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ABSTRACT Modern photonic technologies are emerging, allowing the acquisition of in-vivo endoscopic
tissue imaging at a microscopic scale, with characteristics comparable to traditional histological slides,
and with a label-free modality. This raises the possibility of an ‘optical biopsy’ to aid clinical decision
making. This approach faces barriers for being incorporated into clinical practice, including the lack of
existing images for training, unfamiliarity of clinicians with the novel image domains and the uncertainty of
trusting ‘black-box’ machine learned image analysis, where the decision making remains inscrutable. In this
paper, we propose a newmethod to transform images from novel photonics techniques (e.g. autofluorescence
microscopy) into already established domains such as Hematoxilyn-Eosin (H-E) microscopy through virtual
reconstruction and staining. We introduce three main innovations: 1) we propose a transformation method
based on a Siamese structure that simultaneously learns the direct and inverse transformation ensuring
domain back-transformation quality of the transformed data. 2) We also introduced an embedding loss
term that ensures similarity not only at pixel level, but also at the image embedding description level.
This drastically reduces the perception distortion trade-off problem existing in common domain transfer
based on generative adversarial networks. These virtually stained images can serve as reference standard
images for comparison with the already known H-E images. 3) We also incorporate an uncertainty margin
concept that allows the network to measure its own confidence, and demonstrate that these reconstructed and
virtually stained images can be used on previously-studied classification models of H-E images that have
been computationally degraded and de-stained. The three proposed methods can be seamlessly incorporated
on any existing architectures. We obtained balanced accuracies of 0.95 and negative predictive values
of 1.00 over the reconstructed and virtually stained image-set on the detection of color-rectal tumoral tissue.
This is of great importance as we reduce the need for extensive labeled datasets for training, which are
normally not available on the early studies of a new imaging technology.

INDEX TERMS Histopathology analysis, convolutional neural network, domain adaptation, optical biopsy,
virtual staining, Siamese semantic regression networks.

I. INTRODUCTION
White light endoscopy and biopsy are performed respectively
for clinical and histological assessment of the gastrointestinal
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tract [1]. Lesion histology, resection level and infiltration
level can be assessed, but even with expert assessment there
may be significant intraobserver and interobserver variabil-
ity [2]. During recent years, there has been an increasing inter-
est in developing optical methods to visualize and evaluate the
histological parameters on living tissue. Optical coherence
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FIGURE 1. Proposed domain transfer methodology: left) Source domain images are transferred to target domain H-E microscopy imaging right) The
transformed image is analyzed over an H-E domain native inference model.

tomography methods [3]–[6], confocal microendoscopy
[7]–[9], light scattering spectroscopy [10]–[12], Raman spec-
troscopy [13], [14], multi photon tomography [15], [16]
among others have been studied.

Although promising, major issues for these technologies
precludes their entrance into real clinical practice [17]: endo-
scopists are not familiar with the images provided by the
different optical biopsy systems. In this sense, we performed a
group of interviews [18] that described their need for a system
providing diagnostic decision making support, rather than
simply displaying a new type of image from an unfamiliar
established new modality, for which clinical experience is
limited. Other studies have also reported concerns on such
a system providing just a ‘black-box’ prediction of lesion
histology and expressed their desire to have the information
to understand the diagnostic decision process [19], [20].

Based on these studies, we summarize that optical biopsy
models:
• Present a strong entrance barrier in the clinical commu-
nity as clinicians are unfamiliar with the images pro-
vided by these modalities [17], [18].

• Should be developed to produce inference models that
provides clinicians, a clinically useful assessment of the
lesions.

• Should accommodate the comparison of virtually
generated histology with known modalities such as
Hematoxilyn-Eosin (H-E) staining. [19], [20]

These factors hinder the development and establishment
of new imaging modalities for optical biopsy. One of the

difficulties with the generation of an appropriate inference
model is the necessity of large labeled and highly varied
datasets of the targeted imaging modality. This is normally
impractical and it is not possible to get the same variabil-
ity and image quantity as existing datasets of traditional
microscopic slides. Even in the case this inference model is
developed, it will serve as a black-boxed algorithm where
doctors cannot verify its assessment due to the complexity
and novelty of the image interpretation.

In this work, we tackle these problems simultaneously by
generating an algorithm, which translates an image from a
source domain Ds of a novel image modality, into a H-E
histopathological microscopy image domain targetDt , which
is current gold standard image modality. The novel image
modalities taken into account as source domain Ds for vali-
dating this work are Lissajous scanning probe acquired multi-
photon tomography images Dsafp and AF microscopy images
Dsafm . First, the source domain images need reconstruction
due to the degradation caused from the acquisition process;
secondly they require ‘virtual staining’ to obtain appropriate
H-E images. Figure 1 details the whole process. The main
benefits for the proposed method are:
• The virtually stained images serve also as a virtual H-E
biopsy as they can be used by clinicians for the verifica-
tion of the assessment on an already established domain.

• This cross-domain image translation eliminates the need
for a large, varied and annotated dataset on the novel
images to generate an inference model as optical biopsy
can be performed over target domain models.
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We hypothesise that these cross-modal translated images
(reconstructed and virtually stained) can be successfully used
with existing cancer classification models trained with exist-
ing H-E images. This approach benefits from H-E images
and already existing datasets, avoiding the need for extensive
annotated datasets for the novel source domain.

This paper is organized as follows: Section II details exist-
ing work on domain adaptation while Section III details
the datasets used both for the target domain and the source
domains. Section IV details the proposed semantic regression
network topologies and the training architectures. We incor-
porate domain cycle similarity loss and high level image
embedding similarity. This last step allows mapping the
imaging between domains taking into account also the high
level features and not only the pixel level ones. Section V
presents the optical biopsy algorithm that uses the recon-
structed and virtually stained images whereas section V
details the performance of the proposed algorithms. Conclu-
sions are summarized in Section VII.

II. RELATED WORK
As stated by [21], the generalization of convolutional neural
networks [22] have revolutionized the field of biomedical
imaging analysis [23] demonstrating diagnostic accuracies
comparable to experts. Examples can be found in many
different tasks, such as diabetic retinopathy screening [24],
skin lesion classification [25], lymph node metastasis detec-
tion [26], electro-cardiogram classification [27], [28], polyp
detection [29]–[31] or histopathology analysis [32]–[34],
among others. Although these deep learning methods are
capable of obtaining unprecedented performance not afford-
able by classical machine learning algorithms, they normally
require several thousands of well-labeled images to generate
robust methods with the appropriate generalization capabili-
ties. Unfortunately, only small datasets are usually obtained in
clinical settings. Creating large and well annotated datasets is
time consuming [35] and might not be feasible for early clin-
ical studies, for rare diseases or for new imaging modalities.

This problem is also present when working with new diag-
nosis imagingmodalities (e.g: optical coherence tomography,
multiphoton tomography, Raman spectroscopy, reflectance
confocal microscopy, etc.), where the necessary number of
well annotated images to design and validate a disease diag-
nosis algorithm require scheduling large clinical trials. Fur-
thermore, annotating and interpreting these images acquired
with novel techniques is challenging for histopathologists,
since they have little experience with those images, compared
to H-E images. In order to tackle this problem, alternative
approaches have been proposed. For example, domain trans-
fer techniques aim to leverage the existing labels of a different
task or domain, while domain adaptation aims to map the
statistical distribution among the different domains of interest
either at pixel or at representation level. Furthermore, in the
case of few shot learning [21], [36], [37], new concepts and
new representation are learned from few samples.

In this work, we follow the domain transfer approach to
map existing images from novel imaging domains Ds into
target H-Emicroscopy domainDt at pixel level. This has been
done traditionally by training a convolutional neural network
that minimizes a mean squared error function between target
and source domains [38], [39]. However, the use of this
loss leads to blurred images. More advanced approaches use
generative adversarial networks (GANs) [40] in co-registered
inter-domain images to translate the image among the two
domains, making it impossible for a discriminator network
to distinguish between the mapped image and the original
one in the target domain. More advanced networks such as
cycle GANs [41], [42] allow domainmappingwith no need of
pixel co-registration among domains. Most GAN reconstruc-
tion methods suffer from the perception-distortion trade-off
problem [43]. They prioritize the generation of perceptually
realistic images by penalizing fulfilling the similarity loss,
which minimizes the level of distortion of the reconstructed
image. This makes the generated images look perceptually
realistic and plausible images that, however, can reflect a dis-
ease condition different from the original real sample. This is
being tackled in most recent work. For example, DiCyc GAN
architecture can handle domain specific deformations [44]
whereas other approaches include higher level information
[45] to incorporate visual embeddings into the reconstruction.

III. DESCRIPTION OF THE DATASETS
A. HEMATOXYLIN-EOSIN MICROSCOPY TARGET
DATASET-Dt
We used an extensive dataset with data from the Basque
Biobank (BIOEF – Spain), obtained at five local hospitals
of the Basque Public Health system-Osakidetza with the col-
laboration of 10 specialized pathologists. It contains healthy
and tumoral samples from digitized tissue slides of three
different organs: colon, breast and lung. Various types of
tumours are considered: colon adenocarcinoma, breast ductal
carcinoma, breast lobular carcinoma, lung adenocarcinoma
and lung squamous cell carcinoma. Colon samples are classi-
fied into low or high grade, breast samples into grade I, II or
III, whereas lung samples are organized into stage IA, IIA,
IB and IIB. The database contains a total of 259,425 image
tiles of dimension 1300px × 1300px (162µm × 162µm).
The original tissue slides have been annotated by a panel of
expert pathologists. According to their criteria, the diagno-
sis assigned to each slide is the most significant diagnosis
encountered within. Since original digitized slides are huge,
the same slice might contain parts with healthy, low-grade
tumour and high-grade tumour tissue (plus background, adi-
pose tissue, etc.). For this reason, the database includes a
reviewed subset of 1,755 image tiles which are representative
of its associated annotated diagnosis (Figure 2). In order
to validate the proposed approach and ensure the integrity
of the data used as input, when referring to this dataset
we will refer as Dtsure . The Biopool [46] Colon, Breast and
Lung Hematoxylin-Eosin dataset (B-CBL-HE) request form
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FIGURE 2. Sample images from dataset Dt [46]. Upper row depicts
healthy samples and the lower row depicts tumoral samples. From left to
right: colon, breast and lung tissue are depicted.

is available from the Basque Biobank’s catalogue web-page
[47]. The dataset is divided into train (80%), validation (10%)
and testing sets (10%) according to the anonymized patient
ID to assure patient independency between sets.

B. HUMAN DEGRADED AUTOFLUORESCENCE SOURCE
DATASET -Ds

This dataset simulates autofluorescence (AF) image acqui-
sition from a miniaturized scanning probe similar to the one
described at [48]. Our probe consists of a PZT tube that moves
a fiber tip resonantly in X-Y axes providing a Lissajous
scanning pattern. In order to simulate images produced by this
system, we virtually de-stain histopathological microscopy
images [49] to simulate autofluorescence. These AF images
are then degraded by simulating a sub-sampling that resem-
bles the Lissajous pattern from the acquisition probe. Figure 3
shows the de-staining and degradation process. This simu-
lated dataset serves as a conceptual dataset that allows us to
focus on the reconstruction and domain transfer problem for
histology image classification.

FIGURE 3. Generation of simulated AF dataset: left) Color H-E Image,
middle) AF image, right) degraded AF image.

Virtual image de-staining is defined as an injective appli-
cation from R3 from the H-E image into R1 on the AF
domain. This transformation is projected into a lower dimen-
sion domain. The de-staining to generate the Ds dataset is
calculated from a pixelwise color transformation from the
H-E domain to the AF domain [49]. We use this function
to generate an autofluorescence dataset from the Biopool

dataset (described at section III-A). The database contains a
total of 259,425 image tiles of dimension 1300px × 1300px
(162µm × 162µm). The dataset is divided into train (80%),
validation (10%) and testing sets (10%) according to the
anonymized patient ID identically to Dt dataset. It is worth
to remark that the inverse problem transform for the stain-
ing problem (from R1 to R3) is not straightforward and the
proposed methodology for its calculation is proposed on next
section.

IV. CROSS-DOMAIN IMAGE TRANSLATION
ARCHITECTURES
As a design constrain, we have avoided the use of the
well-known GANs. This is because they incorporate a per-
ceptual factor that is in opposition to the similarity factor [43]
and thus, tends to generate less similar but more plausible
images. We propose the use of fully convolutional regres-
sion networks that we present in section IV-A. In order to
add regularization capabilities to the network, we propose
to generate a double Siamese network that simultaneously
assures that the generated transformed images both from the
source and target domain can be transformed back to their
original domain in a pixel-wise manner, therefore enforcing
the invertibility of the learnt transforms, which is introduced
in section IV-B. We also impose not only pixel-wise simi-
larity on the reconstruction but also higher-level similarity
by integrating image embedding vector to the loss function.
It is noteworthy that all the proposed modifications on this
paper can be incorporated on any existing architecture such
as GANs by including the proposed loss function terms on
the GAN generator output.

A. NETWORK TOPOLOGY
In our approach, we propose the use of a semantic regression
densenet neural network to perform the image transla-
tion. The baseline network consists of a fully convolu-
tional densenet architecture [50]. This network combines the
descriptive power from traditional segmentation networks
based on fully convolutional versions of classification ones
such as SegNet [51] with the accuracy on the border detection
provided by the skip connections on the U-Net segmentation
network [51]. The last layer of this network has been sub-
stituted by a linear activation function and the loss function
has been substituted by the mean absolute error in order to
learn a pixel-wise regression transformation that translates
the image from the source to the target domain. We apply
this topology to the different use cases with specific modifi-
cations, as described in the following subsections.

1) AUTOFLUORESCENCE PROBE ACQUIRED IMAGE
RECONSTRUCTION NETWORK
The architecture used for Lissajous pattern reconstruction is
fedwith a two channel 448×448 image. The first channel cor-
responds to the image degraded by the probe’s Lissajous pat-
tern. The pixel value corresponds to the fluorescence intensity
information on the pixels in a Lissajous pattern position and
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it is zero on the pixels where signal has not been acquired
(i.e. not in the path of the scanning probe Lissajous pattern).
The second channel includes a mask with the pixels of the
Lissajous pattern position of each of the acquired pixels.
This second channel serves as a mask to inform the network
about the validity of the data stored in the channel. This input
signal is fed to the fully convolutional densenet network.

The image passes through a subsequent set of convo-
lutional operations and max-pooling that reduces the spa-
tial dimension of the signal while gradually increasing the
descriptive part. This results in a descriptor image. The sec-
ond stage is composed of a set of convolutional filters and
up-sampling layers that recover the spatial resolution of the
input image on the desired domain. To be able to recover
the input image high level details, the network makes use of
skip connections [52] that transfer the low level features and
spatial information from the source domain into the detailed
reconstruction of the target domain. A final sigmoid layer
performs the final reconstruction of the AF image. Figure 4
shows the network topology.

FIGURE 4. Fully convolutional DenseNet regression network for
Lissajouss pattern reconstruction from AF images.

2) VIRTUAL H-E STAINING NETWORK
The architecture used for virtual staining receives a single
channel 448× 448 AF image. This input signal is connected
to a fully convolutional densenet network similar to the one
described in section IV-A1. The image passes through a sub-
sequent set of convolutional operations and max-pooling that
reduces the spatial dimension of the signal while gradually
increasing the descriptive part. This results in a descriptor
image. The second stage is composed of a set of convolu-
tional filters and up-sampling layers that recover the spatial
resolution of the input image on the desired domain. To be
able to recover the input image high level details, the net-
work make use of skip connections [52] that transfer the low
level features and spatial information from the source domain
into the detailed reconstruction of the target domain. A final
3 channel layer with sigmoid layer activation performs the
final reconstruction of the virtual staining image. Figure 5
shows the network topology.

B. SIAMESE NETWORK ARCHITECTURES FOR CYCLE
DOMAIN TRANSFORMATION LEARNING
In this section, we enhance the learning capabilities of the
semantic regression networks by imposing the invertibility
property to the learnt solution. In the case that the transform

FIGURE 5. Fully convolutional DenseNet regression network for Virtual
Staining of H-E images.

function between a source domain and a target domain is not
bijective, the inverse transformation between the target and
source domains is ill-posed and presents multiple solutions.
In this case, a regression network tends to infer an average
non-real intermediate solution [53].

In order to circumvent this, we propose a network that
simultaneously learns both the inverse and direct transfor-
mations between the source domain and the target domain.
This imposes the restriction for any network solution to be
invertible to its original domain acting as a network learning
regularizer. Three different architectures are proposed: 1) a
baseline learning architecture consisting of independent
regression networks, 2) a cycle network architecture that
learns the transformations between the source and target
domain and remaps this transformation into the original
domain, and 3) a Siammese cycled network that simulta-
neously, learns the transformation from source and target
domains and also remaps the transformation back to its orig-
inal domain.

1) BASELINE LEARNING ARCHITECTURE
As a baseline, we train, in an independent way, two different
domain transformation networks that follow the regression
densenet topology defined in section IV-A. The first transfor-
mation network (direct domain transform) maps images from
the source domain into the target domain, while the second
one (inverse domain transform) maps the inverse transform
from the target domain into the source domain. Each network
(direct and inverse problem transformation) is optimized to
minimize a mean absolute error loss function, as shown in
equations 1 and 2. This topology allows training both direct
and inverse domain transformation in an independent way.
Figures 6 and 7 show the training procedure: we draw a
pair of co-registered images {Xi,Yi}, being Xi an image from
the source dataset and Yi its correspondence in the target
domain dataset. The first network receives a sample from the
source dataset, Xi, and estimates its correspondence on the
target dataset, Y ′i , by optimizing equation 1, while the sec-
ond network receives a sample Yi from the target domain
and estimates its correspondence on the source domain, X ′i ,
by minimizing the loss function defined in equation 2.

Ls2t =
N∑
i=1

|Yi − Y ′i | (1)
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FIGURE 6. Independent training of direct and inverse transform learning
used as baseline. for the Lissajous pattern reconstruction / degradation
use case.

FIGURE 7. Independent training of direct and inverse transform learning
used as baseline for the virtual staining/ virtual de-staining use case.

FIGURE 8. Cycle network for domain translation for the Lissajous pattern
reconstruction / degradation use case.

Lt2s =
N∑
i=1

|Xi − X ′i | (2)

2) CYCLE NETWORK ARCHITECTURE
We extend the previous architecture by enforcing that any
sample from the domain dataset Xs transformed into its tar-
get domain estimation Y ′s can be transformed back into its
original source domain X ′′s . This is enforced by generating
a concatenated network that first performs the transform
between the source image into the target domain and after
that, the resulting estimation is transformed back into the
original domain. A combined loss function defined in equa-
tion 3 ensures that both the direct and the inverse networks are
trained simultaneously, while implicitly imposing bijectivity
properties on the learnt transformations. Figures 8 and 9
depict this architecture for the two use cases.

Ls2t =
N∑
i=1

|Yi − Y ′i | +
N∑
i=1

|Xi − X ′′i | (3)

3) SIAMESE CYCLE NETWORK ARCHITECTURE
The previous approach enforces bijectivity property for the
estimated direct and inverse transforms. However, it focuses
only on the direct transform from the source domain into

FIGURE 9. Cycle network for domain translation for the virtual staining/
virtual de-staining use case.

FIGURE 10. Siamese cycled network for domain translation for the
Lissajous pattern reconstruction / degradation use case.

FIGURE 11. Siamese cycled network for domain translation for the virtual
staining/ virtual de-staining use case.

the target domain. To balance the importance of both trans-
forms, we extend the previous architecture by generating
a mirrored Siamese architecture that trains the direct and
inverse transform networks by simultaneously transforming
a sample from source dataset Xi into a source domain Y ′i and
the target domain sample Yi into its source domain counter-
part X ′i . Both estimated transformations are then projected
back into their original domain obtaining Y ′′i and Y ′′i as
depicted in figures 10 and 11. Both networks performing the
direct transform and both networks performing the inverse
transform present shared weights. A combined loss function
(equation 4) that incorporates the reconstruction similarity
for the different transform is minimized to simultaneously
learn the direct and inverse transforms that also acts as a
regularizer to impose plausible solutions on the transformed
domain samples.

Ls2t =
N∑
i=1

|Yi − Y ′i | +
N∑
i=1

|Xi − X ′′i |

+

N∑
i=1

|Xi − X ′i | +
N∑
i=1

|Yi − Y ′′i | (4)

4) INTEGRATING FEATURE LEVEL RECONSTRUCTION
CONSTRAINT
The reconstruction performed by previous networks is
enforced at pixel level with the minimization of the mean
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absolute error loss function. However, small changes on the
pixel reconstruction can provoke changes on the response of
an optical biopsy classifier or unaccurate clinical assessment.
To minimize this, an additional term is added to the previous
loss functions to minimize the differences on the reconstruc-
tion at image embeddings representation level. To this end,
a Resnet50 classification network [21] trained over the colon
training subset of theDt dataset is used (Figure 12). This net-
work classifies between healthy and cancerous colon tissues.
The last convolutional layer of the network is removed and
a global average pooling is performed over the last layer to
incorporate all spatial information. The image embeddings
fi that represent the high level description of the image are
included in the loss function (see Figure 13) to minimize also
the reconstruction differences of the image at feature level
that is extracted after the last average pooling.

FIGURE 12. Siamese cycled network for domain translation for the Virtual
staining/ virtual de-staining use case.

FIGURE 13. Integration of the feature vector similarity into the model
loss function.

Thus, the differences between the image embeddings from
the source images and the reconstructions are added into the
loss function. A β parameter controls the influence of the
embedding part in the loss function. In our implementation,
β was normalized by the number of embedding vectors 512
to be in the same range as the other loss function terms. Equa-
tions 5 and 6 add the image embedding similarity constraint
to the baseline independent model, equation 7 adds it to the
cycle network whereas equation 8 adds it to the Siamese cycle
network.

Ls2t =
N∑
i=1

|Yi − Y ′i | + β ∗ |fYi − fY ′i | (5)

Lt2s =
N∑
i=1

|Xi − X ′i | (6)

Ls2t =
N∑
i=1

|Yi − Y ′i | +
N∑
i=1

|Xi − X ′′i | + β ∗ |fYi − fY ′i | (7)

Ls2t =
N∑
i=1

|Yi − Y ′i | +
N∑
i=1

|Xi − X ′′i |

+

N∑
i=1

|Xi − X ′i | +
N∑
i=1

|Yi − Y ′′i |

+β ∗ |fYi − fY ′i | + β ∗ |fYi − fY ′′i | (8)

5) IMPLEMENTATION DETAILS
The proposed architectures have been developed by using
tensorflow/keras framework [54]. Baseline architecture con-
sisted on a standard fully convolutional densenet network [50]
with the modifications described on section IV-A. Both cycle
network architecture, Siamese cycle network and the high
level embedding architectures were constructed from the pre-
vious method by directly adding the different loss function
terms by using the low-level API training capabilities from
Tensorflow on the eager mode. This makes straightforward
applying both methods in any existing network architec-
ture and allowing easy integration of the subsequent model
outputs on the loss function calculation. All experiments
were trained for 200 epochs with an Adam optimizer with
a learning rate = 1E − 5 and a decay of 1E − 8 where
a learning rate reduction of a factor equivalent to 0.5 was
additionally included when validation loss stagnates during
5 epochs. Inference time on CPU for a frame is lower than
100ms. This time can be increased by using a GPU processor
or dedicated hardware for inference. In order to simulate
the effect of fluorescence fluctuation that can be caused
by the non-equilibrium metabolic state of the cells [55],
non-uniform optical excitation and unknown sources of noise
images, training process includes a random intensity level
augmentation on the fluorescence signal.

V. OPTICAL BIOPSY CLASSIFICATION ALGORITHM
A. HEMATOXYLIN-EOSIN DOMAIN CLASSIFIER
The final goal for the learnt transformations is to virtually
generate H-E images from a degraded AF images. The objec-
tive of this restoration is twofold: 1) to transform the source
domain image into an image understandable by the medical
community and 2) to use the transformed image to perform
an optical biopsy on a target domain with richer and more
extensive image datasets as depicted in Figure 14.

To this end, the Lissajous pattern restoration transform
learnt on the previous sections is used to reconstruct an AF
image degraded by a Lissajous pattern due to acquisition
probe optics. This reconstructed AF image is then virtually
stained by the virtual staining network resulting into a H-E
image. This virtually stained image is then classified as can-
cerous or non-cancerous by a residual neural network [56],
where the last layer is substituted by a (1,1) sized convolution
of 2 filters convolution with a softmax activation. We trained
this classification network over the training set from the H-E
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FIGURE 14. H-E domain optical biopsy classifier.

Biopool dataset [21] described in section III-A byminimizing
the categorical cross-entropy loss function.
Test time augmentation is performed during prediction to

estimate the posterior distribution of the network answer [57].
This is performed by adding noise and altering the input
image. Lastly, themean and standard deviation of the network
decisions are computed, which serve as an estimation on the
network confidence.

We also introduce the concept of virtual histology visual
report. The virtually stained H-E image serves as a visual
report where clinicians can validate the algorithm error based
on the appearance of already established imaging techniques
such asH-E. This report is not based on perceptually plausible
reconstructions such as [41] or [58], but on minimizing the
reconstruction error both on the image domain and in the
image embedding domain.

B. CROSS-DOMAIN IMAGE TRANSLATION
1) AF PROBE IMAGE TO H-E DOMAIN RECONSTRUCTION
NETWORK
In this section, we validate our proposed Lissajous pat-
tern reconstruction network. For this, we assimilate this
problem to a classical inpainting method where the source
region is defined by the Lissajous pattern mask. We use
as baseline the state-of-the-art Navier-Stokes based image
restoration method [59]. We compare it against the pro-
posed fully convolutional regression densenet defined in
section IV-A1. We train two translation networks following
the three approaches described in section IV-B. One learnt
network covers the direct problem where an AF image is
degraded while the other approximates to the inverse problem
that reconstructs the degraded image.We train these networks
over the training subset of the human simulated AF dataset
Ds. Table 1 shows the obtained results over the testing set of
this dataset. We can appreciate that the three neural networks
outperform the Navier-Stokes reconstruction baseline. It can
be also appreciated that, when using the simultaneous training
of the inverse and direct transform with the cycle network,
the back-projected image into its original domain degradation
error is greatly reduced, especially when using the Siamese
cycle network architecture.

Figure 15 shows the reconstruction obtained both with
the Navier-Stokes approach and with the fully convolutional

FIGURE 15. Lissajous pattern reconstruction with Navier-Stokes
reconstruction baseline and with the proposed fully convolutional
regression densenet.

TABLE 1. Lissajous pattern reconstruction.

densenet regression network. It can be appreciated that the
densenet reconstruction restores more similar and sharper
edges.

2) H-E VIRTUAL STAINING NETWORK
In order to validate our proposed virtual staining network,
we compare the three approaches described in section IV-B
by training the proposed fully convolutional regression
densenet defined in section IV-A2. We train two transla-
tion networks, one covering the direct problem (virtual
de-staining) and another one covering the inverse problem
(virtual staining) We train these networks over the training
subset of the human simulated AF dataset Ds and its original
H-E dataset. Table 2 shows the obtained results over the
testing set of this dataset. We can appreciate that the three
neural networks obtain similar virtual staining errors. How-
ever, when de-staining the virtually stained image, we can
appreciate that the proposed cycle network and symmetric
cycle network architecture obtain better reconstruction errors.

Figure 16 shows that the structure and colorizing of the
network is appropriately recovered.

TABLE 2. Virtual staining reconstruction.

C. OPTICAL BIOPSY
In this section, we compare the results of the two proposed
algorithms for optical biopsy under the different configura-
tions proposed on this paper.
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FIGURE 16. Virtual staining (inverse) and de-staining (direct) of
autofluorescence microscopy image.

1) H-E CLASSIFIER
We validated the three training architectures against the test-
ing set of the Dt H-E dataset. Detailed results are shown
in table 3. It can be observed that the combination of the
Siamese cycle network with the high level visual embeddings
reconstruction constraint offers the best results. The regu-
larization of the Siamese cycle network avoids generating
reconstructions or transformations that alters the high level
representation of the image.

TABLE 3. H-E optical biopsy classifier metrics.

This is also beneficial from the clinical point of view as
all transformations on the target domain Dt are enforcing
indirectly that the transformation does not alter the visual
perception of the sample from a diagnostics point of view.
This overcomes one of the issues when using other methods
such as GANs, which create a distortion to make the image
visually appealing while penalizing the similarity factor. [43].

As shown in Table 3, we demonstrate that virtually recon-
structed and stained images perform with BAC greater than
0.85 when applied to H-E domain native classifiers which
is not far from the BAC = 0.89 that we obtain when we
perform the same experiment using the original undegraded
H-E images. This is of tremendous importance as no exten-
sive datasets are required for generating a classifier, and
just a reduced number image pairs from both modalities
are required. When applying the proposed Siamese cycle
network together with the imposed visual embedding sim-
ilarity constraint, balanced accuracy (BAC) increases up to

0.88. The accuracy of this method was statistically validated
against the baseline densenet model using the McNemar [60]
test at the 95% confidence interval obtaining a p < 0.001
(significant).

Figure 17 shows reconstruction and classification results
from several images.

FIGURE 17. Examples of optical biopsy algorithm outputs. Top-Left)
Tumoral sample classified as tumoral, Top-Right) Healthy sample
classified as healthy, Bottom-Left) Tumoral sample classified as tumoral,
Bottom-Right) Healthy sample classified as tumoral.

However, as explained in section III-A,Dt dataset presents
tiles that are not representative of their labeled class due to the
extension of the microscopy H-E images presenting lesions
of different degrees along the full tissue image. Because of
this, we perform the same analysis over Dtsure dataset that
presents only tiles that are representative of the targeted class.
Results on this validation are showed in table 4, where the
obtained BAC reaches 0.95 with a negative predictive value
of 1.00 when including the high level fi termwith the Siamese
Cycle-Network architecture. The accuracy of thismethodwas
statistically validated against the baseline densenet model
using the McNemar [60] test at the 95% confidence interval
obtaining a p = 0.031 (significant).

TABLE 4. H-E optical biopsy classifier metrics over Dtsure (Representative
tiles).

These metrics similar (BAC = 0.95) to the ones we
obtain when using the original undegraded H-E images.,
the obtained BAC reaches same value than when using the
original H-E images.

2) ANALYSIS OF THE PREDICTION SELF-CONFIDENCE
ESTIMATION
We applied test time augmentation [57] to regularize network
response and to map a posterior probability estimation of
the network predictions. We use the validation subset of the
human simulated AF dataset Ds to establish a threshold that
maximizes the balanced accuracy metric. We define also a
confidence margin value around this threshold value that
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makes network predictions falling on that range to be marked
as uncertain. We apply this threshold and uncertainty margin
to the testing set of the dataset. In figure 18, we show the
effect of this margin for all the testing subset of Ds where we
have applied the H-E classifier as explained in section V-A.
For this configuration, we use Siamese cycle network for
Lissajous pattern reconstruction and Siamese cycle network
with visual embeddings for the virtual H-E staining with the
class embedding regularization. We can observe a perfor-
mance increment as we increase the uncertain margin, getting
close to BAC of 0.91 just considering 10% of the images as
uncertain and reaching 0.93 when we classify as uncertain
20% of the input images.

FIGURE 18. Effect of confidence margin on performance metrics on the
BIOPOOL H-E dataset.

When applying the confidence margin to the testing part of
theDtsure subset, we can observe in figure 19 that even consid-
ering only a 10% of the images as uncertain, the BAC reaches
0.98 which validates the confidence margin approach.

FIGURE 19. Effect of confidence margin on performance metrics on the
BIOPOOL H-E dataset over the Dtsure subset.

VI. DISCUSSION
Results showed that proposed algorithm can accurately trans-
late images from one imaging modality Ds into another Dt .
Besides this, when employing the Siamese cycle-network we

are able to obtain the same classification performance than
when using the chemically stained H-E data showing that the
proposed method can recover inherent features incorporated
on the image. This avoids the need for manual labeling on
the novel modality domainDs as only co-registered images in
bothmodalities are required to generate the translationmodel.

However, fully corregistered images are still required for
training this domain translation model. Although this is an
affordable problem for ex-vivo applications where we can
scan and corregister the data among different images modal-
ities, it is not feasible in the case of in-vivo fluorescence
as we cannot H-E stain and process the in-vivo tissue. For
that, it makes necessary to include the effect of fluorescence
intensity variations that occur on the ex-vivo case. On one
hand, convolutional neural networks learnt filters directly
deal with intensity increments rather than with absolute val-
ues [61] that partially overcome this problem. On the other
hand, we have incorporated during the training process a
random augmentation over the intensity images to help the
algorithm model this variability. However, it is still necessary
to validate real performance with real in-vivo fluorescence
data where movement artifacts, non-uniform optical excita-
tion and autofluorescence intensity fluctuation effects have
to be tackled [55]. Future work should focus on removing the
need for strict full co-registering among modalities.

VII. CONCLUSION
In this paper we have proposed a baseline method based
on regression fully convolutional densenet that is able to
translate images from AF domains, virtually reconstruct and
stain the image. Over this baseline model we have proposed
the following innovations: - In order to minimize the per-
ception distortion trade-off problem [43], we enforce the
minimization of reconstruction error not only at pixel-level
through enforcing minimization of the mean absolute error at
pixel-level but also at the feature-level by enforcing similarity
between the original and reconstructed image embeddings.
- In order to stabilize this method, we propose a Siamese
cycle network that is able to enforce bijectivity property of
the learned transformation functions.

These improvements can be implemented as a modifica-
tion on the training loss function. This implies that can be
build on top of any existing network architecture for domain
translation including GANs.

We also demonstrate that this reconstructed and virtually
stained images can be used on classification models that
previously existed on the target domain. When employing
the proposed Siamese Cycle-Network architecture together
with high-level features term, we obtain balanced accuracies
of 0.95 and negative predictive values of 1.00. These values
are in agreement to the results obtained with the original
H-E images. This is of great importance as we eradicate the
need for extensive and labeled datasets on the source domain,
which are normally non affordable on the early stage clinical
studies.
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As the reconstruction models enforce transformed image
similarity not only at pixel level but also at the image descrip-
tive level (visual embeddings), the generated images can
be used by clinicians as a histology virtual report to verify
the algorithm assessment on already known target domain
(optical microscopy with H-E stained slides). The developed
algorithm requires paired training data among the different
domains. Future work will focus on dealing with not perfectly
or non-aligned domains. We have also introduced the concept
of uncertainty range where the network is not confident on
its own prediction. Increasing this uncertainty range leads to
higher performance on the network output which allows also
to determine if additional confirmation analysis is needed.
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