feature of industrial Ethernet and
enables highly synchronized operations between distributed
devices. The synchronized clock of EtherCAT, known as
Distributed Clock (DC), is very accurate and in many cases

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 33061

https://orcid.org/0000-0002-1670-6628
https://orcid.org/0000-0002-9777-9609


S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

has a deviation of only tens of nanoseconds. EPL uses the
IEEE 1588 Precision Time Protocol (PTP) for clock syn-
chronization and can easily provide accuracy in the sub-
microsecond range.

With the advent of smart factories, Ethernet-based drives
are drawing attention as a viable solution for industrial
transport systems where multiple linear motor drives move
magnetic shuttles individually or collectively to accurately
place production parts [16]–[18]. The industrial transport
system consists of a motion control host and several Ethernet-
connected motor drives. The control host maintains a cen-
tralized position loop for each shuttle and periodically sends
speed or torque commands to the drive to achieve coordinated
shuttle motion. Given the target velocity or torque input, each
drive computes a local loop and applies the appropriate cur-
rent to the associated coil to produce the desired torque. With
industrial Ethernet, deterministic communication allows the
calculation of the time required by the host to deliver a
message to each drive, and clock synchronization allows the
drives to operate simultaneously.

However, it is challenging to design a motor drive for
such linear-motor transport systems [3], [19]–[23]. First,
in order to achieve position repeatability in the micrometer
range and the shuttle speed in meters per second, the delay
required for the control host to operate the motor drive must
be minimized. Second, multiple drives must correctly and
simultaneously control one or more shuttles while avoiding
collisions between shuttles. For example, in an automotive
glass transportation system, multiple shuttles may need to
cooperate to move a single production part. This means that
all motor actuations in different drives must be synchronized
with the host command and must be performed when all
drives complete the computation. Finally, the scalability of
the transport system and the diversity of industrial Ether-
net increase the complexity of the drive design. Tens or
even hundreds of drives might be required for an industrial
transport system, where the arrival time of the host com-
mand on each drive affects the delay in drive operation and
depends on the Ethernet technology used, as well as various
parameters, such as the number of drives, the message size,
and topological location of the drive. Therefore, building a
scalable Ethernet-based transport system that supports high-
speed precision motion requires a systematic approach to
drive software design. It must minimize the drive delay while
ensuring synchronized motor actuation and sensing of all
drives. However, there have been few such studies addressing
how to analyze drive delays in Ethernet-basedmotion systems
and fully covering how to design software for synchronized
motion with minimized delay.

In this paper, we address the above design problem by
developing an Ethernet-based linear motor drive with a
sophisticated software design and Ethernet delay model,
which can be used as a building block for building a scalable
and highly responsive industrial transport system. Aimed at a
software architecture that enables delay analysis, our imple-
mentation constructs the drive function with several periodic

tasks run by a rate-monotonic fixed priority scheduler and
realizes synchronized motor actuation and sensing via clock-
based I/O. Based on the multitasked drive model, our design
performs worst-case response analysis to determine the delay
required for the control host to actuate or sense the motor in
the drive, and attempts to minimize the delay using our phase-
shifted loop method. In Ethernet-based transport systems, the
task that handles real-time messages in the drive is activated
when an Ethernet frame arrives, and the proposed drivemodel
reflects this using a task offset. The offset of the real-time
message task is calculated from the message delivery time
provided by the Ethernet delay model, which can be devel-
oped separately, depending on the Ethernet mechanism of
interest.

The drive delay covered in this study is expressed in terms
of actuation delay and sensing delay. Actuation delay refers
to the time interval from the start of a host cycle to motor
actuation in the drive; sensing delay is the interval from the
motor status read of the drive to the start of the next cycle.
Given the Ethernet message delivery time as input, the drive-
local delay required for motor actuation and sensing can be
obtained throughworst-case response analysis using the drive
task set. In a clock-synchronized networked control system,
different phases of the host cycle with respect to the drive
cycle can result in different actuation and sensing delays. The
phase-shifted loop method aims to reduce the delay based on
this. Our heuristic tries to find the phase that minimizes the
drive delay while ensuring synchronized motor actuation and
sensing across all drives. The algorithm iteratively computes
the delay for each drive to find the best host phase and, finally,
returns the determined phase along with the task offsets for
the clock-based input and output that produce the smallest
actuation and sensing delays.

The proposed phase search heuristic requires an Ether-
net delay model to determine the time it takes to deliver a
message from the host to the drive, and it is important to
know that the Ethernet technology and the related parameters
greatly affect the message delivery time and thus the drive
delay. In this paper, we present accurate delay models for
EtherCAT and EPL by considering the actual frame deliv-
ery mechanism. The delay in EtherCAT can be determined
relatively easily using the times taken for the transmission of
summation frames and the hardware-based frame relay at the
drive. In contrast, EPL has a complex model designed to take
into account the poll-based mechanism for exclusive network
access in different topologies (line and star). It is noteworthy
that the model includes the latest EPL extension, the poll-
response chaining (PRC) mechanism, which has been shown
in our experiments to significantly improve the drive delay
compared with the standard poll mode.

An EtherCAT motor drive that operates using a cyclic
torque command has been implemented to verify the trans-
port capability and to show improved performance. The
experimental results demonstrate that the phase-shifted loop
method reduces the difference between the commanded and
feedback currents, while properly managing tracking errors.

33062 VOLUME 9, 2021



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

In addition, with a comparative analysis of the drive delays
in EtherCAT and EPL, we discuss the impact of Ethernet
mechanisms on performance, and investigate the minimum
achievable delay, depending on various factors, such as net-
work topologies, message sizes, and network bandwidths.

Note that the scope of this paper covers only how to design
the drive software, not the motion control host, and how
to analyze the end-to-end delay relative to the host cycle
for motor actuation and sensing. To this end, we design
multitasked software that implements the drive function, and
develop a model that analyzes the response time of the drive
task and the message delay of industrial Ethernet. The chal-
lenge here is how to minimize the drive delay while ensuring
that all motor actuation and sensing on different drives are
synchronized with the control host. In this problem, shifting
the phase of the host cycle relative to the drive cycle can
reduce or increase the drive delay, and it is important to find
the best phase that provides the smallest possible delay. We
solve this problem with a phase search heuristic based on
Ethernet and task delay models. It is worth noting that our
phase search heuristic and delay analysis are general enough
to cover other linear-motor transport systems using different
industrial Ethernet technologies and different sets of drive
tasks.

This paper is organized as follows. In Section II,
we describe the background of industrial Ethernet and clock
synchronization. In Section III, we explain the structure of
the motor drive software and task design details. Section IV
presents the experimental results with both measurement and
analytical data, and Section V concludes the paper.

II. BACKGROUND
A. INDUSTRIAL ETHERNET AND CLOCK
SYNCHRONIZATION
Industrial Ethernet, as standardized by IEC 61784 and 61158-
2, has many attractive features for networked control systems,
including high transmission speed, and compatibility with
TCP/IP [1], [4], [5], [7], [24], [25]. Among numerous indus-
trial Ethernet solutions, EtherCAT and Ethernet Powerlink
are gaining increasing ground in precision applications such
as motion control systems. By requiring modification at the
Ethernet data-link layer, they ensure deterministic commu-
nication delays and support very short control cycles in the
microsecond range.

EtherCAT enables high-speed real-time communication
among networked devices by the use of summation frames
and hardware-based frame relays [4], [7], [25]–[28]. As
shown in Fig. 1 (a), EtherCAT has a master-slave control
structure in a ring topology at the physical level, where the
master controls traffic and initiates all transmissions. Each
slave, when receiving a message, processes it and forwards it
to the next connected slave. The basic message unit, called
a datagram in EtherCAT, contains a command that reads
and/or writes data at the addressed memory in slave devices.
When a message is relayed by a destined slave, the output or

FIGURE 1. Industrial Ethernet: (a) EtherCAT, (b) EPL in standard polling
mode, and (c) EPL in poll-response chaining mode. EtherCAT has a
master-slave control structure in a ring topology. It integrates multiple
messages into a single EtherCAT frame and circulates the frame in the
network. In EPL, a managing node controls all communication and the
network is shared among controlled nodes using time-division multiple
access. Poll-response chaining is an EPL extension to reduce protocol
overhead.

input data is, respectively, written on or read from the buffer
memory in the slave. By integrating multiple messages into a
single Ethernet frame and circulating frames in the network,
EtherCAT achieves very high bandwidth utilization. More-
over, since the frames are relayed by a hardware switch at
each device, themessage delivery time is almost deterministic
and, hence, it is possible to design a highly synchronized dis-
tributed system. Owing to the desirable features, EtherCAT
is currently being applied in various control applications,
including factory automation, robotic surgery, and production
machinery [23], [29]–[31].

EPL is an industrial Ethernet solution commonly used
in automation systems, ranging from simple I/O to com-
plex motion control applications [2], [6], [32]–[36]. EPL
messages are encapsulated in the standard Ethernet frames,
and different message types are defined, including start-of-
cycle, poll-request, poll-response, start-of-asynchronous, and
asynchronous-send. To enable deterministic communication,
the network is shared using a time-division multiple access
method and, as in EtherCAT, a special host called managing
node (MN) controls all communication. Fig. 1 (b) illustrates
a cycle in EPL. For each cycle, MN first multicasts a start-
of-cycle message to all other devices, known as controlled

VOLUME 9, 2021 33063



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

nodes (CNs) in EPL. This message synchronizes all CNs
and signals the start of a new isochronous phase. During the
isochronous phase, cyclic control messages are exchanged:
MN unicasts the poll-request message to each CN, and the
CN that receives the request immediately multicasts the poll-
response message to MN. Note that the request and response
messages carry the output and input data of MN, respectively.
An asynchronous phase then follows: MN multicasts a start-
of-asynchronous message and the MN or CN designated
by the message sends the asynchronous-send message that
contains a single asynchronous data.

The poll-response chaining (PRC) mechanism is a latest
EPL extension to improve performance. It aims to reduce
protocol overhead, especially in line topology when nodes
exchange small amounts of data. As shown in Fig. 1 (c),
instead of poll-request messages, a single poll-response mes-
sage is used by MN to carry all outputs to CNs, and is mul-
ticast immediately after the start-of-cycle message. In PRC
mode, the transmission of poll-response frames by each CN is
automated using preconfigured timers, such that consecutive
frames are separated from each other with minimum intervals
to avoid collisions.

The duration of the isochronous phase depends on many
factors, such as network topology, cyclic data size, and the
use of a PRC mechanism. Before starting a request poll,
MN has to wait for a predetermined time period to ensure
that all CNs receive and process the precedent frames. The
topology of an EPL network is basically either a line or
star, and the mandatory wait period differs depending on
the topology and/or CN position because the wait time is
determined by the propagation delay and round-trip time for
the CN. The line topology is preferable for factory transport
systems because the star topology using a hub switch has
cabling difficulties in the long-range connection condition.
However, the line topology has longer wait times compared
with the star topology due to the inherently increased hop
count. The exact calculations of wait times will be detailed
in Section IV, where we discuss the performance impact of
Ethernet technology.

Precise clock synchronization is a feature that is becom-
ing increasingly important in modern distributed control
systems [8], [9]. The globally synchronized clock, often
referred to as global time, enables highly synchronized
operations among distributed devices. The networked motor
drives in an industrial robot, for example, can utilize the
events from the synchronized clock to actuate their associated
motors synchronously, such that the rendered motion accu-
rately follows the desired trajectory. High-precision measure-
ment is another example, where distributed sensing devices
can synchronously latch input data based on the global
time [37].

One of themost attractive features of EtherCAT is the avail-
ability of a precisely synchronized clock, i.e., the DC [12],
[27], [28], [38]. The globally synchronized clock is very
accurate and, in many cases, it has a deviation of only tens of
nanoseconds. Basically, the DC-enabled slave that is closest

to the master acts as the timing reference for the entire net-
work. During the initialization phase, the master calculates
the offsets of slave-local clocks from the reference clock, and
delivers them to slaves. Using the offset, each slave can then
determine the global clock based on its local clock. After
initialization, the master periodically broadcasts the value of
the reference clock, with which slaves compensate the drift
of local oscillators.

In contrast, EPL has a simple mechanism to support only
isochronous operations [10], [39]. The start-of-cycle frame
is used as the basis for the common timing of all CNs. In
addition, the frame can optionally contain the network time
at the MN and, as a result, each CN can adjust its local
clock when receiving the frame. In industry, several Ether-
net solutions rely on the IEEE 1588 PTP to support clock
synchronization [40]; examples are Ethernet/IP and Profinet
IO. A PTP implementation can easily provide accuracy in the
sub-microsecond range [10]. In practice, EPL uses PTP for
synchronization, and it is planned to be included in future
standards [9].

B. RELATED WORKS
In recent years, numerous studies have examined the perfor-
mance of EtherCAT and EPL. Cena et al. [34] have con-
ducted a theoretical and simulation-based analysis for EPL
in different network configurations. An exhaustive analy-
sis of different performance indicators defined by the IEC
61784-2 standard has been carried out by Vitturi et al. [41]
for a coordinated motion control application scenario.
Knezic et al. [2], [32] provided a performance analysis
of the EPL PRC mechanism in linear and star topolo-
gies and have shown that PRC allows significant perfor-
mance improvement in comparison to the standard polling
mode.

Owing to the deterministic communication delay and clock
synchronization of industrial Ethernet, there have been efforts
to use Ethernet for motion control systems. Benzi et al. [23]
present an overall architecture for Ethernet-based electrical
drives. They describe communication solutions for single-
drive and multi-drive systems, and discuss a layered archi-
tecture that encompasses process levels for management as
well as real-time control. Several works propose Ethernet-
based motion control systems, for example, in applications of
lift control [33], computer numerical control (CNC) [6], and
robotics [42]. These studies, however, do not address how to
analyze the drive delays and, hence, enhance performance.
Kim et al. [3] have proposed a delay analysis applicable to
an EtherCAT-based motion control system. Using stochastic
analysis, they analyzed the end-to-end delay from message
release to motor actuation. Our work is distinguished from
theirs in the sense that while they focus on period synthesis
to minimize the periods of tasks for reduced actuation delays,
we present the software design to realize a deterministic and
synchronized motor drive in terms of both actuation and
sensing, and try to fully cover the design and implementation
of drive tasks.

33064 VOLUME 9, 2021



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

FIGURE 2. An industrial transport system consisting of a motion control
host and several linear motor drives connected via EtherCAT. The host
periodically sends a velocity or torque command to each drive, and each
drive applies current to the associated coil to produce the desired shuttle
motion. The drive additionally monitors shuttle status and sends the
shuttle position to the host.

III. ETHERNET-BASED LINEAR MOTOR DRIVE
A. LINEAR-MOTOR TRANSPORT SYSTEM
An industrial transport system consists of a motion con-
trol host and several Ethernet-connected linear motor
drives (Fig. 2). The control host maintains a centralized posi-
tion loop for each shuttle and periodically sends a velocity or
torque command to each motor drive to achieve coordinated
shuttle motion. Given the target velocity or torque input, each
drive operates a local loop and applies appropriate current to
the associated stator or coil to produce the desired torque.
Moreover, the drives use connected sensors to monitor shuttle
status, such as actual shuttle position, and send the collected
information to the host.

FIGURE 3. Organization of an EtherCAT-based motor drive, which
primarily consists of a processor core, a system timer, a Nested Vector
Interrupt Controller, an EtherCAT controller, and an SPI controller that
handles communication with power electronics.

Our target system is an EtherCAT-based motor drive con-
sisting of an embedded computing system and a power
electronics subsystem, as shown in Fig. 3. The hardware
organization of the computing system mainly consists of a
processor core, a system timer, a NestedVector Interrupt Con-
troller (NVIC), an EtherCAT controller, and an SPI controller

that handles communication with power electronics. The
power electronics part is responsible for converting the cur-
rent commanded by the processor into an analog signal and
determining the shuttle position from encoder signals. For the
EtherCAT slave controller, the motor drive uses a Microchip
Technology LAN9252 [43], which covers the physical and
data link layers of the communication stack, while the soft-
ware running on the processor handles the upper layers. The
NVIC provides a prioritized interrupt mechanism to improve
processor performance and reduce interrupt latency. The pri-
ority consists of a group priority for preemption between dif-
ferent interrupts, and a sub-priority that determines the order
of execution between interrupts with the same group priority.
However, the NVIC does not support flexible access to shared
resources and can cause priority inversion [44]. In a motor
driving system, multiple interrupt service routines (ISRs)
must use shared resources, such as encoders, sensors, and data
buffers communicated with the control host.

Thus, our design uses a real-time operating system with
mutex that supports the priority inheritance protocol [44].
The processor core runs the lightweight real-time kernel
and multiple periodic tasks, which are detailed later in this
section. Each ISR is associated with a dedicated task and
activates the task on each invocation. In the drive, this is
implemented utilizing the semaphore primitives, sem_release
and sem_acquire, provided by the real-time operating system
we use. The real-time kernel provides hardware independence
and portability benefits, but the problem is that the start time
of critical task instances can be affected by the ISR for lower
priority task instances. To cope with this problem and ensure
very periodic servo activation, the operating system has been
extended to support no-preempt switching. Interrupts that
release a no-preempt task are set to the highest priority in
the system, and the switch interrupt is assigned the second
highest priority. When an ISR wakes up the no-preempt task,
interrupts remain disabled even after the context switch is
complete, preventing other ISRs from preempting during the
transition. After applying this, the activation jitter of the servo
task was reduced from 1.09 µs to 6.9 ns.

B. DRIVE TASK DESIGN FOR DETERMINISTIC MOTOR
OPERATION AND MINIMIZED DELAY
Aimed at a software architecture that enables delay analysis,
the drive function has been constructed with several periodic
tasks running on a real-time operating system. In our drive
software design, we assumed that all tasks arrive periodi-
cally and are scheduled by a rate-monotonic fixed priority
scheduling algorithm [45]. Tasks with shorter periods are
assigned higher priorities, and tasks with the same priority
are scheduled in a round-robin fashion. The task model is
a set of periodic tasks τj, denoted by the set of parameters
τj(Tj,Oj,Cj,Bj, Jj); Tj is the period of task τj, which is fixed;
Oj is the fixed offset of τj, which is the release time of the
first instance of τj (0 ≤ Oj < Tj); Cj is the worst case
execution time of τj; Bj is the blocking factor, representing
the worst-case time by which τj can be delayed to acquire the

VOLUME 9, 2021 33065



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

semaphores already locked by lower priority tasks; and Jj is
a bounded delay between task arrival and release.

With the taskmodel described above, we have five periodic
tasks in each drive, namely, τj = {τsrv, τsin, τsou, τeth, τmsc}.
The servo task τsrv executes an integrated control loop for
the torque and velocity commands. Because this task has
a stringent requirement of release jitter and usually has the
shortest period in the drive, it is assigned the highest priority
and set to no-preempt. Tasks τsou and τsin are responsible
for synchronous actuation and sensing, respectively, where
τsou outputs the data produced by τsrv and ensures that the
intended current flows through the coil. Similarly, τsin reads
the shuttle position and prepares for transfer to the host. In
addition, τeth runs the protocol stack for real-time Ethernet
messaging. Activated by the arrival of an Ethernet frame, this
task extracts the host command and stores it in a memory
area shared with τsrv. Tasks τeth and τsrv access the shared
memory mutually exclusively by using a semaphore. Addi-
tionally, τeth is responsible for delivering the shuttle position
updated by τsin, and τmsc is the lowest priority task performing
other jobs, such as processing of non-real-time messages
for drive configuration and monitoring [46]–[48]. Hereafter,
τ ij (T

i
j ,O

i
j,C

i
j ,B

i
j, J

i
j ) refers to the parameters of task j in drive

i, where 1 ≤ i ≤ n and j ∈ {srv, sin, sou, eth,msc}.
For notational convenience, τj(Tj,Oj,Cj,Bj, Jj) represents
the parameters of task j in any of the drives. Our design
is general enough that drives can have different parameter
values but, for simplicity, we assume identical values unless
otherwise stated.

In this paper, we address the drive operation delays in
terms of actuation delay and sensing delay. The first metric is
defined as follows.
Definition 1: The actuation delay, denoted by δact ,

is defined as the time between the start of a control cycle on
the host, and motor actuation on the drive.

With industrial Ethernet, we can determine Oieth as the
message delay for drive i, which is the time required for
the host to deliver a message to the drive. Notably, Oieth
may vary depending on the Ethernet technology used and the
topological location of the drive. Additionally, the message
size and number of drives may affect Oieth. Based on the
task and message delay models, we analyze the worst-case
response time for τ ieth and obtain f isrv, the completion time of
τ isrv arriving after completion of τ ieth.
Once the τsrv’s in all drives are completed, synchro-

nized actuation can be achieved via synchronous output.
Our design executes the τsou’s of all drives simultaneously
using global time. This is equivalent to setting Osou to
the same predetermined value, with δact minimized when
Osou = max1≤i≤n f isrv.
The second delay metric for an Ethernet-based motor drive

is aimed at measuring the freshness of drive data observed by
the control host, which is defined as follows.
Definition 2: The sensing delay, δsen, is defined as the time

between the motor status read by the drive, and the start of
the next host cycle.

Similar to motor actuation, status sensing in the drive is
performed synchronously by the τsin tasks, which are released
with the same offset. The larger the offset, the smaller the
sensing delay. Because each τsin must be completed before
the Ethernet frame arrives, δsen is minimized when Osin is
maximized while satisfying f isin ≤ O

i
eth,∀i, 1 ≤ i ≤ n, where

f isin denotes the completion time of τsin.

FIGURE 4. Actuation (δact ) and sensing (δsen) delays of drive i . Shifting
the relative phase of the host cycle with respect to the drive cycle may
result in different δact and δsen. The figure shows a case of decreased δact
with a phase shift of φ.

In a clock-synchronized system, shifting the relative phase
of the host cycle with respect to the drive cycle can result
in different δact and δsen minimums. Fig. 4 shows the case
where δact decreases when the phase shifts by φ. Let Thost
denote the host period. With the normalized delay δ defined
as δ = αδact + (1 − α)δsen, 0 ≤ α ≤ 1, our design attempts
to find φ(0 ≤ φ < Thost ) that minimizes δ for a given α.

To calculate the worst-case response time, we adopted the
analysis from a previous study [49], [50]. For each individual
task with fixed offset and release jitter, we compute the
worst-case response time within the hyperperiod, where the
hyperperiod of τj is calculated as the least common multiple
of all higher-priority tasks, including τj. All task instances of
any higher-priority task τk can be divided into three sets at
the time τj is released. The worst-case response time is then
determined by calculating the amount of interference for the
three sets for every instance of τk within the hyperperiod [49].

Table 1 summarizes the heuristic for finding the best
phase. The input is a periodic task set (τhost , τ isrv, τ

i
sin, τ

i
sou,

τ ieth), where τhost is the task running on the control host.
The heuristic tries to find the host phase φ∗ that minimizes
the normalized delay by repeatedly computing δact and δsen
while increasing φ, and finally returns (δ∗, φ∗, O∗sou, O

∗
sin),

where δ∗ is the minimum of the normalized delay; and O∗sou
and O∗sin, respectively, are the offsets producing the smallest
actuation and sensing delays with φ∗. FindWCRT(τ1, . . . , τj)
calculates the worst-case response time of τj by applying the

33066 VOLUME 9, 2021



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

TABLE 1. Phase search heuristic.

abovementioned analysis to a given set of tasks (τ1, . . . , τj),
which are listed in decreasing order of priority. The while
loop in lines 2–30 is the main loop for finding φ∗, which is
obtained by repeatedly evaluating δ for various φ from zero
to Thost . This loop first updates the message arrival times
Oieth’s based on φ and the topological drive position (lines
4–6). CalcEthOffset(i, n) calculates Oieth and is described in
detail subsequently with real Ethernet technologies. With the
updatedOieth’s, the loop then computes the completion time of
τ isrv for each drive i (lines 8–11) to obtain the minimum pos-
sible δact (line 12). Next, we find the minimum sensing delay.
Thewhile loop on lines 15–21 calculates the completion time
of τsin (line 16) and compares it with the earliest frame arrival
time of the drives (line 17). It then attempts to determine
the maximum allowable Osin by repeating the loop while
increasing Osin and exiting if τsin is not completed before
the frame arrives. The minimum δsen is obtained according to
line 22. Next, with the computed δact and δsen, the normalized
delay δ is calculated and compared with the smallest δ∗ thus
far. If the current φ improves δ∗, it sets δ∗ to δ and updates
φ∗, O∗sou, and O

∗
sin (lines 25–28).

C. ETHERNET MESSAGE DELAYS
The Ethernet message delay can be analyzed by considering
the actual message delivery mechanism. This section presents

FIGURE 5. Message delay Oi
eth in (a) EtherCAT and (b) EPL. In EtherCAT,

tsw is the switching delay for the frame relay in each drive, and ttran is
the frame transmission time. In EPL, an isochronous phase consists
mainly of tsync and tpoll , which represent the synchronization and poll
periods, respectively.

the message delay models in EtherCAT and EPL, respec-
tively, and describes the calculation of Oieth for each drive i,
1 ≤ i ≤ n.
In EtherCAT, the master or the control host integrates

all messages for a cycle into one or more Ethernet frames
and circulates the frames in the line-topology network. The
frames traverse every drive and eventually return to the host
after reaching the end of the network. Fig. 5(a) illustrates
Oieth, the message delay for drive i, where tsw is the switching
delay for the frame relay in each drive, and ttran is the time
required for frame transmission. Thus, Oieth in EtherCAT can
be calculated as

Oieth = i× tsw + ttran. (1)

Owing to hardware-based switching, tsw is very small,
approximately 0.5 µs for the controller used in the experi-
ment [43], but if the number of drives is very large, the accu-
mulated tsw becomes significant for drives near the network
end.

VOLUME 9, 2021 33067



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

The Oieth in an EPL isochronous phase is shown in
Fig. 5(b) when using standard polls and PRC, respectively,
in a line topology. In the figure, tsoc, tpreq and tpres denote
the time required to transmit frames for start-of-cycle, poll-
request and poll-response, respectively. The duration of an
isochronous phase is the sum of tsync and tpoll , the time
required for the synchronization and poll periods, respec-
tively. The term tsync is calculated as

tsync = tsoc + twt .

The mandatory wait time twt is to ensure that all CNs, i.e.,
all drives, receive and process the start-of-cycle message. In
standard polling mode, tpoll is written as tpoll =

∑n
i=1 t

i
poll ,

where t ipoll represents the time taken for the request and
response polls with drive i, expressed as t ipoll = tpreq+ tpres+
t irtt+ tr , 1 ≤ i ≤ n. The term t irtt is the round-trip time of drive
i, and tr is the node response time. Thus, tpoll can be written
as

tpoll =
n∑
i=1

t ipoll =
n∑
i=1

(
tpreq + tpres + t irtt + tr

)
= n

(
tpreq + tpres + tr

)
+

n∑
i=1

t irtt . (2)

Note that t irtt includes the propagation and hub repetition
delays and varies greatly depending on the topology. Without
loss of accuracy, we ignore the propagation delay (approxi-
mately 5 ns/m) because it is very small compared to the hub
delay (approximately 500 ns). Let th denote the hub delay.
Based on the argument of the round-trip delay [2], t irtt can
then be written as t irtt = (2i− 1)th + tr for line topology, and
as t irtt = 2th + tr for star topology. Let t0poll = 0. In standard
polling mode, Oieth of EPL is then obtained as

Oieth = tsync +
i−1∑
k=0

tkpoll + tpreq + t
i
h, (3)

where t ih = (i− 1)× th for line topology, and t ih = th for star
topology.

In PRC mode, thpres represents the time required to transmit
a poll-response by theMN or the motion host, which contains
all outputs to drives. Then tpoll can be expressed as

tpoll = thpres + n× (tpres + tifg)+ tnrtt + tr . (4)

Note that consecutive poll-response frames are generated
with the minimum interval required to avoid collisions, i.e.,
an Ethernet inter-frame gap, of which the value is denoted
by tifg. It holds that thpres ≤ n× tpreq and that tnrtt ≤

∑n
i=1 t

i
rtt .

Thus, from Eqs. (2) and (4), the gain of reduced tpoll in PRC
mode is expected to be best in situations where the message
size is relatively small and line topology is employed. The
message delay Oieth in PRC mode is given by

Oieth = tsync + thpres + t
i
h. (5)

TABLE 2. Calculation of Oi
eth with drive position (i ) and number of

drives (n).

Putting the above descriptions together, CalcEthOffset(i,
n) in Table 2 shows the procedure to calculate Oieth in
EtherCAT and EPL, respectively. While EtherCAT assumes
a line topology (LINE), EPL additionally includes a star
topology (STAR) and takes into account the polling mode
used, i.e., standard mode (STD) or poll-response chaining
mode (PRC). For EPL, assuming that ‘‘autoresponse’’ is used,
we estimate tr as tr = 1 µs.1

IV. PERFORMANCE EVALUATION
This section validates the drive software design and evalu-
ates the performance. We implemented an EtherCAT motor
drive operating with periodic torque commands. Using the
prototype drive, we verify the effectiveness of the task phase
shift and examine the position tracking errors. In addition,

1The node response time tr can be reduced using a hardware-assisted
frame processing mechanism, called autoresponse, available on the network
interface. A preconfigured mask automatically triggers the transmission of a
prepared frame when it receives a frame that meets the filter conditions.

33068 VOLUME 9, 2021



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

FIGURE 6. An experimental testbed built up with a PC-based control host
and a group of linear motor drives interconnected by EtherCAT in line
topology. A motion controller is set up using RTAI-patched Linux and IgH
EtherCAT master stack. LinuxCNC is used to generate motion trajectories.
The experimental system achieves desired shuttle movements by
controlling motor drives through EtherCAT-based communication of
real-time process data.

we discuss the impact of Ethernet technologies and investi-
gate drive delays for different network topologies, message
sizes, and network bandwidths.

A. EXPERIMENTAL SETUP
For the evaluation of the proposed software design, we built
up an experimental testbed with a PC-based control host and
several linear motor drives interconnected by EtherCAT in
line topology. Fig. 6 shows the testbed. A motion controller
was set up using RTAI-patched Linux [51], [52] and an
IgH EtherCAT master stack [27], [29], [53], [54]. As the
host control software, we use LinuxCNC [6], [14], [55],
[56] to generate motion trajectories. Because LinuxCNC
has a component-based structure, it is possible to inte-
grate new drives into an existing motion control system by
developing the periodic input and output interfaces [57].
This, in our case, corresponded to the implementation of
an EtherCAT messaging component that complies with the
CiA 402 standard drive profile [58]. The experimental system
achieves desired shuttle movements by controlling motor
drives through EtherCAT-based communication of real-time
process data. Table 3 summarizes the specifications of the
hardware and software used in the experiment.

Based on the prototype drive hardware, we measured the
values of task parameters, such as execution times, block-
ing factors, and release jitters. The measurement results of
τj(Tj,Oj,Cj,Bj, Jj) are listed in Table 4. In addition to pure
task execution time,Cj includes the time overhead for context
switching and semaphore operations with ISRs associated
with τj. Also note that τsrv is very sensitive to activation jitter,
so it was set up as a no-preempt task, and the ISR that releases
τsrv was assigned the highest priority. For measurements, the
drive software was instrumented to output a signal to the
debug port at the event of interest, and the time between
events was observed and recorded using an oscilloscope.

TABLE 3. Details of motion control system.

TABLE 4. Measured values of task parameters.

Measurements were collected for 10 min for each τj, and
a cold reset was applied to the drive prior to conducting
each experimental trial. The experiment was repeated for a
message size Smsg of 24 and 100 bytes. With the host period
Thost given, the offsets, Oeth, Osin, and Osou can then be
computed by the heuristics in Table 1 and Table 2. Notice that
Oeth may vary depending on the drive number; our heuristic
takes this value into account to determine Osin and Osou.

B. PHASE-SHIFTED LOOP
In experiments involving the drive, we first evaluated the
performance of task phase shift and measured the current
errors when the host phase is shifted according to the pro-
posed algorithm. The control host was set up to generate a
1–10 Hz sine wave current with an amplitude of 1000 mA
and send a command every 1 ms using EtherCAT. Then, with
the host command as input, the drive outputs the commanded
current to its associated coil. Additionally, the drive reports
the current feedback to the host. We measured the target and
actual currents on the host and calculated the absolute value of
the difference as the error. Measurement data were collected
for 10000 cycles after 5 min of warm up.

It has been observed that the phase-shifted loop signif-
icantly reduces the error. Fig. 7 shows a plot of the mea-
sured values for a 2-Hz sine current. When no phase shift
was applied (φ = 0), the mean error was 33.64 mA, the
standard deviation was 3.11 mA, and the maximum error
was 103 mA. By contrast, when the host phase was shifted
by 660 µs (φ = 660), which is the best phase analyzed with
α = 0.6, the mean and standard deviation decreased to 26.43
and 2.01 mA, respectively. The maximum error was 99 mA.

VOLUME 9, 2021 33069



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

FIGURE 7. Target and actual currents measured on the control host. The
host produces a sine current and sends a target current every 1 ms. The
drive actuates the commanded current and reports the current feedback
to the host. The error, defined as the difference between the target and
actual currents, is shown to decrease at φ = 660 µs, the best phase
obtained from the heuristic.

TABLE 5. Measurement results of current errors.

The results are summarized in Table 5. Note that in the
experiment, all host and drive tasks were scheduled using
EtherCAT global time, so that the intended offsets for τ isou
and τ isin could be realized by configuring the DC interrupts of
drive i to occur with the desired phases. In Fig. 7, significant
improvements can be seen in samples of around 150, 600 and
1100. The experimental results indicate that the phase shift
reduced the mean error by up to 21.4%.

To verify and demonstrate the transport capability of the
drive, we examined positioning errors while moving the shut-
tle. Position tracking error, defined as the difference between
the actual position and the target position, was measured for
two movement cases: low-speed movement within a drive,
and high-speed movement between drives. For intra-drive
movement, the shuttle was made to reciprocate repeatedly
in a 220-mm section within the range controlled by a drive.
Tracking errors were measured for average shuttle speeds
of 5, 10, and 15 cm/s. For the case of inter-drive movement,
the shuttle repeated high-speed reciprocating motions in a
straight 3120-mm section. Here, the shuttle was driven by
individual or cooperative propulsion of coils, each controlled
by a separate motor drive. A total of five drives were used
in the experiment. Tracking errors were measured for shuttle
speeds of 1, 1.5, and 2 m/s. The control host was set up to
calculate the required trajectory and send a torque command
to the drive every 1 ms.

The measurement results of position tracking errors are
shown in Table 6. For inter-drive shuttle movement, the

FIGURE 8. Tracking errors and position profiles. (a) Position tracking
errors for intra-drive movement (5 cm/s) and inter-drive movement (1
m/s), and (b) target and actual position profiles at shuttle speeds
of 2 m/s (upper figure) and 15 cm/s (lower figure), respectively. It can be
observed that tracking errors are properly managed and that the target
and actual positions closely match.

TABLE 6. Measurement results of position tracking errors.

average tracking error was measured in the millimeter range,
and an error of up to 39.223 mm was observed at a velocity
of 2 m/s. In contrast, for intra-drive movement, it has been
found that the average tracking error remains below 1 mm
for all speed profiles. The maximum and standard deviation

33070 VOLUME 9, 2021



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

FIGURE 9. Normalized delay δ∗ (Thost = 1 ms) and minimum possible delay 1∗ according to number of drives. EtherCAT produces a relatively small delay
throughout the experiment, whereas in standard polling mode, EPL delay increases significantly as the number of drives or message size increases in
a 100 Mbps network. For EPL, we can see that star topology and/or poll-response chaining significantly improve delay performance.

VOLUME 9, 2021 33071



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

of the tracking error showed similar values regardless of the
shuttle speed. Fig. 8 shows the tracking errors and position
profiles. It can be observed that tracking errors are properly
managed. As can be seen in Fig. 8(a), the tracking error is
kept low when the shuttle moves at low speeds. For a shuttle
speed of 5 cm/s, the tracking error remains small throughout
themovement, and the peak is 3.462mm. Themaximum error
increases to 13.859 mm in the 1 m/s high-velocity profile.
From the results in Fig. 8(b), we can see that the target
and actual position profiles closely match in both movement
cases.

C. ACTUATION AND SENSING DELAY
To investigate the effect of different Ethernet mechanisms on
performance, we analyzed and compared the drive delays in
EtherCAT and EPL. Fig. 9 shows the experimental results
and plots the normalized delay δ∗ and the minimum possible
delay 1∗ according to the number of drives n. The task
parameter values in Table 4 were used for the experiment. For
δ∗, we used the host period Thost of 1 ms. For 1∗, we first
determined the smallest host period with the given number
of drives and Ethernet technology, and then ran the heuristic
with the period to get the minimum possible delay 1∗.
From δ∗ in Fig. 9, we can see that EtherCAT produces

a relatively small delay throughout the experiment, whereas
in standard polling mode, EPL delay increases significantly
as the number of drives or message size increases in a line-
topology network. On the other hand, EPL in PRC mode
using a star topology always showed the lowest delay in all
cases, demonstrating the notable performance benefits of the
latest EPL extension.We see that this is because the hub delay
in the star topology is kept small and is not affected by the
number of drives. Fig. 9 (a) shows that in standard polling
mode using a 100Mbps line-topology network, themaximum
n allowed is 25 and the corresponding δ∗ is 849.19 µs,
as opposed to 548.19 µs for PRC mode in star topology.
The delay 1∗ in Fig. 9 illustrates the effect of the number

of drives on the minimum achievable delay with EtherCAT
and EPL. It was found that EtherCAT can control more
than 100 drives with Thost = 1 ms at 100 Mbps and has
the lowest 1∗ in all cases. However, in the line-topology
standard polling EPL network,1∗ also increased rapidly with
increasing n. This is because each EtherCAT slave reads or
writes datagram and then passes it to the next slave imme-
diately, whereas EPL messages are exchanged sequentially
between the MN and CNs. It is also notable that at a 1-Gbps
bandwidth, the minimum feasible cycle for n ≤ 50 is less
than 200 µs in all cases except for the standard polling EPL
in the line topology.

In EPL with the standard polling mode, we can see that the
network topology has a significant impact on the drive delay.
Both δ∗ and 1∗ of EPL always had lower values in the star
topology than in the line topology. However, the line topology
is preferable for factory transport systems. The star topol-
ogy is relatively more expensive to install when construct-
ing the network and has difficulties in network management

and reconfiguration. In particular, for an industrial transport
system requiring tens or hundreds of drives, cabling in star
topology may not be a feasible solution. Thus, given the
number of drives and the cycle time requirement, the topology
should be carefully determined taking into account the trade-
off between the delay performance and management costs.

It should be noted that the PRC mechanism, the new EPL
standard feature, significantly improves the delay perfor-
mance. As can be seen from δ∗ in Fig. 9, PRC reduces the
EPL delay for all message sizes and topologies. In particular,
it is important to observe that PRC improves EPL to have
comparable performance in line topology, given that the line
is the best topology for a factory transport system. It was
found that in star topology, EPL using PRC even outperforms
EtherCAT. This contrasts with previous findings that Ether-
CAT has the highest throughput and the shortest round-trip
delay among industrial Ethernet standards. However, Ether-
CAT has smaller feasible host cycles than EPL, and thus still
has smaller minimum delays, which is shown by 1∗ in the
figure.

V. CONCLUSION
This paper has proposed a systematic approach to designing
Ethernet-based drives for synchronized motor operation with
minimized delay. For the target system, we construct the drive
function with several periodic tasks run by a rate-monotonic
real-time scheduler and realize synchronized actuation and
monitoring via global time-based I/O. In order to minimize
the delay required for the control host to actuate or sense
the motor in the drive, we proposed the phase-shifted loop
method and presented a heuristic for finding the best phase.
We experimentally evaluated the performance of the phase-
shifted loop and conducted a comparative study of delay
performance with EtherCAT and EPL for various parameters,
such as the number of drives, the message size, the network
topology, and the bandwidth. The contribution and major
results of the paper can be summarized as follows.

• The paper proposed the design of an Ethernet-based
linear motor drive that enables end-to-end delay analysis
for synchronized motor actuation and sensing in indus-
trial transport systems.

• The paper proposed a phase-shifted loop method and
presented a heuristic to find the best phase that mini-
mizes drive delay while ensuring synchronized motor
operation across all drives. The performance was veri-
fied experimentally, and the results show that the phase
shift could reduce the average current error by up
to 21.4%.

• We investigated the impact of Ethernet technology and
compared the minimum delays of EtherCAT and EPL.
Notably, the new EPL extension, the PRC mechanism,
has been shown to significantly reduce EPL delays and
provide comparable performance in line topology, while
EtherCAT has smaller feasible host cycles than EPL, and
thus still has smaller minimum delays.

33072 VOLUME 9, 2021



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

In our future research, wewill study how to further improve
the drive delay by considering different software design and
applying other Ethernet mechanisms to motor drives.

REFERENCES
[1] S. Wang, J. Ouyang, D. Li, and C. Liu, ‘‘An integrated industrial Ethernet

solution for the implementation of smart factory,’’ IEEE Access, vol. 5,
pp. 25455–25462, 2017.

[2] M. Knezic, B. Dokic, and Z. Ivanovic, ‘‘Theoretical and experimental
evaluation of Ethernet powerlink PollResponse chaining mechanism,’’
IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 923–933, Apr. 2017.

[3] K. Kim, M. Sung, and H.-W. Jin, ‘‘Design and implementation of a delay-
guaranteed motor drive for precision motion control,’’ IEEE Trans. Ind.
Informat., vol. 8, no. 2, pp. 351–365, May 2012.

[4] L. Seno, S. Vitturi, and C. Zunino, ‘‘Real time Ethernet networks evalua-
tion using performance indicators,’’ in Proc. IEEE Conf. Emerg. Technol.
Factory Autom., Sep. 2009, pp. 1–8.

[5] B. M. Wilamowski and J. D. Irwin, Industrial Communication Systems.
Boca Raton, FL, USA: CRC Press, 2016.

[6] K. Erwinski, M. Paprocki, L. M. Grzesiak, K. Karwowski, and
A. Wawrzak, ‘‘Application of Ethernet powerlink for communication in a
linux RTAI open CNC system,’’ IEEE Trans. Ind. Electron., vol. 60, no. 2,
pp. 628–636, Feb. 2013.

[7] D. Jansen and H. Buttner, ‘‘Real-time Ethernet: The EtherCAT solution,’’
Comput. Control Eng., vol. 15, no. 1, pp. 16–21, Feb. 2004.

[8] A. Mahmood, R. Exel, H. Trsek, and T. Sauter, ‘‘Clock synchronization
over IEEE 802.11—A survey of methodologies and protocols,’’ IEEE
Trans. Ind. Informat., vol. 13, no. 2, pp. 907–922, Apr. 2017.

[9] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino, ‘‘Syn-
chronize your watches: Part I: General-purpose solutions for distributed
real-time control,’’ IEEE Ind. Electron. Mag., vol. 7, no. 1, pp. 18–29,
Mar. 2013.

[10] G. Cena, I. Cibrario Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,
‘‘Synchronize your watches: Part II: Special-purpose solutions for dis-
tributed real-time control,’’ IEEE Ind. Electron. Mag., vol. 7, no. 2,
pp. 27–39, Jun. 2013.

[11] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino, ‘‘On
the accuracy of the distributed clock mechanism in EtherCAT,’’ in Proc.
IEEE Int. Workshop Factory Commun. Syst. Proc., May 2010, pp. 43–52.

[12] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,
‘‘Evaluation of EtherCAT distributed clock performance,’’ IEEE Trans.
Ind. Informat., vol. 8, no. 1, pp. 20–29, Feb. 2012.

[13] P. Cronin, F. S. Hosseini, and C. Yang, ‘‘A low overhead solution to resilient
assembly lines built from legacy controllers,’’ IEEE Embedded Syst. Lett.,
vol. 10, no. 3, pp. 103–106, Sep. 2018.

[14] E. Wings, M. Müller, and M. Rochler, ‘‘Integration of real-time Eth-
ernet in LinuxCNC,’’ Int. J. Adv. Manuf. Technol., vol. 78, nos. 9–12,
pp. 1837–1846, Jun. 2015.

[15] K. Wang, C. Zhang, X. Xu, S. Ji, and L. Yang, ‘‘A CNC system based on
real-time Ethernet and windows NT,’’ Int. J. Adv. Manuf. Technol., vol. 65,
nos. 9–12, pp. 1383–1395, Apr. 2013.

[16] J. F. Gieras, Z. J. Piech, and B. Tomczuk, Linear Synchronous Motors:
Transportation and Automation Systems. Boca Raton, FL, USA: CRC
Press, 2016.

[17] S.-Y. Chen, H.-H. Chiang, T.-S. Liu, and C.-H. Chang, ‘‘Precision motion
control of permanent magnet linear synchronous motors using adaptive
fuzzy fractional-order sliding-mode control,’’ IEEE/ASME Trans. Mecha-
tronics, vol. 24, no. 2, pp. 741–752, Apr. 2019.

[18] K. Sato, M. Katori, and A. Shimokohbe, ‘‘Ultrahigh-acceleration moving-
permanent-magnet linear synchronous motor with a long working range,’’
IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 307–315, Feb. 2013.

[19] W. Geelen, D. Antunes, J. P. M. Voeten, R. R. H. Schiffelers, and
W. P. M. H. Heemels, ‘‘The impact of deadline misses on the control per-
formance of high-endmotion control systems,’’ IEEE Trans. Ind. Electron.,
vol. 63, no. 2, pp. 1218–1228, Nov. 2016.

[20] Y. Kim, I. Kim, I. Kang, T. Kim, and M. Sung, ‘‘Formal modeling and ver-
ification of motor drive software for networked motion control systems,’’
J. Universal Comput. Sci., vol. 20, no. 14, pp. 1903–1925, 2014.

[21] K. Kozlowski, M. Kowalski, M. Michalski, and P. Parulski, ‘‘Universal
multiaxis control system for electric drives,’’ IEEE Trans. Ind. Electron.,
vol. 60, no. 2, pp. 691–698, Feb. 2013.

[22] G. Gu, L. Zhu, Z. Xiong, and H. Ding, ‘‘Design of a distributed multiaxis
motion control system using the IEEE-1394 bus,’’ IEEE Trans. Ind. Elec-
tron., vol. 57, no. 12, pp. 4209–4218, Dec. 2010.

[23] F. Benzi, G. S. Buja, and M. Felser, ‘‘Communication architectures for
electrical drives,’’ IEEE Trans. Ind. Informat., vol. 1, no. 1, pp. 47–53,
Feb. 2005.

[24] M. Felser, ‘‘Real time Ethernet: Standardization and implementations,’’ in
Proc. IEEE Int. Symp. Ind. Electron., Jul. 2010, pp. 3766–3771.

[25] J. Jasperneite, M. Schumacher, and K. Weber, ‘‘Limits of increasing the
performance of industrial Ethernet protocols,’’ in Proc. IEEE Conf. Emerg.
Technol. Factory Autom. (EFTA), Sep. 2007, pp. 17–24.

[26] T. Maruyama and T. Yamada, ‘‘Communication architecture of EtherCAT
master for high-speed and IT-enabled real-time systems,’’ in Proc. IEEE
20th Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2015, pp. 1–8.

[27] EtherCAT Technology Group. Ethernet for Control Automation Technol-
ogy. Accessed: Feb. 2021. [Online]. Available: http://www.ethercat.org

[28] BECKHOFF. (2017). Sheet-ET1100, Hardware Data Sheet Version
2.0. [Online]. Available: https://download.beckhoff.com/download/
Document/io/ethercat-development-products/ethercat_et1100_datasheet
_v2i0.pdf

[29] M. Cereia, I. C. Bertolotti, and S. Scanzio, ‘‘Performance of a real-time
EtherCAT master under linux,’’ IEEE Trans. Ind. Informat., vol. 7, no. 4,
pp. 679–687, Nov. 2011.

[30] R. Ramesh, S. Jyothirmai, and K. Lavanya, ‘‘Intelligent automation of
design and manufacturing in machine tools using an open architecture
motion controller,’’ J. Manuf. Syst., vol. 32, no. 1, pp. 248–259, Jan. 2013.

[31] M. Sung, I. Kim, and T. Kim, ‘‘Toward a holistic delay analysis of Ether-
CAT synchronized control processes,’’ Int. J. Comput. Commun. Control,
vol. 8, no. 4, pp. 608–621, 2013.

[32] M. Knezic, B. Dokic, and Z. Ivanovic, ‘‘Performance analysis of the
Ethernet powerlink PollResponse chaining mechanism,’’ in Proc. IEEE
World Conf. Factory Commun. Syst. (WFCS), May 2015, pp. 1–4.

[33] A. Soury, M. Charfi, D. Genon-Catalot, and J.-M. Thiriet, ‘‘Performance
analysis of Ethernet powerlink protocol: Application to a new lift system
generation,’’ in Proc. IEEE 20th Conf. Emerg. Technol. Factory Autom.
(ETFA), Sep. 2015, pp. 1–6.

[34] G. Cena, L. Seno, A. Valenzano, and S. Vitturi, ‘‘Performance analy-
sis of Ethernet powerlink networks for distributed control and automa-
tion systems,’’ Comput. Standards Interface, vol. 31, no. 3, pp. 566–572,
Mar. 2009.

[35] L. Seno, S. Vitturi, and C. Zunino, ‘‘Analysis of Ethernet powerlink
wireless extensions based on the IEEE 802.11 WLAN,’’ IEEE Trans. Ind.
Informat., vol. 5, no. 2, pp. 86–98, May 2009.

[36] L. Seno and S. Vitturi, ‘‘A simulation study of Ethernet powerlink net-
works,’’ in Proc. IEEE Conf. Emerg. Technol. Factory Autom. (EFTA),
Sep. 2007, pp. 740–743.

[37] P. Ferrari, A. Flammini, D. Marioli, and A. Taroni, ‘‘A distributed instru-
ment for performance analysis of real-time Ethernet networks,’’ IEEE
Trans. Ind. Informat., vol. 4, no. 1, pp. 16–25, Feb. 2008.

[38] D. Orfanus, R. Indergaard, G. Prytz, and T. Wien, ‘‘EtherCAT-based plat-
form for distributed control in high-performance industrial applications,’’
in Proc. 18th IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
2013, pp. 1–8.

[39] Ethernet Powerlink Communication Profile Specification, Version 1.4.0,
E. P. S. Group, New Delhi, India, 2018.

[40] J. C. Eidson, M. Fisher, and J. White, IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control
Systems, Standard 1588, 2002.

[41] S. Vitturi, L. Peretti, L. Seno, M. Zigliotto, and C. Zunino, ‘‘Real-time Eth-
ernet networks for motion control,’’ Comput. Standards Interface, vol. 33,
no. 5, pp. 465–476, 2011.

[42] S. G. Robertz, R. Henriksson, K. Nilsson, A. Blomdell, and I. Tarasov,
‘‘Using real-time java for industrial robot control,’’ in Proc. 5th Int. Work-
shop Java Technol. Real-Time Embedded Syst., 2007, pp. 104–110.

[43] Michrochip. (2015). LAN9252-2/3-Port EtherCAT Slave Controller with
Integrated Ethernet PHYs. [Online]. Available: http://ww1.microchip.
com/downloads/en/DeviceDoc/00001909A.pdf

[44] L. Sha, R. Rajkumar, and J. P. Lehoczky, ‘‘Priority inheritance protocols:
An approach to real-time synchronization,’’ IEEE Trans. Comput., vol. 39,
no. 9, pp. 1175–1185, Dec. 1990.

[45] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

VOLUME 9, 2021 33073



S.-Y. Lee, M. Sung: Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems

[46] A. Girbea, C. Suciu, S. Nechifor, and F. Sisak, ‘‘Design and implemen-
tation of a service-oriented architecture for the optimization of industrial
applications,’’ IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 185–196,
Feb. 2014.

[47] D. Hastbacka, L. Barna, M. Karaila, Y. Liang, P. Tuominen, and S. Kuikka,
‘‘Device status information service architecture for condition monitoring
using OPC UA,’’ in Proc. IEEE Emerg. Technol. Factory Autom. (ETFA),
Sep. 2014, pp. 1–7.

[48] T. Sauter andM. Lobashov, ‘‘How to access factory floor information using
Internet technologies and gateways,’’ IEEE Trans. Ind. Informat., vol. 7,
no. 4, pp. 699–712, Nov. 2011.

[49] O. Redell and M. Torngren, ‘‘Calculating exact worst case response
times for static priority scheduled tasks with offsets and jitter,’’ in
Proc. 8th IEEE Real-Time Embedded Technol. Appl. Symp., Sep. 2002,
pp. 164–172.

[50] K. Tindell, Adding time-offsets to schedulability Analysis. Princeton, NJ,
USA: Citeseer, 1994.

[51] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and
C. Taliercio, ‘‘Performance comparison of VxWorks, Linux, RTAI, and
Xenomai in a hard real-time application,’’ IEEE Trans. Nucl. Sci., vol. 55,
no. 1, pp. 435–438, Feb. 2008.

[52] RTAI. Accessed: Feb. 2021. [Online]. Available: http://www.rtai.org
[53] IgH EtherCATMaster for Linux. Accessed: Feb. 2021. [Online]. Available:

http://www.etherlab.org
[54] M. Cereia and S. Scanzio, ‘‘A user space EtherCAT master architecture

for hard real-time control systems,’’ in Proc. IEEE 17th Int. Conf. Emerg.
Technol. Factory Autom., Sep. 2012, pp. 1–8.

[55] T. Hu, P. Li, C. Zhang, and R. Liu, ‘‘Design and application of a real-
time industrial Ethernet protocol under linux using RTAI,’’ Int. J. Comput.
Integr. Manuf., vol. 26, no. 5, pp. 429–439, May 2013.

[56] M. Minhat, V. Vyatkin, X. Xu, S. Wong, and Z. Al-Bayaa, ‘‘A novel open
CNC architecture based on STEP-NC data model and IEC 61499 func-
tion blocks,’’ Robot. Comput.-Integr. Manuf., vol. 25, no. 3, pp. 560–569,
Jun. 2009.

[57] D. Yu, Y. Hu, X. W. Xu, Y. Huang, and S. Du, ‘‘An open CNC system
based on component technology,’’ IEEE Trans. Autom. Sci. Eng., vol. 6,
no. 2, pp. 302–310, Apr. 2009.

[58] CiA. CiA 402 Series: CANopen Device Profile for Drives and Motion
Control. Accessed: Feb. 2021. [Online]. Available: https://www.can-
cia.org/can-knowledge/canopen/cia402/

SEUNG-YONG LEE received the B.S. and M.S.
degrees in mechanical and information engineer-
ing from the University of Seoul, South Korea,
in 2014 and 2016, respectively, where he is cur-
rently pursuing the Ph.D. degree. He is also
working as a Senior Researcher with the Intelli-
gent Robotics Research Center, Korea Electron-
ics Technology Institute. His research interests
include system software, automation systems, and
real-time systems.

MINYOUNG SUNG (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
engineering from Seoul National University, South
Korea, in 1995, 1997, and 2002, respectively.
He worked with the Software Research Insti-
tute, Samsung Electronics, South Korea. He was
also associated as a Visiting Scholar with the
Department of EECS, University of Michigan,
Ann Arbor, MI, USA, in 2005. He is currently a
Professor with the Department of Mechanical and

Information Engineering, University of Seoul, South Korea. His research
interests include system software and automation systems.

33074 VOLUME 9, 2021


