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ABSTRACT Intelligent Crowd Monitoring and Management Systems (ICMMSs) have become effective
resources for strengthening safety and security along with enhancing early-warning capabilities to manage
emergencies in crowded situations of smart cities and massive gatherings events. The main advantage of
such systems is their ability to detect multiple features associated with the crowd gathering, as they enable
multi-source sensors, multi-modal data, and powerful intelligent and analytical methods. Unlike traditional
crowd monitoring systems, which make use of simplex forms of different data types, data and information
associated with crowded scenarios can be collected, fused, processed and analyzed in large quantities for
accurate global assessment and enhanced decision making processes in an ICMMS. Therefore, data fusion
is introduced as an enabler to decrease data quantity, reduce data dimensions, and improve data quality.
In this paper, we first survey the literature on data fusion application in crowd monitoring systems as we are
developing a state-of-the-art ICMMS with data fusion as a major platform enabler. Next, we discuss some
popular data fusion architectures and classifications from different perspectives. Based on this, we propose
a multi-sensor, multi-modal, and dimensional ICMMS architecture based on data fusion. Then, we identify
the data fusion processes in the ICMMS and classify them into sensor fusion, feature-based data fusion,
and decision fusion. Relevant algorithms, applications and examples of three classes are elaborated. Finally,
future data fusion research directions are discussed.

INDEX TERMS Autonomous system, crowd monitoring, data fusion, decision fusion, sensor fusion.

I. INTRODUCTION
With the development of sensor technology, communication
technology, and big data science [1], smart city-oriented
intelligent applications [2] have become important services
in human life. People’s living standard has increased with
improved infrastructure and intelligent applications such as
smart home furnishing, smart building, VR/AR experiences.
With the increasing expansion and prosperity of urban busi-
ness zones, some people choose to go shopping and seek
entertainment in business zones. These large central business
zones have become representative of the city image and are
the zones with the most economic vitality. Besides, there are
also different scales of crowd gatherings for special events
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such as theater performance, concerts, music festivals, reli-
gious events, etc. These events hide serious potential safety
hazards and crowd management challenges, including stam-
pedes, abnormal behaviors [3], and abnormal incidents (fire,
adverse weather, poisonous gas, and explosions). Once an
emergency happens where crowds are gathered, risks are
enlarged. Targeted emergency response, treatment methods
and rescue measures take place in a timely manner.

Crowd monitoring is a way to guarantee crowd safety. The
main function of crowd monitoring technology is to acquire
important information, such as crowd density and the number
of people. By estimating the number of people, the degree
of crowd gathering can be judged for accurate and effective
management and planning at a monitored site [4].

Traditional crowd monitoring systems (CMSs) depend on
vision-based monitoring technology [5], the most commonly
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used method of which is closed-circuit television (CCTV)
monitoring. CCTV is an image communication system [6]
that can transmit video flow from specific areas and broad-
cast videos to fixed-loop devices. In other words, the signal
can be transmitted from the data source to a prearranged
specific broadcast device connected to the source. With the
development of monitoring technology, vision-based crowd
monitoring technology has experienced the following devel-
opment stages: 1) in ‘‘one-to-one’’ monitoring, the monitor
corresponds to CCTV one-by-one. Devices in this mode are
fixed and inflexible; 2) in circuit switching for monitoring,
wiring and operation are complex, while network expan-
sion performance is poor; and 3) in multimedia monitoring,
the video can be switched smoothly while the visualization
can be well controlled.

At present, the widely used CCTV video monitoring sys-
tem has the following obvious disadvantages: 1) the type of
sensors is simplex. Usually, vision-based monitoring technol-
ogy only uses video or image data, which means that some
ground environment data (such as temperature, humidity, gas,
and sound waves) are omitted. Simplex data result in uncer-
tain analysis; 2) artificial subjective analysis is required. The
subjective artificial judgment and assessment of the video
flow data collected by the camera and monitor consume too
much manpower. Quantitative analysis cannot be made on
important indexes including crowd density grade, crowd flow
speed, people counting, or abnormal incidents; and 3) there
are video surveillance blind areas. Usually, to avoid disturb-
ing crowd activities when capturing crowd situations in a
certain zone, themonitoring camera is installed in a high posi-
tion. However, when the crowd condition of a certain block
needs to be captured, the fixed installation and resolution of
camera make it difficult. Besides, in cases of obstacles or
bad weather in the monitored area, a camera cannot clearly
capture abnormal behaviors or crowd incidents. Sensors on
the ground (ultrasonic, temperature, humidity, and smoke
sensors) and in the air (far-infrared and near-infrared cameras,
UAV-based LiDAR and cameras) can be effective for moni-
toring blind areas [7]. 4) There is insufficient timeliness and
intelligence for decision-making. Some abnormal incidents,
such as crowding, trampling, fights, fire, hail, and violence
attacks, depend on real-timemonitoring and a high-efficiency
crowd evacuation and management mechanism using arti-
ficial intelligence (AI) and communication technologies.
Thus, diversified sensors, deep data analysis, and high-speed
decision transmission are core parts of CMS [8].

Therefore, intelligent crowd monitoring and management
systems (ICMMSs) are effective means to strengthen public
security, innovate social governance, raise the management
level, and improve the ability of early emergency warnings to
recognize and analyze behaviors of crowds in different areas
intelligently. ICMMS is also an important part for developing
a smart city.

However, as mentioned above, there are many isometric
sensors in an ICMMS. This means the system analyzes a
large quantity of multi-source and multi-modal data deeply

and accurately in real time making an effective and intelligent
decision in a short time. It is especially important to process
and analyze data in such an autonomous system.

Data fusion is a kind of information fusion technology
that associates, correlates, and combines the information
from multiple sensor to obtain more timely and accurate
decision-making support. Since the 1970s, data fusion has
been widely used in many fields, including automatic manu-
facture, battle field commanding, resource management, and
smart cities. From low-level data collection to high-level ser-
vices, data fusion offers feasible and high-efficiency support
for deep fusion and mining massive multi-source data in
heterogeneous networks.

The remainder of this paper is organized as follows:
Section II introduces popular autonomous applications based
on data fusion that have significant application in ICMMSs.
Section III introduces commonly used data fusion archi-
tectures and technology classifications. Section IV pro-
poses our data fusion-based, multi-sensor, multi-modal, and
multi-dimensional ICMMS architecture, as well as describ-
ing its requirements and challenges. Section V describes
the detailed technologies and some practical algorithms of
sensor fusion, feature-level data fusion, and decision fusion
in ICMMS. Section VI introduces open issues and future
research directions for data fusion. Section VII summarizes
the paper.

II. DATA FUSION FOR AUTONOMOUS APPLICATIONS
At present, data fusion is widely used in various intelli-
gent applications, and studies on it have emerged one after
another. In the field of automation, multi-sensor data fusion
has become a potential technical support for smart phones,
portable devices, Internet of Things in large-scale fine opera-
tion and intelligent decision-making services. Starting from
ICMMS applications, this paper discusses data fusion in
cutting-edge automation applications that can be parts of
ICMMSs, as shown in Table 1.
• Robotics and industrial control: Industrial control is very
important for Industry 4.0. For applications such as
robots [12] and smart factories, which need powerful
control systems, data fusion can help to receive signals
and data [9] from multi-source sensors (vision [11],
force, touch, etc.), and analyze and identify them [10].
According to the decision-making action, the mechan-
ical device can be guided to carry out subsequent
precision operation.

• Unmanned vehicles and autonomous driving: Tradi-
tional vehicles rely on the environmental perception
ability of the eyes [14], behavioral decision-making
ability of the brain, and vehicular control ability of
the driver’s limbs when being driven on the road [13].
Autonomous vehicles fully automate the above three
human capabilities. This requires the deployment of
a large number of devices on the vehicle for envi-
ronmental awareness (cameras, LiDAR [16], GPS
positioning devices, ultrasonic sensors), locating [15],
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TABLE 1. Classification and description of autonomous data fusion applications.

decision-making (machine learning and deep learn-
ing [29] computing units) and mechanical control
devices. With the support of data fusion technology,
these multi-modal data can provide more accurate anal-
ysis and decision-making services, and help ensure
driving safety.

• Unmanned aerial vehicles: UAVs are widely used in
aerial photography, logistics transportation, disaster res-
cue, air monitoring, and other fields [17]. In order to
implement tasks smoothly, a UAV usually needs to be
equipped with a camera, LiDAR [20], an image trans-
mission module, computer vision module, etc. In many
functions, such as target recognition [18], path plan-
ning [19], and obstacle avoidance, depth analysis based
on multi-modal data fusion can help to make more
accurate judgments.

• Automatic target recognition and situation awareness:
This is the basis of many automation applications and
an important function of ICMMS [21]. The innovative
application of data fusion technology in different fields

(UAVs’ perception and obstacle avoidance [24] in the
surrounding environment; complementary image target
recognition [23] between CCTV and UAV cameras,
CCTV and infrared cameras, CCTV and LiDAR, and
multi-source sensing of large-scale sensors [22]) is an
important guarantee for the intelligent development of
ICMMS [21].

• Military automation: The emergence of high-precision
weapons marked a qualitative leap in the speed and
scale of military operations [28]. However, it also
brought challenges such as complex combat processes,
dynamic changes of battlefield situation, and difficul-
ties in real-time command and control [27]. There-
fore, the whole process from intelligence collection
and combat data collection, to information transmission
and command communication [26], to precise com-
mand and situation feedback relies heavily on military
automation [25]. Using data fusion technology, the mil-
itary command system can filter, screen, integrate, and
mine more effective information in massive intelligence,
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FIGURE 1. Different data fusion architectures and technology classification standards.

greatly improve the efficiency of data processing, and
reduce error cost.

III. DATA FUSION ARCHITECTURE AND TECHNOLOGY
CLASSIFICATION
With the development of computer technology including
hardware, computing, communication, and storage, data
fusion has becomewidely used. Since 1975, when data fusion
was found to have a significant influence on target detection,
tracking, and positioning in the military field, researchers
have explored data fusion technology and classification. Cur-
rently, there are many widely used data fusion architectures
and accepted classification standards, as shown in Fig. 1.
This section introduces the popular classification methods in
detail.

A. JOINT DIRECTORS OF LABORATORIES CLASSIFICATION
FOR DATA FUSION
In 1984, the United States Department of Defense founded
the Data Fusion Joint Directors of Laboratories and proposed
their JDL model. Through gradual improvement and popu-
larization, the model has become the real standard of defense
information fusion system in America. White proposed an
extended JDL model [30] in 1991. He divided the data fusion
process into five levels as follows:

• Level 0 - Source preprocessing: This is the lowest
level data fusion process, aiming at preprocessing of
source (sensor) data (dimensionality reduction, normal-
ization, interpolation, and denoising) to provide high
quality and low data-volume preparation for subsequent
steps.

• Level 1 - Object refinement: The data output from level
0 are further optimized at this level. The process includes

data classification, object refinement, positioning, and
recognition. Commonly used object refinement methods
include spatiotemporal information alignment, correla-
tion, clustering, grouping, state estimation, error elimi-
nation and reduction, and feature fusion or combination.
The output information will have a consistent data
structure through this stage.

• Level 2 - Situation assessment: According to the infor-
mation provided by Level 1 and the observed events,
higher-level reasoning and evaluation of the current
environment and situation can be carried out. Specifi-
cally, the spatial-temporal relationships between sensors
or data can be used to identify events and activities,
widen the global perspective of the monitoring envi-
ronment, determine the importance of the entity objects
in the environment, and ultimately carry out situation
assessment.

• Level 3 - Impact assessment: Based on a large amount
of uncertain information and possible actions, Level
3 evaluates the output of Level 2 and analyzes the
advantages and disadvantages of various actions. Specif-
ically, it assesses the influence of the output result of
level 2 (including activities, incidents, environment, and
conditions) on the system, predicts the result, and ana-
lyzes the risks (including predicting the future state and
estimating the probability of risks and vulnerabilities).

• Level 4 - Process refinement: Level 4 optimizes and
improves the whole process from Level 0 to Level 3,
including resource management, task scheduling, and
priority ranking. Level 4 is a repeating process. It mon-
itors system performance, recognizes potential infor-
mation sources, and completes the optimal sensors
deployment in the whole fusion process.
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Some auxiliary support components are also defined in the
JDL model [31], [32] as follows:
• Sources: Responsible for providing various input data
for the system, including local or distributed sensor
data, prior knowledge in different professional fields, a
massive database, and human feedback information.

• Human-computer interaction (HCI): This part is essen-
tial for the complete operation of the system. HCI real-
izes the process of inputting information and obtains
feedback from system operators (or users), including
information queries, operation instructions, results, and
decision information.

• Data management: Usually, the database management
system can meet the requirements of data storage, fusion
result storage, and rapid interaction. The processing
modules from Level 0 to Level 4 interact with data
management module constantly to realize the functions
of diversified data retrieval, access, security, backup, and
compression.

B. LUO AND KAY’S ABSTRACT LEVEL CLASSIFICATION
FOR DATA FUSION
In 1988, Luo and Kay researched problems relevant to
a multi-sensor integrated system, described an all-purpose
paradigm andmethod of high-efficiency integration and intel-
ligent application, and defined the concept, potential supe-
riority, and challenges of multi-sensor fusion [33], [34].
According to their hierarchical fusion scheme, the serial
process of multi-sensor perception, analysis, and decision
making is divided into the signal level, pixel level, feature
level, and symbol level [35]. The purpose is to transform
sensor data from their original form into high-quality useful
information and assist in decision making and evaluation.
• Signal level: The signal level refers to the direct input
and fusion output of the sensor data/signal. The input
data of this level must be signals under the same
specification or mode (such as ultrasonic sensor data,
acoustic data, and LiDAR data), which are converted
into high-precision signal data through denoising, fil-
tering, and other operations. As a low-level fusion,
it can be applied in real-time scenarios or signal
preprocessing.

• Pixel level: This level of fusion is usually applied when
the input data type is an image. Common image sen-
sors include HD cameras, infrared cameras, and remote
sensing cameras. Pixel-level fusion of the image data
collected by these sensors is helpful for image pre-
processing, segmentation, classification, searching, and
target extraction.

• Feature level: The feature level takes the features
extracted from the original data after specific prepro-
cessing as input, then outputs more accurate or more
complete high-level features through feature fusion.
The new features help to improve the accuracy and
intelligence of system decisions. Some commonly

used feature fusion techniques include IHS transform,
artificial neural network, and image feature registration.

• Symbol level: Similar to decision fusion in Section III-C,
by taking features or data as input, this level of fusion can
obtain symbol-level state or event representation. It can
also combine or fuse the decisions based on multiple
data sources to obtain a more comprehensive or intel-
ligent decision. As the highest level of fusion, the new
decision is helpful to improve the performance of the
system in prediction, evaluation, classification, action,
and other functions.

C. DASARATHY CLASSIFICATION FOR DATA FUSION
To provide an unambiguous classification standard for
many uncertain or ambiguous data fusion types, Dasarathy
divided data fusion architecture into five processes based
on I/O characterization and categories of data, features, and
decision-making in 1997 [36], [37]. The characteristics of
these five categories are summarized according to the nature
of the input entity and output results for each data fusion pro-
cess. Dasarathy’s classification method [38], [39] is widely
used at present.
• Data in-data out (DAI-DAO) fusion: Corresponding to
sensor fusion, DAI-DAO is the lowest level of data
fusion. The output result is obtained after multi-source
fusion of the input raw data. The result is still data, but
the quality is high. That is, the reliability, integrity, and
consistency of the data are improved.

• Data in-feature out (DAI-FEO) fusion: In this mode,
the input source data are deeply fused to extract features.
These features (unique or universal) can describe differ-
ent situations of a system or different forms of scenes
and entities.

• Feature in-feature out (FEI-FEO) fusion: Features from
the previous layer or different data sources are fur-
ther fused or combined in this layer to obtain new
features, namely, feature-level fusion. This obtains
high-level description of features or more accurate
features.

• Feature in-decision out (FEI-DEO) fusion: It is not
enough to only describe the characteristics of the
objects. As the interaction interface between the system
and the user, the output of a decision is also a very impor-
tant component. At this level, the input features (simple
or high-level) are processed and analyzed as the basis
of system decision-making. At present, the data fusion
of most systems mainly involves the three processes of
DAI-DAO, DAI-FEO, and FEI-DEO.

• Decision in-decision out (DEI-DEO) fusion: An intelli-
gent system should provide both simple low-level deci-
sions and high-precision global decisions. At this level,
different decision sources from the previous level (sys-
tem evaluation and the decision of a single event or
state) can be fused or combined to obtain higher-level
decisions.
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D. CLASSIFICATION OF DATA FUSION IN DIFFERENT
STRUCTURES
With the increase of data fusion applications and the com-
plexity of the heterogeneous Internet of Things, the choice of
fusion location is very important. Therefore, some research
has been conducted on data fusion classification according to
different system structures [7], [40], [41]. There are 4 main
classification modes as follows:
• Centralized architecture and fusion: In the era of a
single-chip microcomputers, the data quantity demand
is small. The sensors are very close to the CPU and the
fusion module is directly located in the CPU to obtain
the sensor data for centralized fusion and calculation.
This is helpful for integrated fusion and computing.
However, with the commercial use of 5G, the develop-
ment of communication technology has brought about
an increase in data demand. This has a significant impact
on channel bandwidth, data preprocessing (alignment,
registration, correlation, denoising, and so on), storage
space, transmission, and calculation delay. Therefore,
it is not reliable to use a centralized fusion architecture
directly in a complex system.

• Decentralized architecture and fusion: Different from
centralized fusion, in decentralized fusion, each node
carries out peer-to-peer communicationwith other nodes
in a decentralized structure. Nodes do not process the
data before sending, but fuse their perceived data with
data received from the other nodes. One commonly
used decentralized fusion method is Fisher and Shan-
non measurements. However, this fusion method is not
conducive to communication resources, node computing
performance and cost, or system robustness.

• Distributed architecture and fusion: With the popu-
larity of cloud computing and edge computing [42],
an increasing number of systems have adopted dis-
tributed computing and fusion. The advantage of this
fusion method is that each source node performs sim-
ple data fusion operations (such as signal level fusion,
data association, and state estimation) before send-
ing data. This greatly reduces the amount of data,
ensures data quality, and reduces communication costs.
When the new data are transmitted to other sensor
nodes or fusion nodes, the system can further complete
higher-level fusion and analysis, obtain a global envi-
ronmental perspective, and make dynamic system-level
decisions.

• Hybrid architecture and fusion: Data fusion in the
hybrid mode includes the three methods mentioned
above, and is more suitable for intelligent systems and
applications with a wide range, large amounts of data,
and complex functions. Through cloud control, dis-
tributed nodes receive data from decentralized nodes or
single-source sensors and perform a data fusion process
to complete hierarchical fusion schemes with different
levels.

E. LAU’S MULTI-PERSPECTIVE CLASSIFICATION FOR DATA
FUSION
Lau [43] has a deep understanding of the above classifi-
cation methods, and investigated data fusion literature in
recent years in the field of smart cities. Most articles have
their own understanding of data fusion classification due to
the different focuses of fusion, which are very difficult to
define. Therefore, Lau believes that it is necessary to classify
data fusion from different perspectives, which will help to
broaden definition of data fusion. In 2019, he proposed a very
comprehensive universal multi-perspective classification [2].
The advantage of this classification method is that it can
comprehensively evaluate the literature or application from
all aspects of data fusion and quantitatively evaluate whether
it has the depth andwidth data fusion in a temporal and spatial
scale [44].

• Data fusion objectives: Data fusion technologies are
classified according to the objectives of the smart city
applications, including fixing problematic data, improv-
ing data reliability, extracting higher-level informa-
tion, and increasing data completeness. These goals
are also the advantages of data fusion. Therefore, after
adding other goals, such as improving decision intelli-
gence, optimizing storage, and transmission efficiency,
this goal-based classification standard is generally
applicable to other data fusion applications.

• Data fusion techniques: This category includes
data association, state estimation, decision fusion,
classification, prediction/regression, unsupervised
machine learning, dimension reduction, statistical infer-
ence and analytics, and visualization. It covers most of
the commonly used low-level data fusion technologies
and data-mining technologies. Low-level data fusion is
mainly used to generate high-quality data at the same
level. High-level data fusion can fuse simple inputs
from multiple data sources to create abundant high-level
information.

• Data input and output types: This category directly uses
the I/O characterization-based classification mode of
Dasarathy (Section III-C).

• Data source types: There are four kinds of common
data sources in smart city applications: physical data
sources, cyber data sources, participatory sources, and
hybrid data sources. They are classified according to
data source without considering communication media.
This method aims at data classification in specific fields.
In different applications, the data fusion classification
method based on the type of data source can make it
clearer what data are used in a system or application,
although this method is not universally applicable.

• Data fusion scales: This is a classification of
data fusion scale in the city, including sensor-level
fusion, building-wide fusion, inter-building fusion, and
city-wide fusion.
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FIGURE 2. Architecture of intelligent crowd monitoring and management systems based on data fusion.

• Platform architectures: This category is made according
to the position of computing nodes [45], including edge
computation, fog/mist computation, cloud computation,
and hybrid computation. In all systems that require com-
munication, the location of hardware devices or comput-
ing nodes has a great impact on data storage, analysis,
and services. Therefore, this method is universal for
data fusion applications classified by communication
and computing methods.

IV. ICMMS ARCHITECTURE AND CHALLENGES BASED ON
DATA FUSION
A. DATA FUSION-BASED ICMMS ARCHITECTURE
Comparedwith a single-information-source system, ICMMSs
with data fusion [46] have great advantages in many
aspects, such as space coverage, monitoring time span,
data redundancy, data source reliability, system robustness,
data complexity, storage resources, computing performance
requirements, and application services [47].

However, existing CMS data fusion architectures are not
comprehensive enough. For example, [7] designed a per-
ception system based on homogeneous data fusion and
heterogeneous data fusion for multiple-sensors including
GPS, LiDAR, IMU, and stereo vision cameras. [48] pro-
posed a method for analyzing crowd flow characteristics
among multi-scale public places based on multi-source data
fusion. [49] designed an estimation algorithm for pedestrian
flow rate based on real-time Wi-Fi traces. Most designs only
focus on simplex sensor fusion, i.e., data fusion without data
perception or decision-making.

To solve these problems, we propose a multi-sensor, multi-
modal, and multi-dimension ICMMS based on a three-layer
data fusion structure including sensor fusion, feature-based

data fusion and decision fusion. The system architecture is
shown in Fig. 2.
More specifically, multi-source perception and sensor

fusion can expand the temporal and spatial coverage range
of ICMMSs. Cleaning, reducing the dimension of, and inte-
grating data can eliminate data redundancy and guarantee the
completeness of the data [50], and lower the complexity of
computing. Data feature fusion helps to reduce the require-
ments of application services for system storage resources
and computing performance, and it can provide additional
complete and in-depth features [51]. Decision-level fusion or
deep information mining and prediction provide users with
high-level intelligence of the system [52].

B. REQUIREMENTS AND CHALLENGES
The architecture of an ICMMS contains multi-sensors,
multi-functions, andman-machine interaction decisions. This
means that the system’s data fusion procedure in this sys-
tem must cooperate with the intelligence and automation of
multi-source and multi-modal data, from the bottom sensor
to the upper services. We have summarized the requirements
and challenges of data fusion in an ICMMS.
• Network temporal and spatial expansion: To enhance the
robustness of an ICMMS, the entire hardware network
architecture must satisfy the functions of distributed and
historical data collection, which requires multi-source
data fusion to support the spatial expansion of a single
sensor. Furthermore, based on how storage and comput-
ing capabilities of the edge cloud and cloud improved,
the integration of all the historical data further realizes
the temporal expansion of the system [53].

• Data reliability: In an ICMMS, data reliability includes
the sensor node’s reliability, data authenticity, and
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system security [54]. The security measures of sensor
nodes in the system (such as gas sensor, ultrasonic sen-
sor, CCTV camera, infrared camera, LiDAR, and UAV
equipped with a high-definition camera) include anti-
interference, anti-intrusion, and anti-failure features.
System security can be guaranteed by anti-attack mea-
sures, and authority control, for example. Data security
measures usually include data encryption and decryption
transmission along with storage, data backup, digital
certificates, and so on.

• Data consistency: An ICMMS uses distributed data
sensing and centralized data storage and analysis. For
accurate data analysis, it is necessary to guarantee
1) the consistent perception of different sensor data
sources to the same incident, 2) data consistency [55]
in transmission from the data source to edge cloud, and
3) the consistency or normalization of data assessment
indexes.

• Data integrity: The data collected by sensors may
be missing, redundant, and noisy. For incomplete or
defective data, it is necessary to complete or estimate
them through other data sources or context information
collected by the sensors [56].

• Deep information hiding: The data subset in a dis-
tributed system may describe well the status of the
subsystem or characters of incidents in a single area.
However, the information description is very limited
from a global perspective. The ICMMS must allo-
cate global resources, give early warnings, and make
decisions according to the monitored dynamic crowd
status. Therefore, the fusion of local features in the
data analysis stage can help to deeply search the
hidden information for the system’s decision-making
layer.

• Decision accuracy: The data fusion mentioned above
helps to search deep information, while decision-making
layer fusion is closer to applications and provides
accurate and effective decisions to users [57]. In a
ICMMS, accurate decisions include precise alarms for
fire disasters, evacuation suggestions, early warnings for
abnormal incidents, and early warnings for abnormal
behaviors.

• Service intelligence: For users, whether the system
is intelligent directly affects the service experience.
How to present the accurate decision of the ICMMS
more intelligently is the most important thing for
user-oriented services and applications. In the decision
fusion stage [58], visualization and simulation methods
such as a video monitoring screen, sensor data chart
display, 3D modeling of the site and the crowd, future
crowd prediction, and a simulation dynamic diagram,
will further improve the system intelligence.

V. DATA FUSION TECHNOLOGIES FOR AN ICMMS
Aiming at the complexity of ICMMS scenarios, this
paper proposes a 3-layer data fusion architecture based on

FIGURE 3. Classification of sensor fusion, feature-based data fusion and
decision fusion technologies.

the location, purpose, and characteristics of data fusion, com-
prising sensor fusion, feature-based data fusion, and decision
fusion, as shown in Fig. 3. Regarding each fusion process, this
paper introduces the commonly used algorithms for different
functions. Table 2 concludes the comparison of different
data fusion layers [7], [48], [59]. Sensor fusion uses original
signal or pixel data and requires distributed algorithms to
conduct processes in the infrastructure layer close to the IoT
device. The processed data or features can be used further
in feature-based data fusion processes to obtain high-level
features or decisions. This type of architecture can be central-
ized or decentralized. The output of the decision fusion layer
can provide the highest level of decisions for applications.
However, the data pre-processing/pre-fusion requirements
and information loss level are increased. Examples are given
below.

A. SENSOR FUSION TECHNOLOGIES
A variety of sensors are deployed in the ICMMS to collect
different types of sensor data. The signal or data quality
and other issues must be considered in the device terminal
to achieve more efficient data sensing, data acquisition and
time synchronization. Sensor fusion technologies [60] can
be introduced to preprocess and prepare data before data
analysis, including the following:

• Time registration: When the data source (sensor)
performs the acquisition task, the other related com-
ponents in the whole communication system keep the
synchronous change of data so that the data transmission
time is consistent.

• Data cleaning: The measurement parameters are
combined to improve the classification of target
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TABLE 2. Comparison of sensor fusion, feature-based data fusion and decision fusion in ICMMS.

detection and increase the accuracy of situation estima-
tion. Multi-sensor data usually provide complementary
information on the monitoring area. The purpose of
sensor fusion is to obtain more accurate and complete
data based on these raw data to provide more complex
and detailed scene representation.

• Redundant data deduplication: Aimed at simplifying
the redundant information (environmental monitoring
data, event status, retransmissionmisinformation, and so
on) caused by multi-sensor acquisition, fusion methods,
such as the neighbor algorithm and data association, can
be used to obtain the correlations between data sources
and remove redundant data. Thus, the data consistency
and integrity are maintained and the size of the data
packet as well as communication costs are reduced.

• Noise and error elimination: In an unstable state or
abnormal environment, fusion methods, such as Kalman
filter, IHS transform, wavelet transform, principal com-
ponent transform (PCT), and K-T transform, can be used
to remove noise and eliminate errors.

In the following subsections, we will introduce applied
examples of sensor fusion technologies in ICMMSs: noise
elimination, redundant data deduplication, and low-quality
data filtering.

1) NOISE ELIMINATION
Noise usually appears in signal or image data, both of which
require different noise elimination methods. 1) Signal data
noise elimination: At first, Fourier transform was used to
process signals. However, it is only applicable to periodic
(approximately periodic) data. Thus, new noise elimination
algorithms have been developed, such as filter methods and
wavelet transform. 2) Image data noise elimination: The
image data of an ICMMS contain different types of noise.
They can be divided into Gaussian noise, Rayleigh noise,
gamma noise, exponential noise, and uniform noise accord-
ing to the probability density of the noise. Therefore, spa-
tial filtering (neighborhood averaging, median filtering, and

low-pass filtering), transform domain filtering (Fourier trans-
form, Walsh-Hadamard transform, cosine transform, K-L
transform, wavelet transform, etc.), partial differential equa-
tions, variation methods, and morphological noise filtering
can be used.

In practice, data collected by different sensors have dif-
ferent resolutions. Therefore, it is necessary to solve this
multi-resolution data fusion problem tomake better use of the
complementary information from data with different resolu-
tions and achieve a better fusion effect. This subsection com-
bines Kalman filtering and wavelet transform as an example
to introduce multi-source data fusion for eliminating noise
and removing redundancy.

Kalman filter [61], [62] is mainly used to fuse low-level
real-time dynamic multi-sensor redundant data and eliminate
noise. It is especially suitable for cases in which the error
between systems and sensors conforms to the Gaussian white
noise model. A Kalman filter has strong estimation ability
for non-stationary signals, and it can process all frequency
components of the signal at the same time. Its characteris-
tics mean that the system does not need to deal with much
data storage and calculation. Therefore, it is very suitable
for terminal sensor fusion. The time complexity of Kalman
filter is O(m2.376

+ n2), where m represents the dimension of
observation and n represents the number of states. However,
when a single Kalman filter is used for data statistics of a
multi-sensor combination system, the reliability and real-time
performance are not good. Therefore, wavelet transform can
be introduced. The characteristic of wavelet transform is that
it has a high resolution for different data. It can focus on any
detail of the analysis object by gradually fine-tuning the step
size of the time and frequency domains for high-frequency
components. Therefore, the combination of wavelet trans-
form and Kalman filter can achieve a good fusion.

2) REDUNDANT DATA DEDUPLICATION
The image data sources in an ICMMS can include
CCTV cameras, infrared cameras, and cameras on UAVs.
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FIGURE 4. Deduplication algorithm for redundant image data.

FIGURE 5. Image data quality evaluation algorithm.

The information collected by sensors whether the same or
different kinds, may be from the same scenarios. When
some large size data arrive at the data center from the edge,
it will occupy significance communication resources and
cause communication delays. Therefore, redundant data can
be deduplicated at the edge network, and duplicate data can
be removed at the near device side. The redundant data can be
removed by using Perceptual Hashing Algorithm, where they
are retrieved and eliminated using the low-frequency infor-
mation of an image. The algorithm for redundant image
retrieval is shown in Fig. 4.

3) LOW-QUALITY DATA FILTERING
Monitoring images are significant to visual detection in an
ICMMS. This section introduces the method of building an
image quality evaluator to filter low-quality image data. The
BRISQUE algorithm [63] can be used to train an offline eval-
uator and is configured at the software layer for calling. The
BRISQUE algorithm is an image quality evaluation algorithm
in the spatial domain without reference. The principle of it is
to extract mean subtracted contrast normalized (MSCN) coef-
ficients from an image. TheMSCN coefficients are fitted into
an asymmetric generalized Gaussian distribution (AGGD).
The extracted Gaussian distribution features are input into a
support vector machine (SVM) for regression, and the evalua-
tion results for the image quality can be obtained. The process
of establishing the evaluator is shown in Fig. 5. Regarding the
overall computational complexity of BRISQUE with other
algorithms (PSNR, BLIINDS-II and DIIVINE), it only takes
1 second to compute each quality measure on an image of
resolution 512× 768 on a 1.8 Ghz single-core PC with 2 GB
of RAM.

B. FEATURE-BASED DATA FUSION TECHNOLOGIES
In an ICMMS, different data from different sensors are also
called multi-modal data. We can use the following commonly
used stochastic methods and artificial intelligence methods to
integrate these data at high quality and mine the information
deeply [64]:

• Stochastic methods: Stochastic methods include the
weighted average method, Kalman filter method,
multi-Bayesian estimation method, evidence reasoning,

and production rules. The multi-Bayesian estimation
method is a common way to fuse high-level informa-
tion of multi-sensor in a static environment. It com-
bines multi-modal information according to probability,
measures its uncertainty, and expresses it as conditional
probability. Then, the final fusion value is provided,
which is a feature description of all of the environment
fusing information. The sensor data can be fused directly
when the observation coordinates of the sensor group are
consistent. But in most cases, the sensor measurement
data should be fused indirectly by Bayesian estimation.

• Artificial intelligence methods: Artificial intelligence
methods include regression, classification, Bayesian
network, clustering, dimension reduction, fuzzy logic
theory, neural networks, rough set theory, expert
systems, deep learning, reinforcement learning and
label-less learning [65]. With the rapid develop-
ment of communication and computing technologies,
the amount of data has increased. New data fusion
technologies based on artificial intelligence is likely to
play an increasingly important role in multi-modal data
fusion.

1) DATA FUSION FOR CAMERA AND LIDAR DATA
Due to the deployment of a high-definition camera and
LiDAR in an ICMMS, it is necessary to fuse the two kinds
of data to obtain consistent information. A prior work [66]
researched the output fusion from a LiDAR scanner and a
wide-angle monocular image sensor for free space detection.
The spatial resolutions of the output of a LiDAR scanner
and an image sensor are different. They should be aligned
with each other. A geometric model can be used to align the
two sensor outputs in space, and then a resolution matching
algorithm based on Gaussian process (GP) regression can be
used to interpolate the missing data with quantifiable uncer-
tainty. This has reference significance for ICMMS, which
deals with uncertain sensing of free space detection scenes.
To solve the problems of high sparsity, irregular distribu-
tion, occlusion, and the fuzzy structure of 3D point cloud
obtained by mobile LiDAR, a prior work [67] studied how to
effectively detect 3D objects in point clouds in a large-scale
building environment without pretraining a 3D CNN model.
The authors fused the vision and range information into the
probability framework based on a truncated cone and pro-
jected the image-based target detection results and LiDAR
SLAM results onto a three-dimensional probability map to
optimize the target location and boundary box estimation.
Another study [68] converted the sparse depth map of LiDAR
data into a dense depth map so that the two sensors were
aligned with each other at the data level; then, they used the
YOLOv3 real-time target detection model is used to detect
color images and dense depth maps. Finally, a data fusion
method based on boundary box fusion and improved D-S
evidence theory was constructed. The results of the previous
steps were fused to obtain the final location and distance
information. The detection speed of the proposed fusion
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method was 0.057 s using an Intel Xeon E5-2670 CPU and
an NVIDIA GeForce GTX 1080Ti GPU, which was 7, 35,
53, and 73 times faster than MS-CNN, SubCNN, 3DOP and
Mono3D methods, respectively.

2) DATA FUSION FOR VISIBLE AND NEAR INFRARED
CAMERAS
In an ICMMS scene, weather has a significant impact on a
HD camera. Therefore, infrared cameras often are deployed
to obtain images of scenes in extreme weather, such as fog,
rainstorms, and blizzards. However, infrared image data does
not provide color information. Combining these two kinds of
cameras is necessary to obtain complete details of the global
scene. This requires high-precision fusion of the multi-modal
image data.

Prior work [69] researched a method of fusing sensor
data in the visible spectrum (VS) and near-infrared (NIR)
wave band. The method sufficiently uses complementary
details offered by VS and NIR images. While reserving
VS image spectrum, the lost space details are injected into the
VS images in self-adaption. The VS andNIR data are fused as
follows: 1) The NIR wave band is compared with IRGB data
from the VS images. The lost space details in the VS images
are confirmed as F(x) = max(0,LC(INIR(x))−LC(IRGB(x)))

LC(INIR(x)) .
2) Space details from the NIR spectrum are extracted. A high-
pass filter g is used to extract radio-frequency components
(space details) of the INIR, which is, g = δ − h. The unit
pulse filter h is a prototypeGaussian filter with a radial cut-off
frequency period / image height (c/ph). The kernel size is
k × k . 3) The image spectrums are fused and injected into
VS images. Finally, the space details are weighted according
to fusion graph F and injected into the VS images to obtain
enhanced images, that is, JRGB(x) = IRGB(x) + F(x)(g ×
INIR)(x). The proposed method takes only about 0.7 s to fuse
an image of size 682 × 1024, which is 2.5 times faster than
the color-transfer method.

In other related works, the authors [70], [71] researched
two other image data fusion methods. Aiming at the research
of depth prediction in the field of automatic driving, one
study [70] constructed a common feature fusion subnet, a full
feature fusion subnet, and a high-resolution reconstruction
subnet to make full use of the complementary details of
visible and infrared images. An infrared visible image fusion
network based on CNN (IVFuseNet) was proposed. Another
study [71] made visual and infrared images become the real
and imaginary parts of the complex function and proposed an
algorithm to fuse images from vision and infrared cameras.

C. DECISION FUSION TECHNOLOGIES
There are three subsystems in an ICMMS: the infrastruc-
ture, AI, and visualization. Each subsystem or detection area
has a small range of analysis, evaluation, and action deci-
sions. However, one-sided decision-making is not conducive
for the edge cloud or cloud to grasp the global state and
the advantages and disadvantages of the algorithm. There-
fore, both subsystem decision fusion and global decision

fusion [72], [73] are indispensable for a complex system to
complete intelligent services and applications.

The commonly used decision fusion methods can be
divided into three categories: 1) statistical-based fusion meth-
ods, including probabilistic reasoning, Bayesian reasoning,
and D-S evidence; 2) information theory-based fusion meth-
ods, including parameter template matching, clustering anal-
ysis, adaptive neural network, and information entropy; and
3) cognitive model-based fusion methods, including logic
template matching, fuzzy logic theory, and expert systems.
Some of thesemethods overlapwith feature-based data fusion
because the data fusion results can be used as the final deci-
sion in some simple systems. For example, in our ICMMS,
the hazardous gas or smoke data collected by gas sensors can
be used to obtain an assessment and alarm information from
the surrounding environment after probabilistic reasoning
or parameter template matching and fusion. In this section,
simple examples of the above three decision fusion methods
are discussed.

Bayesian inference is a commonly used statistical-based
fusion algorithms. The decision fusion method used in a
multi-sensor detection task in a prior study [74] is very suit-
able for ICMMS scenarios. The authors used simultaneous
interpreting of different types of sensors to detect activities
on event domains. The array of sensors makes their field
of vision overlap, so the sensors can not identify specific
activities alone. However, a sensor set can isolate specific
activities by fusing multiple sensor detection. They organize
and maintain a variety of assumptions about activities in
the area monitored by sensors. To avoid the drawback that
the fusion rules based on likelihood estimation cannot be
solved or are difficult to solve, it is an important research
direction to optimize the probabilistic reasoning algorithm
and achieve universality in complex situations When deal-
ing with unknown (uncertain) signal/noise data. From this
perspective, [75] described distributed detection scenarios
based on Bayesian inference, which is also an important
reference for our work. They studied the design of fusion
rules for distributed detection problem, described the problem
using a hierarchical model, and proposed a Gibbs sampler
to realize fusion based on posterior probability and a fusion
rule design method based on a Bayesian inference tool.
The whole process has a manageable high computational
complexity.

Regarding the information theory based fusion meth-
ods, one study [76] researched a multi-source classification
method based on a neural network and statistical model-
ing. The first scheme separated the single data source by
using a statistical method for modeling and applied mul-
tiple decision fusion schemes to combine the information
from each data source. The second scheme described in the
study used weighted consistency theory. The weight of a
single data source reflects its reliability. A prior study [76]
optimized the weight to improve the accuracy of the
combination classification. Other decision fusion schemes
are based on the two-stage method. Voting is used in the
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FIGURE 6. Open issues and research directions for data fusion.

first stage. If most classifiers of the data source do not agree
with the classification of samples, the samples are rejected.
In the second stage, the samples are classified by a neu-
ral network. The method is applied to the classification of
multi-source and super dimensional data sets.

In the cognitive model-based fusion methods [77], a prior
study [78] used fuzzy logic to dynamically change the weight
of multi-source data features [79]. In addition, considering
the changes in the data acquisition process (such as light-
ing, noise, and user device interaction), a multi-biometric
authentication system based on fuzzy logic decision fusion
was proposed, which can be used in real-time dynamic data
acquisition.

VI. OPEN ISSUES AND RESEARCH DIRECTION
Although detailed studies have been carried out on the
three aspects of data fusion (i.e., sensors, computing nodes,
and cloud applications), these methods are not complete in
ICMMS scenarios that involve sensing and collecting a large
amount of data with efficient, low-cost real-time transmis-
sion; safe and stable storage; high-precision analysis, deep
information mining, and intelligent application. Therefore,
in the future, in-depth research can be conducted on data
fusion technology and methods in each stage of the data value
chain [80], as shown in Fig. 6.

Research is needed into the following topics:

• Data fusion for data generation: Research and discus-
sion about data generation, multi-modal sensors, and
data types, including radar, ultrasonic, infrared / thermal
imaging cameras, CCTV cameras, and Global Position-
ing System (GPS).

• Data fusion for data acquisition: Some sensor-fusion
algorithms exist for cleaning and filtering data, includ-

ing the central limit theorem, Kalman filter, Bayesian
networks, and Dempster-Shafer.

• Data fusion for data transmission: A centralized
and decentralized architecture, requires data fusion
algorithms for data transmission, including time
synchronization and data integrity.

• Data fusion for data storage: It is very important to build
a data fusion server on the edge cloud and remote cloud
in complex system, including data integration alongwith
a storage system (data synchronization in the database),
data security, and privacy mechanisms.

• Data fusion for data analytics: Due to the multi-modal
and missive ammounts of data obtained by an ICMMS,
extended research for data-fusion based analysis algo-
rithms is necessary, including data preprocessing,
AI-based data analysis, and data-fusion enhanced AI
algorithms for data analysis.

• Data fusion for data applications: Regarding the
objective-level classification, we will research more
visualization and simulation-based data fusion tech-
nologies for data display, heterogeneous smart IoT
applications, and human enhanced fusion.

VII. CONCLUSION
This paper surveys data-fusion based ICMMSs, where we
first introduced the motivation for fusing data in an ICMMS,
including its advantages, applications, requirements, and
challenges. Then, we investigated five popular data fusion
classification architectures: JDL classification, abstract-level
classification, I/O characterization-based classification,
architecture-based classification, and multi-perspective clas-
sification. This has enabled us to explore different perspective
and data fusion such as locations, purposes, technologies, and
architectures for data fusion. Based on the widely used gen-
eral architectures, we proposed a multi-sensor, multi-modal
and multi-dimensional ICMMS architecture based on data
fusion. The data fusion process in ICMMS can be divided
into three processes: sensor fusion, feature-based data fusion,
and decision fusion. For each fusion process, aiming at
the challenges of network spatial-temporal expansion, data
reliability, data consistency, data integrity, deep informa-
tion hiding, decision accuracy, and service intelligence, this
paper classifies the commonly used fusion technologies and
gives practical use cases from the algorithm process to the
result output (noise elimination, redundant data dedupli-
cation, low-quality data filtering, multi-modal data fusion,
multi-source decision fusion, etc). Finally, this paper summa-
rized the future research directions and open issues in the field
of data fusion for data generation, acquisition, transmission,
storage, analytics, and application.
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