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ABSTRACT This paper investigates the learning - based adaptive anti-coupling control issue for the robots
under input and structural coupled uncertainties. In this paper, the input and structural coupled uncertainties
are modeled and transformed into a system state related term, an internal state related term and a system
input related term. With the aid of the actual exponential input-state stability and the dynamic auxiliary
signal, the internal state related uncertainties can be suppressed. By utilizing the properties of the robot
dynamics and several special nonlinear functions, the system state related uncertainties can be handled.
Moreover, to overcome the system input related uncertainties, an indirect control law and the adaptive
boundary estimation law have been designed. To simplify the control structure, the neural networks have
been introduced as online approximators. Finally, a novel learning-based intelligent adaptive anti-coupling
control structure has been established for the robots. The simulation results revealed the satisfactory control
performance of the proposed anti-coupling control algorithm.

INDEX TERMS Adaptive control, adaptive algorithm, uncertain systems, nonlinear dynamical systems,
robot control.

I. INTRODUCTION
In the past decades, the methodologies and techniques of
robots have been the focus of studying and fruitful results
have been reported in this category. Generally speaking, the
robots can be mainly divided into wheeled, tracked, legged,
crawling and hybrid robots according to their moving modes.
The robots possess expansive application prospects in several
fields, such as aerospace, national defense and military, space
exploration, emergency and disaster relief, medical service,
warehouse logistics, and so on. Since the legged robots pos-
sess notable advantages in terrain adaptability, motion flexi-
bility and obstacle-crossing capability, many researchers have
carried out the research upon the legged robots, including the
biped robots [1]–[8], quadruped robots [9]–[16] and hexapod
robots [17]–[25]. The research of the bionic robots can be

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Wang .

found in [26], [27], imitating the exquisite structure, external
shape, motion principle and behavioral way of living beings
in nature. The research of the underwater robots can be
found in [28]–[30], involving the experiment platform, the
simulation analysis and the control techniques. For the space
robots, the research results can be found in [31], [32] and the
references therein. In the corresponding techniques, the con-
trol technique play an important role for completing all kinds
of complex tasks and guaranteeing the desired performance.

In recent years, to satisfy the increasing requirements of
control tasks, the advanced control methods have been the
research hotspot [73]–[75]. For the control problem of the
nonlinear systems, researchers have proposedmany advanced
control methods, such as H∞ control [33], [34], sliding
mode control (SMC) [35]–[41], adaptive control [42], [43],
active disturbance rejection control (ADRC) [44], [45], dis-
turbance observer-based control (DOBC) [46]–[49]. SMC
can effectively suppress matching interference or uncertainty,
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and has become an important control method for uncertain
systems [50]–[52]. Aiming at the uncertain systems with a
relative order of 1, literature [53] proposed a second-order
sliding mode method, ensuring the robustness of the system
and can reduce chattering. Literature [54]–[56] proposed the
Lyapunov method for analyzing the characteristics of the
super-twist algorithm. Based on this idea, literature [57] fur-
ther proposed a multi-variable super-twisted sliding mode
control method. Literature [58] proposed a smooth second-
order sliding mode control law, and proved the convergence
of the closed-loop uncertain system using the homogeneous
theorem. By introducing dynamic gain, literature [41] pro-
posed an adaptive smooth second-order SMC scheme.

In actual control systems, the disturbances and uncertain-
ties are unavoidable, and may reduce control accuracy or
cause instability [46], [59], [60]. In recent years, the control
methods based on disturbance estimation and compensation
have also been extensively studied [46], [60]. Literature [61]
introduced a disturbance observation device into the tradi-
tional proportional-derivative control structure, and improved
the attitude stabilization and tracking control accuracy of
the flexible spacecraft. Literature [62] developed a variable
gain sliding mode disturbance observer, which can effec-
tively estimate the time-varying disturbance signals without
superabundant prior information. Literature [63] proposed a
stochastic disturbance observer, which can effectively sup-
press the stochastic disturbances existing in the control sys-
tem. Literature reviews [46] the control methods based on
disturbance observers. In actual engineering applications,
the disturbance and uncertainties factors usually possess
multiple sources. In order to solve this problem, literature
constructed [64] a composite hierarchical anti-disturbance
control (CHADC) structure. Based on this idea, literature [65]
explored a combined adaptive disturbance control method
for the nonlinear systems with multi-source disturbance and
time-varying unknown parameters. For the Markov jump
system under the influence of multi-source disturbances, lit-
erature [66] proposed an effective composite anti-disturbance
control strategy, which enables the system to achieve effective
stabilization under the influence of unknown nonlinearities
andmulti-source disturbances. By introducing fuzzy adaptive
update law in the DOBC framework, literature [67] proposed
an intelligent anti-disturbance control scheme. To handle the
mismatched uncertainties, literature [37] proposed an integral
SMC method by using a disturbance observer, and designed
the memory and memoryless type sliding mode surfaces.
To overcome the multi-source mismatched disturbances, the
literature [68] introduced the composite hierarchical anti-
disturbance strategy into the backstepping control frame-
work, which can realize the precise control of the high-
order disturbed systems. Nevertheless, there are few control
results have been obtained for the nonlinear system suffering
dynamic coupling uncertainties. For the robots suffering from
the dynamic coupling, it is difficult to apply the reported anti-
disturbance control methods to achieve precise control. Fur-
thermore, if the internal dynamics of coupled uncertainties

are related to the system states and the system inputs, the
control system are suffering from the input and structural cou-
pled uncertainties, and the existing anti-disturbance control
methods are difficult to achieve the desired control effect.
As far as the authors know, the adaptive anti-coupling control
for the robots under input and structural coupled uncertainties
has never been investigated.

In this paper, we consider the adaptive anti-coupling con-
trol problem for the robots under input and structural cou-
pled uncertainties. Firstly, the input and structural coupled
uncertainties are modeled and transformed into a system
state related term, an internal state related term and a sys-
tem input related term, and by using the actual exponential
input-state stability as well as a dynamic auxiliary signal,
the internal state related uncertainties can be suppressed.
Secondly, by taking full advantage of the properties of the
dynamic characteristics of the robots and using several spe-
cial nonlinear functions, the system state related uncertainties
can be handled. Moreover, to overcome the system input
related uncertainties, an indirect control law and the adaptive
boundary estimation law have been designed. To simplify the
control structure, the neural networks have been introduced as
online approximators. Finally, a novel learning-based intelli-
gent adaptive anti-coupling control structure has been estab-
lished for the robots. The proposed control algorithm possess
the following features:
• As far as the authors know, it is the first anti-coupling
control structure for the robots suffering from the input
and structural coupled uncertainties.

• The proposed anti-coupling algorithm can be extended
to a wide category of practical engineering systems with
coupled uncertainties.

• By introducing the neural networks, the control structure
has been simplified and the control complexity can be
reduced.

II. THE ROBOT MODEL WITH INPUT AND STRUCTURAL
COUPLED UNCERTAINTIES
Assuming that the robot is composed of rigid parts and rigid
connections, without considering the flexibility of the robotic
arm and the liquid sloshing, the kinematics and dynamics
model of robot system can be established as

H (q)q̈+ C(q, q̇)q̇ = τ (t) (1)

where q(t) ∈ Rn denotes the states of the robot,H (q) ∈ Rn×n

is the inertia matrix, C(q, q̇) ∈ Rn×n is the nonlinear term
including centrifugal force and coriolis force, τ (t) ∈ Rn is
the control torque exerted on the base and joints.

Define w = q̇, then the kinematics dynamic model of the
robot system can be given by

q̇(t) = w(t)

ẇ(t) = −H−1(q)C(q,w)w+ H−1(q)τ (t) (2)

In practical, the influence of coupling uncertainty is hard to
avoid. Coupling uncertainties include the coupling between
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channels of the control system and the coupling between sys-
tem state and input signals. Ignoring the coupling uncertainty
may induce the instability of the closed-loop system. Define
χ (q(t),w(t), τ (t), η(t)) ∈ Rn as the coupling uncertainty,
which is affected by the system state and input signal, and
there is an unmodeled state η(t) ∈ Rp inside it. The dynamic
characteristics of η(t) can be expressed as

η̇(t) = fη(η(t), q(t),w(t), τ (t)) (3)

Considering the coupling uncertainty and external distur-
bances, the kinematics dynamic model of the robot system
can be established as

q̇(t) = w(t)

ẇ(t) = −H−1(q)C(q,w)w+ H−1(q)τ (t)+ H−1(q)d(t)

+H−1(q)χ (q(t),w(t), τ (t), η(t)) (4)

Define

x1(t) = q(t), x2(t) = w(t)

x(t) =
[
xT1 (t), x

T
2 (t)

]T
f (x(t)) = −H−1(q)C(q,w)w

g(x(t)) = H−1(q), u(t) = τ (t) (5)

It is easy to know that the uncertain nonlinear differential
equation (4) is equivalent to

ẋ1 (t) = x2 (t)

ẋ2 (t) = f (x (t))+ g (x (t))
[
u (t)+ d (t)
+χ (x (t) , u (t) , η (t))

]
η̇ (t) = fη (η (t) , x (t) , u (t)) (6)

Define the desired signal as yd (t), the inner loop tracking
error as e1(t) = x1(t) − yd (t), and the outer loop tracking
error as e2(t) = x2(t) − x2c(t), where x2c(t) is the inner loop
virtual control signal. Therefore, combined with equation (6),
equation (7) can be obtained to describe the dynamic features
of the tracking error:

ė1 (t) = x2c (t)+ e2 (t)− ẏd (t)

ė2 (t) = f (x (t))− ẋ2c (t)

+ g (x (t))

[
u (t)+ d (t)

+ χ (x (t) , u (t) , η (t))

]
η̇ (t) = fη (η (t) , x (t) , u (t)) (7)

The objective of this paper is to design an adaptive anti-
coupling control signal to ensure the stability of the robot
dynamics equation (7) under the input and structural coupled
uncertainties.

In order to achieve the control goal, the following assump-
tions, lemmas and properties are necessary:
Assumption 1: The coupling uncertainties are assumed to

satisfy that

χ (q(t),w(t), τ (t), η(t)) ≤ ϕ1(q(t),w(t))+ϕ2(η(t))+pτ τ (t)

(8)

where ϕ1(q(t),w(t)), ϕ2(η(t)) are unknown non-negative
smooth functions. pτ ∈ (−1, 1) is a constant. At the same
time, it is assumed that the unmodeled dynamic η(t) has
actual exponential input-state stability. That is, there exists
a Lyapunov function Vη(η(t)) that satisfies

α1(η(t)) ≤ Vη(η(t)) ≤ α2(η(t))
∂Vη(η(t))
∂η(t)

fη(η(t), q(t),w(t), τ (t)) ≤ −γ3Vη(η(t))

+ ρ(q(t),w(t))+ γ4
(9)

where α1(η(t)), α2(η(t)) are K∞ functions. γ3, γ4 are normal
numbers. ρ(q(t),w(t)) = qT (t)q(t)+ wT (t)w(t).
Lemma 1 [69]: For any ε > 0, define set �ε ={
x
∣∣∣||x|| < 0.2554ε

}
. Then, for any x /∈ �ε, the following

inequality holds:

1− 16 tanh2
(x
ε

)
≤ 0 (10)

Lemma 2 [70]: Given any constant ε > 0 and vector
ξ ∈ Rn, the following inequity holds:

‖ξ‖ <
ξT ξ√
ξT ξ + ε2

+ ε (11)

Lemma 3 [71]: Let f : R → R represent any continu-
ous differentiable function defined on [0,∞), and lim

t→∞
f (t)

exists and possesses upper bound. If its derived function is
uniformly continuous, then lim

t→∞
ḟ (t) = 0.

Obviously, the concerned robots possess the following
properties:
Property 1 [72]: C(q, q̇) can be chosen so that Ḣ − 2C is

an antisymmetric matrix, which is

xT (Ḣ − 2C)x = 0, ∀x ∈ Rn (12)

Property 2 [72]: H (q) is positive definite bounded, satis-
fying

h1I ≤ H (q) ≤ h2I (13)

where h1, h2 > 0 are constants �.
Property 3 [72]: H (q) is not singular, that is, there is

H−1(q) �.

III. INTELLIGENT ADAPTIVE ANTI-COUPLING CONTROL
STRUCTURE
In this section, a robust adaptive control scheme is given.
Firstly, we introduce the dynamic signal r(t), which is gener-
ated according to the following equation:

ṙ(t) = −γ0r(t)+ ρ(x(t)), r(0) = r0 (14)

where γ0 ∈ (0, γ3). The dynamic signal r(t) has the following
properties:

r(t) ≥ 0, ∀t ≥ 0

Vη(η(t)) ≤ r(t)+ εr (15)
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where εr = Vη(η(0))+γ4/γ3. In view of the first equation of
(7), design the virtual control signal of inner loop as follows

x2c(t) = −k0

∫ t

0
e1(τ )dτ − k1e1(t)+ ẏd (t) (16)

where k0, k1 > 0 are the control gains. Simple analysis show
that

eT2 (t)g(x(t))χ (x(t), u(t), η(t))

≤

∥∥∥eT2 (t)g(x(t))∥∥∥ (ϕ1(x(t))+ ϕ2(η(t))+ puu(t)) (17)

According to Lemma 2, it is easy to know∥∥∥eT2 (t)g(x(t))∥∥∥ϕ1(x(t))
≤ eT2 (t)g(x(t))ϕ̄1(e2(t), x(t))+ ε1∥∥∥eT2 (t)g(x(t))∥∥∥ϕ2(η(t))
≤

∥∥∥eT2 (t)g(x(t))∥∥∥ϕ2 ◦ α−11 (2r(t))

+

∥∥∥eT2 (t)g(x(t))∥∥∥ϕ2 ◦ α−11 (2εr ) (18)

where ε1 > 0 is an constant,

ϕ̄1(e2(t), x(t)) =
ϕ1(x(t))eT2 (t)g(x(t))ϕ1(x(t))√[
eT2 (t)g(x(t))ϕ1(x(t))

]2
+ ε21

(19)

Further, based on Young’s inequality, we know that∥∥∥eT2 (t)g(x(t))∥∥∥ϕ2(η(t))
≤ eT2 (t)g(x(t))ϕ̄2(e2(t), x(t), r(t))

+ ε2 +
1
4
eT2 (t)g

T (x(t))g(x(t))e2(t)+ ε3 (20)

where ε2 > 0 is an constant,

ϕ̄2(e2(t), x(t), r(t))

=
ϕ2 ◦ α

−1
1 (2r(t))eT2 (t)g(x(t))ϕ2 ◦ α

−1
1 (2r(t))√[

eT2 (t)g(x(t))ϕ2 ◦ α
−1
1 (2r(t))

]2
+ ε22

ε3 =
[
ϕ2 ◦ α

−1
1 (2εr )

]2
(21)

Aiming at the dynamic equation of the outer-loop tracking
error, a neural network is introduced to reduce the control
complexity:

2T8(e2(t), x(t), r(t))+ ε2
= ϕ̄1(e2(t), x(t))+ ϕ̄2(e2(t), x(t), r(t)) (22)

On the other hand, the control signal u(t) can be designed
to satisfy eT2 (t)g(x(t))u(t) < 0, then the following inequality
holds:

eT2 (t)g(x(t))u(t)+
∥∥∥pueT2 (t)g(x(t))u(t)∥∥∥

≤ eT2 (t)g(x(t))u(t)− ‖pu‖ e
T
2 (t)g(x(t))u(t)

≤ (1− ‖pu‖)eT2 (t)g(x(t))u(t) (23)

Based on the above analysis, we design the nominal outer
loop controller as

uc(t) = g−1(x(t))

−k2e2(t)− e1(t)− f (x(t))−ϕρ(x(t), e2(t))
−2̂T8(e2(t), x(t), r(t))+ ẋ2c(t)


− D̂ϕd (x(t), e2(t))−

1
4
g(x(t))e2(t) (24)

where ϕd (x(t), e2(t)) is the function vector of x(t) and e2(t),
defined as

ϕd (x(t), e2(t), εd ) =
g(x(t))e2(t)√

eT2 (t)g(x(t))g(x(t))e2(t)+ ε
2
d

(25)

where εd > 0 is any normal constant. ϕρ(x(t), e2(t)) will be
explained later. Further, define ϑ = 1/inft≥0 [1− ‖pu‖]. The
actual outer loop controller is designed as

u(t) = −
ϑ̂uc(t)[eT2 (t)g(x(t))ϑ̂uc(t)]√[
eT2 (t)g(x(t))ϑ̂uc(t)

]2
+ ε2v

(26)

where D̂, 2̂, ϑ̂ is the estimated value of D, 2, ϑ . D =
supt≥0 ‖d(t)+ ε2‖. The adaptive law of D̂, 2̂, ϑ̂ is designed
as

˙̂D = 0DeT2 (t)g(x(t))ϕd (x(t), e2(t))− 0DλDD̂
˙̂
2 = 028(e2(t), x(t), r(t))eT2 (t)− 02λ22̂
˙̂
ϑ = −0ϑeT2 (t)g(x(t))uc(t)− 0ϑλϑ ϑ̂ (27)

where 0D, 02, 0ϑ , λD, λ2, λϑ are all positive design
parameters.

The stability of the control structure can be shown by the
following theorem.
Theorem 1: Considering the closed-loop control system

composed of the tracking error dynamic equation of the
robot (7), the control law (26) and adaptive law (27). Then
all signals are ultimately bounded during the whole control
process, and the tracking error will converges to zero finally.

Proof: Define D̃ = D̂ − D, 2̃ = 2̂ − 2, ϑ̃ = ϑ̂ − ϑ ,
e0(t) =

∫ t
0 e1(s)ds. By substituting equations (16) and (24)

into equation (7), we can get that
ė0(t) = e1(t)

ė1(t) = −k0e0(t)− k1e1(t)+ e2(t)

ė2(t) = −k2e2(t)− e1(t)

+ g(x(t)) [u(t)+ d(t)+ χ (x(t), u(t), η(t))]

− 2̂T8(e2(t), x(t), r(t))− g(x(t))uc(t)

− D̂g(x(t))ϕd (x(t), e2(t))

−
1
4
gT (x(t))g(x(t))e2(t)− ϕρ(x(t), e2(t)) (28)

The following Lyapunov function is selected

V = V1 + V2,V1 =
1
2
eT0 (t)e0(t)+

1
2
eT1 (t)e1(t)

V2 =
1
2
eT2 (t)e2(t)+

1
2
Tr(2̃T0−12 2̃)

+
1

20D
D̃2
+

1
2ϑ0ϑ

ϑ̃2
+

r
0r

(29)
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where 0r > 0 is a normal constant. By using equation (28),
the derivative of V1 can be easily obtained:

V̇1 = eT0 (t)e1(t)− k0e
T
1 (t)e0(t)− k1e

T
1 (t)e1(t)+ e

T
1 (t)e2(t)

(30)

Define ē1 =
[
eT0 (t), e

T
1 (t)

]T . Equation (30) can be rewritten
as

V̇1 = −ēT1 (t)Qē1(t)+ e
T
1 (t)e2(t) (31)

where

Q =
[

0 −I3
k0I3 k1I3

]
(32)

Similarly, using equation (28) and the dynamic equation
(14) of the dynamic signal r(t), the derivative of V2 can be
obtained as

V̇2 = −k2eT2 (t)e2(t)− e
T
2 (t)e1(t)+ e

T
2 (t)g(x(t))u(t)

+ eT2 (t)g(x1(t), x2(t))dt − e
T
2 (t)g(x(t))uc(t)

+ eT2 (t)g(x(t))χ (x(t), u(t), η(t))

− eT2 (t)2̂
T8(e2(t), x(t), r(t))

− eT2 (t)D̂g(x(t))ϕd (x(t), e2(t))

−
1
4
eT2 (t)g

T (x(t))g(x(t))e2(t)

− eT2 (t)ϕρ(x(t), e2(t))+ Tr(2̃
T0−12

˙̂
2)

+
1
0D

D̃ ˙̂D+
1
ϑ0ϑ

ϑ̃
˙̂
ϑ −

γ0

0r
r(t)+

ρ(x(t))
0r

(33)

For any vector ξ ∈ Rn, define

Tanh(ξ (t)) = [tanh ξ1(t), tanh ξ2(t), . . . , tanh ξn(t)]T (34)

Then, it is easy to know that

ρ(x(t))
0r

=
ρ(x(t))
0r

(
1− 16TanhT

(
e2(t)
ερ

)
Tanh

(
e2(t)
ερ

))
+ eT2 (t)ϕρ(x(t), e2(t)) (35)

where

ϕρ(x(t), e2(t))

=
16e2(t)ρ(x(t))

0reT2 (t)e2(t)
TanhT

(
e2(t)
ερ

)
Tanh

(
e2(t)
ερ

)
(36)

Note that ϕρ(x(t), e2(t)) is a non-singular function vector for
e2(t). Hence, by combining with equation (33) we can get that

V̇2 = −k2eT2 (t)e2(t)− e
T
2 (t)e1(t)+ e

T
2 (t)g(x(t))u(t)

+ eT2 (t)g(x1(t), x2(t))dt − e
T
2 (t)g(x(t))uc(t)

+ eT2 (t)g(x(t))χ (x(t), u(t), η(t))

− eT2 (t)2̂
T8(e2(t), x(t), r(t))

− eT2 (t)D̂g(x(t))ϕd (x(t), e2(t))

−
1
4
eT2 (t)g

T (x(t))g(x(t))e2(t)

+ ρ(x(t))
(
1−16 tanhT

(
e2(t)
ερ

)
tanh

(
e2(t)
ερ

))/
0r

+Tr(2̃T0−12
˙̂
2)+

1
0D

D̃ ˙̂D+
1
ϑ0ϑ

ϑ̃
˙̂
ϑ −

γ0

0r
r(t) (37)

Then from equations (17)–(21), it can be known that

eT2 (t)g(x(t))χ (x(t), u(t), η(t))

≤ eT2 (t)g(x(t))ϕ̄1(e2(t), x(t))

+ eT2 (t)g(x(t))ϕ̄2(e2(t), x(t), r(t))

+
1
4
eT2 (t)g

T (x(t))g(x(t))e2(t)

+ ‖pu‖
∥∥∥eT2 (t)g(x(t))u(t)∥∥∥+ 3∑

i=1

εi (38)

By using the neural network approximate equation (22),
we have

eT2 (t)g(x(t))χ (x(t), u(t), η(t))

≤ eT2 (t)g(x(t))(2
T8(e2(t), x(t), r(t))+ ε2)

+
1
4
eT2 (t)g

T (x(t))g(x(t))e2(t)

+ ‖pu‖
∥∥∥eT2 (t)g(x(t))u(t)∥∥∥+ 3∑

i=1

εi (39)

Considering the value range of pu and the form of u(t), it is
easy to know eT2 (t)g(x(t))u(t) < 0. Therefore, equation (39)
can be rewritten as

eT2 (t)g(x(t))χ (x(t), u(t), η(t))

≤ eT2 (t)g(x(t))(2
T8(e2(t), x(t), r(t))+ ε2)

+
1
4
eT2 (t)g

T (x(t))g(x(t))e2(t)

−‖pu‖ eT2 (t)g(x(t))u(t)+
3∑
i=1

εi (40)

Substituting equation (40) into equation (37) yields

V̇2 ≤ −k2eT2 (t)e2(t)− e
T
2 (t)e1(t)

+ (1− ‖pu‖)eT2 (t)g(x(t))u(t)

+ eT2 (t)g(x1(t), x2(t)) (dt + ε2)

− eT2 (t)2̂
T8(e2(t), x(t), r(t))− eT2 (t)g(x(t))uc(t)

− eT2 (t)D̂g(x(t))ϕd (x(t), e2(t))

+ ρ(x(t))
(
1−16TanhT

(
e2(t)
ερ

)
Tanh

(
e2(t)
ερ

))/
0r

+Tr(2̃T0−12
˙̂
2)+

1
0D

D̃ ˙̂D

+
1
ϑ0ϑ

ϑ̃
˙̂
ϑ −

γ0

0r
r(t)+

3∑
i=1

εi (41)

By using Lemma 2, we have

eT2 (t)g(x(t)) (dt + ε2)− e
T
2 (t)D̂g(x(t))ϕd (x(t), e2(t))

≤ D
∥∥∥eT2 (t)g(x(t))∥∥∥− eT2 (t)D̂g(x(t))ϕd (x(t), e2(t))

≤ −D̃eT2 (t)g(x(t))ϕd (x(t), e2(t))+ Dεd (42)
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On the other hand, with the aid of Lemma 2 we can also
obtain the following inequality

(1− ‖pu‖)eT2 (t)g(x(t))u(t)− e
T
2 (t)g(x(t))uc(t)

=
1− ‖pu‖ [eT2 (t)ϑ̂g(x(t))uc(t)]

2√[
eT2 (t)ϑ̂g(x(t))uc(t)

]2
+ ε2v

− eT2 (t)g(x(t))uc(t)

≤ −
1
ϑ

[eT2 (t)ϑ̂g(x(t))uc(t)]
2√[

eT2 (t)ϑ̂g(x(t))uc(t)
]2
+ ε2v

− eT2 (t)g(x(t))uc(t)

≤
1
ϑ

(
−

∥∥∥eT2 (t)ϑ̂g(x(t))uc(t)∥∥∥+ εv)− eT2 (t)g(x(t))uc(t)
≤

1
ϑ

(
ϑ̃eT2 (t)g(x(t))uc(t)+ εv

)
(43)

Therefore, combining equations (41), (42) and (43), it can be
concluded that

V̇2 ≤ −k2eT2 (t)e2(t)− e
T
2 (t)e1(t)

− eT2 (t)2̃
T8(e2(t), x(t), r(t))

− D̃eT2 (t)g(x(t))ϕd (x(t), e2(t))

+
ϑ̃

ϑ
eT2 (t)g(x(t))uc(t)+ Tr(2̃

T0−12
˙̂
2)+

1
0D

D̃ ˙̂D

+ ρ(x(t))
(
1−16TanhT

(
e2(t)
ερ

)
Tanh

(
e2(t)
ερ

))/
0r

+
1
ϑ0ϑ

ϑ̃
˙̂
ϑ −

γ0

0r
r(t)+

3∑
i=1

εi + Dεd +
εv

ϑ
(44)

Substituting the adaptive law equation (27) into equation (44),
the following formula can be obtained:

V̇2 ≤ −k2eT2 (t)e2(t)− e
T
2 (t)e1(t)

− λ2Tr(2̃T 2̂)− λDD̃D̂− λϑ ϑ̃ ϑ̂

+ ρ(x(t))
(
1−16TanhT

(
e2(t)
ερ

)
Tanh

(
e2(t)
ερ

))/
0r

−
γ0

0r
r(t)+

3∑
i=1

εi + Dεd +
εv

ϑ
(45)

Due to

−2Tr(2̃T 2̂) ≤ −Tr(2̃T 2̂)+ Tr(2̃T 2̂)

−2D̃D̂ ≤ −D̃2
+ D2,−2ϑ̃ ϑ̂ ≤ −ϑ̃2

+ ϑ2 (46)

Equation (45) can be written as

V̇2 ≤ −k2eT2 (t)e2(t)− e
T
2 (t)e1(t)

−
λ2

2
Tr(2̃T 2̃)−

λD

2
D̃2
−
λϑ

2ϑ
ϑ̃2
−
γ0

0r
r(t)

+ ρ(x(t))
(
1−16 tanhT

(
e2(t)
ερ

)
tanh

(
e2(t)
ερ

))/
0r

+
λ2

2
Tr(2T2)+

λD

2
D2
+
λϑ

2
ϑ

+

3∑
i=1

εi + Dεd +
εv

ϑ
(47)

Thus, by combining equations (31) and (47) we can get

V̇ ≤ −γV + εf

+ ρ(x(t))
(
1− 16 tanhT

(
e2(t)
ερ

)
tanh

(
e2(t)
ερ

))/
0r

(48)

In equation (48),

γ = min
{
2λmin (Q) , 2k2, λmin (02) λ2
0DλD, 0ϑλϑ

}
εf =

3∑
i=1

εi + Dεd +
εv

ϑ
+
λ2

2
Tr
(
2T2

)
+
λD

2
D2
+
λϑ

2
ϑ

(49)

Define the following compact set:

�f =

{
x ∈ Rn

∣∣∣V (x) ≤ γ2/γ1}
�ρ =

{
x
∣∣∣||x|| < 0.2554ε

}
(50)

Based on Lemma 2, it is easy to know that if e2(t) ∈
�f
⋂
�ρ , the solution of the closed-loop control sys-

tem e0(t), e1(t), e2(t), D̃(t), 2̃(t), ϑ̃(t) are naturally bounded.
If e2(t) /∈ �f

⋂
�ρ , V̇ < 0 can be proved and V (t) gradually

decreases, and the solution will eventually converge to the set
�f
⋂
�ρ . Furthermore, since e0(t) is bounded, according to

Lemma 3, we know that when t → ∞, e1(t) → 0, that is,
the system tracking error gradually converges to 0. The proof
is complete. �
Remark 1: There indeed exist differences between the

proposed method and [60], [61], [67], [68]. Firstly, the
concerned uncertainties are different. In this paper, the
coupling uncertainty term is assumed to satisfy that
χ (q (t) , ω (t) , τ (t) , η (t)) ≤ ϕ1 (q (t) , ω (t))+ϕ2 (η (t))+
pτ τ (t). In other words, the uncertainties considered in this
paper are related to the system states and the control inputs
simultaneously. However, in [60], [61], [67], [68], the distur-
bances are supposed to be

d (t) = Vω (t)

ω̇ (t) = Wω (t)+ Hδ (t)

which means that the disturbances are generated by the inter-
nal states of an exogenous system, rather than the system
states and the control inputs. Moreover, the disturbances
handled by [68] are mismatched. Therefore, it can be known
that the concerned uncertainties are quite different. Secondly,
the control structure of the proposed method and [60], [61],
[67], [68] are different. In the proposed method, the nominal
outer loop controller is designed as

uc (t) = g−1 (x (t))


−k2e2 (t)− ϕρ (x (t) , e2 (t))
−e1 (t)− f (x (t))
−2̂T8(e2 (t) , x (t) , r (t))
+ẋ2c (t)


− D̂ϕd

(
x (t) , e2 (t)

)
−

1
4
g (x (t)) e2 (t)
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FIGURE 1. The structure diagram of the proposed control laws.

The actual outer loop controller is designed as

u (t) = −
ϑ̂uc (t)

[
eT2 (t) g (x (t)) ϑ̂uc (t)

]
√[

eT2 (t) g (x (t)) ϑ̂uc (t)
]2
+ ε2v

Moreover, in this paper, the uncertainties are handled by
using the adaptive laws. However, in [60], [61], [67],
[68], the control laws is designed as u (t) = Kx (t) −
θTϕ (x) − d̂ (t), and the uncertainties are deal with by
using the disturbance observer. Hence, it can be known that
there indeed exist differences between the proposed method
and [60], [61], [67], [68].

IV. SIMULATION STUDY
To reveal the effectiveness of the proposed intelligent adap-
tive anti-coupling control method for the robots under the
influence of the input and structural coupling uncertain-
ties, the tracking control experiment for the time-varying
desired signal are considered in this section. Moreover,
to show the advantages of the proposed NN-based adaptive
control (NNAC) with coupling uncertainties compensation
(CUC), theNNACmethodwithout CUC and the conventional
adaptive control method (AC) without CUC were considered
for comparison.

Considering the robot with 2 degrees of freedom, it is
easy to know that its inertia parameter matrix H (q) can be

formulated by:

H (q) =

 2p1c1 + 2p2c2 + 2p3c12 + p4 + p5 + p6
p1c1 + 2p2c2 + p3c12 + p4 + p5
p2c2 + p3c12 + p4

p1c1 + 2p2c2 + p3c12 + p4 + p5 p2c2 + p3c12 + p4
2p2c2 + p4 + p5 p2c2 + p4
p2c2 + p4 p4


(51)

where cij = cos [q(i)+ q(j)]

C =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (52)

In equation (52),

C11 = −p1q2ys1 − p2q2zs2 − p3(q2y + q2z)s12
C12 = −p1(q2x + q2y)s1 − p2q2zs2 − p3(q2x+q2y+q2z)s12
C13 = −(q2x + q2y + q2z)(p2s1 − p3s12)

C21 = p1q2xs1 − p2q2zs2 + p3q2xs12
C22 = −p2q2zs2,C23 = −p2(q2x + q2y + q2z)s2
C31 = p2(q2x + q2y)s2 + p3q2xs12
C32 = p2(q2x + q2y)s2,C33 = 0

sijk = sin [q1(i)+ q1(j)+ q1(k)] (53)

In the simulation, the inertia parameters of the robot are
shown in Table 1. Simple calculation show that p = col {pi}
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TABLE 1. Inertia parameters of the robot.

FIGURE 2. The tracking performance of the three control laws.

FIGURE 3. The tracking performance of the three control laws.

= [10.0035, 7.7841, 3.4628, 5.1357, 20.3174, 55.7713].
The unmodeled dynamics is supposed to be:

η̇(t) = −3η(t)+ q1(t)q2(t)q3(t)+ q̇1(t)q̇2(t)q̇3(t) (54)

The following coupling uncertainty including both input
and structural coupled uncertainties is considered:

χ (q(t),w(t), τ (t), η(t)) = 0.5q(t)sin(t)

+η(t)(q(t)+ q̇(t))− 0.2sin(η(t))τ (t) (55)

In the mathematical simulation, the initial value of the system
state quantity is selected as q(0) = [0.0675,−0.5738,0.4536]T ,
w(0) = [0, 0, 0]T , η(0) = 1. The expected signal is selected
as a time-varying signal. Select the second-order transfer
function as the pre-filter, and relevant parameters are selected
as ξ = 0.9, wn = 3. The dynamic auxiliary signal r(t) is
designed as

ṙ(t) = −5r(t)+ qT (t)q(t)+ q̇T (t)q̇(t), r(0) = 2 (56)
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FIGURE 4. The tracking performance of the three control laws.

FIGURE 5. The norm of the tracking errors.

The control gains are selected as k0 = 3, k1 = 6,
k2 = 6. The initial value of adaptive parameters are designed
as 2̂(0) = 0.01, ϑ̂(0) = 1.5, D̂(0) = 0.002. The gains of
adaptive laws are chosen as 02 = 3, 0ϑ = 0D = 2. The
other parameters of adaptive laws are selected as λ2 = 0.2,
λϑ = 0.1, λD = 5.

The tracking performance are shown in Fig.1–Fig.3. The
norm variation trend of tracking error is shown in Fig.4.

Fig.5 shows the trajectory of the adaptive parameters. Fig.6
displays the trajectories of the auxiliary signal r(t) and the
internal state η(t). It is easy to know that for the time-
varying desired signal, the method proposed in this paper can
maintain accurate tracking, and the overshoot and tracking
error can meet the requirements. Furthermore, the auxiliary
signal, and adaptive parameters are all stable. It can be con-
cluded that the proposed method can maintain fast tracking
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FIGURE 6. The adaptive terms.

FIGURE 7. The trajectories of the auxiliary signal r (t) and the internal state η(t).

of time-varying signals, and possess advantages compared to
the other two methods.
Remark 2: The gain selection should satisfy the following

rules:

1) The control gains and the adaptive gains should be
positive constants;

2) Generally speaking, the control gains should satisfy
that 1.5k0 ≤ k1 ≤ k2;

3) The adaptive damping parameters should satisfy that
λ2 ≤ 0.502, λϑ ≤ 0.50ϑ , λD ≤ 20D.

Based on the aforementioned rules, and through the adjust-
ment and iteration on the basis of the simulation results, the
design parameters can be finally selected.

V. CONCLUSION
In this paper, the adaptive anti-coupling control problem has
been investigated for the robots subjected to input and struc-
tural coupled uncertainties. Firstly, the input and structural
coupled uncertainties are modeled and transformed into three
terms of uncertainties. Secondly, the dynamic auxiliary signal
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has been introduced and as a result the internal state related
uncertainties have be suppressed. By utilizing the adaptive
boundary estimation law and several special nonlinear func-
tions, the system state related uncertainties and the system
input related uncertainties can be handled. Furthermore, the
neural networks are introduced to reduce the control com-
plexity. The simulation results revealed the effeteness of the
proposed anti-coupling control method. In the future, we will
consider the stochastic anti-coupling control for the robots.

REFERENCES
[1] H.-O. Lim and A. Takanishi, ‘‘Biped walking robots created at waseda

university: WL and WABIAN family,’’ Phil. Trans. Roy. Soc. A, Math.,
Phys. Eng. Sci., vol. 365, no. 1850, pp. 49–64, Jan. 2007.

[2] M. Hirose and K. Ogawa, ‘‘Honda humanoid robots development,’’ Phil.
Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 365, no. 1850, pp. 11–19,
Jan. 2007.

[3] G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings,
C. Lee, R. Playter, and M. Raibert, ‘‘PETMAN: A humanoid robot for
testing chemical protective clothing,’’ J. Robot. Soc. Jpn., vol. 30, no. 4,
pp. 372–377, 2012.

[4] Z. Xia, L. Liu, J. Xiong, Q. Yi, and K. Chen, ‘‘Design aspects and develop-
ment of humanoid robot THBIP-2,’’ Robotica, vol. 26, no. 1, pp. 109–116,
Jan. 2008.

[5] Z. Yu, Q. Huang, G. Ma, X. Chen, W. Zhang, J. Li, and J. Gao, ‘‘Design
and development of the humanoid robot BHR-5,’’ Adv. Mech. Eng., vol. 6,
Jan. 2014, Art. no. 852937.

[6] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, ‘‘Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot,’’
Auto. Robots, vol. 40, no. 3, pp. 429–455, Mar. 2016.

[7] T. Yoshiike, M. Kuroda, R. Ujino, H. Kaneko, H. Higuchi, S. Iwasaki,
Y. Kanemoto, M. Asatani, and T. Koshiishi, ‘‘Development of experimen-
tal legged robot for inspection and disaster response in plants,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vancouver, BC, Canada,
Sep. 2017, pp. 4869–4876.

[8] Q. Huang, T. Yang, W. Liao, W. Zhang, Z. Yu, X. Chen, and M. Ceccarelli,
‘‘Historical development of BHR humanoid robots,’’ in Proc. HMM
IFToMM Symp. History Mach. Mech., vol. 37, B. Zhang andM. Ceccarelli,
Eds. Cham, Switzerland: Springer, 2019, pp. 310–323.

[9] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, ‘‘BigDog, the
rough-terrain quadruped robot,’’ in Proc. 17th IFAC World Congr., Seoul,
South Korea, Jul. 2008, pp. 10822–10825.

[10] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, ‘‘Design of HyQ—A hydraulically and electrically
actuated quadruped robot,’’ Proc. IMechE I, J. Syst. Control Eng., vol. 225,
no. 6, pp. 831–849, Sep. 2011.

[11] X. Rong, Y. Li, J. Ruan, and B. Li, ‘‘Design and simulation for a
hydraulic actuated quadruped robot,’’ J. Mech. Sci. Technol., vol. 26, no. 4,
pp. 1171–1177, Apr. 2012.

[12] C. RunBin, C. YangZheng, L. Lin, W. Jian, and M. H. Xu, ‘‘Inverse
kinematics of a new quadruped robot control method,’’ Int. J. Adv. Robotic
Syst., vol. 10, no. 1, p. 46, Jan. 2013.

[13] L. Ding, ‘‘Key technology analysis of BigDog quadruped robot,’’ J. Mech.
Eng., vol. 51, no. 7, pp. 1–23, Apr. 2015.

[14] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Hoepflinger, ‘‘ANYmal—A highly
mobile and dynamic quadrupedal robot,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), Daejeon, South Korea, Oct. 2016, pp. 38–44.

[15] R. Xiong, ‘‘Development of bionic legged robot,’’ Robot Tech. Appl.,
vol. 30, no. 2, pp. 29–36, Apr. 2017.

[16] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim,
‘‘MIT cheetah 3: Design and control of a robust, dynamic quadruped
robot,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Madrid,
Spain, Oct. 2018, pp. 2245–2252.

[17] U. Saranli, M. Buehler, and D. E. Koditschek, ‘‘RHex: A simple and highly
mobile hexapod robot,’’ Int. J. Robot. Res., vol. 20, no. 7, pp. 616–631,
Jul. 2001.

[18] P. Gonzalez de Santos, J. A. Cobano, E. Garcia, J. Estremera, and
M. A. Armada, ‘‘A six-legged robot-based system for humanitarian demi-
ning missions,’’Mechatronics, vol. 17, no. 8, pp. 417–430, Oct. 2007.

[19] K. C. Galloway, G. C. Haynes, B. D. Ilhan, A. M. Johnson, R. Knopf,
G. A. Lynch, B. N. Plotnick, M. White, and D. E. Koditschek, ‘‘X-RHex:
A highly mobile hexapedal robot for sensorimotor tasks,’’ Dept. Elect.
Syst. Eng., Univ. Pennsylvania, Philadelphia, PA, USA, Tech. Rep.,
Nov. 2010.

[20] Y.-C. Chou, W.-S. Yu, K.-J. Huang, and P.-C. Lin, ‘‘Bio-inspired step-
climbing in a hexapod robot,’’ Bioinspir. Biomim., vol. 7, no. 3, pp. 1–19,
Sep. 2012.

[21] A. Roennau, G. Heppner, M. Nowicki, and R. Dillmann, ‘‘LAURON V:
A versatile six-legged walking robot with advanced maneuverability,’’ in
Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, Besacon, France,
Jul. 2014, pp. 82–87.

[22] H. Zhang, Y. Liu, J. Zhao, J. Chen, and J. Yan, ‘‘Development of a bionic
hexapod robot for walking on unstructured terrain,’’ J. Bionic Eng., vol. 11,
no. 2, pp. 176–187, Jun. 2014.

[23] A. Schneider, J. Paskarbeit, M. Schilling, and J. Schmitz, ‘‘HECTOR, a
bio-inspired and compliant hexapod robot,’’ inProc. 3rd Int. Conf. Biomim.
Biohybrid Syst., Living Mach., Milan, Italy, Jul. 2014, pp. 427–429.

[24] Y. Zhao, X. Chai, F. Gao, and C. Qi, ‘‘Obstacle avoidance and motion
planning scheme for a hexapod robot Octopus-III,’’ Robot. Auton. Syst.,
vol. 103, pp. 199–212, May 2018.

[25] B. D. Ilhan, A. M. Johnson, and D. E. Koditschek, ‘‘Autonomous legged
hill ascent,’’ J. Field Robot., vol. 35, no. 5, pp. 802–832, Aug. 2018.

[26] G. Ma, ‘‘Research evolution on biorobotics,’’ Robot, vol. 23, no. 5,
pp. 463–466, Sep. 2001.

[27] A.-H. Ji, Z.-D. Dai, and L.-S. Zhou, ‘‘Research development of bio-
inspired robotics,’’ Robot, vol. 27, no. 3, pp. 284–288, May 2005.

[28] J. Yuh, ‘‘Design and control of autonomous underwater robots: A survey,’’
Auton. Robot., vol. 8, no. 1, pp. 7–24, Jan. 2000.

[29] A. K. Khalaji and R. Zahedifar, ‘‘Lyapunov-based formation control of
underwater robots,’’ Robotica, vol. 38, no. 6, pp. 1105–1122, Jun. 2020.

[30] Z. Wang, H. Dang, T. Wang, and B. Zhang, ‘‘Design and simulation
analysis on underwater robots like reptiles,’’ J. Phys. Conf. Ser., vol. 1550,
May 2020, Art. no. 022016.

[31] C.Wei, J. Luo, H. Dai, Z. Bian, and J. Yuan, ‘‘Learning-based adaptive pre-
scribed performance control of postcapture space robot-target combination
without inertia identifications,’’ Acta Astronaut., vol. 146, pp. 228–242,
May 2018.

[32] C. Wei, J. Luo, H. Dai, and G. Duan, ‘‘Learning-based adaptive attitude
control of spacecraft formation with guaranteed prescribed performance,’’
IEEE Trans. Cybern., vol. 49, no. 11, pp. 4004–4016, Nov. 2019.

[33] W. Kang, ‘‘Nonlinear H∞ control and its application to rigid spacecraft,’’
IEEE Trans. Autom. Control, vol. 40, no. 7, pp. 1281–1285, Jul. 1995.

[34] E. Lavretsky and K. A. Wise, ‘‘State feedback H∞ optimal control,’’
in Robust and Adaptive Control. London, U.K.: Springer-Verlag, 2013,
pp. 73–96.

[35] Y. Feng, X. Yu, and F. Han, ‘‘On nonsingular terminal sliding-mode
control of nonlinear systems,’’ Automatica, vol. 49, no. 6, pp. 1715–1722,
Jun. 2013.

[36] J. Song, Y. Niu, and Y. Zou, ‘‘Finite-time sliding mode control synthe-
sis under explicit output constraint,’’ Automatica, vol. 65, pp. 111–114,
Mar. 2016.

[37] J. Zhang, X. Liu, Y. Xia, Z. Zuo, and Y. Wang, ‘‘Disturbance observer-
based integral sliding-mode control for systems with mismatched dis-
turbances,’’ IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7040–7048,
Nov. 2016.

[38] F. Li, L. Wu, P. Shi, and C.-C. Lim, ‘‘State estimation and sliding mode
control for semi-Markovian jump systemswithmismatched uncertainties,’’
Automatica, vol. 51, pp. 385–393, Jan. 2015.

[39] J. Zhu, X. Yu, T. Zhang, Z. Cao, Y. Yang, and Y. Yi, ‘‘Sliding mode control
of MIMO Markovian jump systems,’’ Automatica, vol. 68, pp. 286–293,
Jun. 2016.

[40] D. Ginoya, P. D. Shendge, and S. B. Phadke, ‘‘Sliding mode control for
mismatched uncertain systems using an extended disturbance observer,’’
IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1983–1992, Apr. 2014.

[41] Z. Wang, ‘‘Adaptive smooth second-order sliding mode control method
with application to missile guidance,’’ Trans. Inst. Meas. Control, vol. 39,
no. 6, pp. 848–860, Jun. 2017.

[42] T. E. Gibson, Z. Qu, A. M. Annaswamy, and E. Lavretsky, ‘‘Adaptive
output feedback based on closed-loop reference models,’’ IEEE Trans.
Autom. Control, vol. 60, no. 10, pp. 2728–2733, Oct. 2015.

VOLUME 9, 2021 32159



J. Niu et al.: Learning-Based Neural Adaptive Anti-Coupling Control for a Class of Robots

[43] G. Tao, ‘‘Multivariable adaptive control: A survey,’’ Automatica, vol. 50,
no. 11, pp. 2737–2764, Nov. 2014.

[44] T. Jiang, C. Huang, and L. Guo, ‘‘Control of uncertain nonlinear sys-
tems based on observers and estimators,’’ Automatica, vol. 59, pp. 35–47,
Sep. 2015.

[45] B.-Z. Guo, ‘‘Active disturbance rejection control: From ODEs to PDEs,’’
IFAC-PapersOnLine, vol. 49, no. 8, pp. 278–283, Jun. 2016.

[46] W.-H. Chen, J. Yang, L. Guo, and S. Li, ‘‘Disturbance-observer-based
control and related methods—-An overview,’’ IEEE Trans. Ind. Electron.,
vol. 63, no. 2, pp. 1083–1095, Feb. 2016.

[47] S. Li, J. Yang, W.-H. Chen, and X. Chen, ‘‘Disturbance observer-based
control,’’ in Disturbance Observer-Based Control: Methods and Applica-
tions, 1st ed. Boca Raton, FL, USA: CRC Press, 2014, pp. 11–14.

[48] L. Guo and W.-H. Chen, ‘‘Disturbance attenuation and rejection for sys-
tems with nonlinearity via DOBC approach,’’ Int. J. Robust Nonlinear
Control, vol. 15, no. 3, pp. 109–125, Feb. 2005.

[49] W.-H. Chen, ‘‘Disturbance observer based control for nonlinear systems,’’
IEEE/ASME Trans. Mechatronics, vol. 9, no. 4, pp. 706–710, Dec. 2004.

[50] V. I. Utkin, ‘‘Scope of the theory of sliding modes,’’ in Sliding Modes
in Control and Optimization. Berlin, Germany: Springer-Verlag, 1992,
pp. 1–11.

[51] A. Levant, ‘‘Sliding order and sliding accuracy in sliding mode control,’’
Int. J. Control, vol. 58, no. 6, pp. 1247–1263, Dec. 1993.

[52] J. Kochalummoottil, Y. B. Shtessel, J. A. Moreno, and L. Fridman, ‘‘Adap-
tive twist sliding mode control: A Lyapunov design,’’ in Proc. IEEE
Conf. Decis. Control Eur. Control Conf. (CDC-ECC), Orlando, FL, USA,
Dec. 2011, pp. 7623–7628.

[53] A. Levant, ‘‘Robust exact differentiation via sliding mode technique,’’
Automatica, vol. 34, no. 3, pp. 379–384, Mar. 1998.

[54] J. A. Moreno and M. Osorio, ‘‘A Lyapunov approach to second-order
sliding mode controllers and observers,’’ in Proc. 47th IEEE Conf. Decis.
Control, Cancun, Mexico, Dec. 2008, pp. 2856–2861.

[55] J. A. Moreno, ‘‘A linear framework for the robust stability analysis of a
generalized super-twisting algorithm,’’ in Proc. 6th Int. Conf. Electr. Eng.,
Comput. Sci. Autom. Control (CCE), Toluca,Mexico, Jan. 2009, pp. 12–17.

[56] J. A. Moreno and M. Osorio, ‘‘Strict Lyapunov functions for the
super-twisting algorithm,’’ IEEE Trans. Autom. Control, vol. 57, no. 4,
pp. 1035–1040, Apr. 2012.

[57] I. Nagesh and C. Edwards, ‘‘A multivariable super-twisting sliding mode
approach,’’ Automatica, vol. 50, no. 3, pp. 984–988, Mar. 2014.

[58] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, ‘‘Smooth second-order
sliding modes: Missile guidance application,’’ Automatica, vol. 43, no. 8,
pp. 1470–1476, Aug. 2007.

[59] Z. Gao, ‘‘On the centrality of disturbance rejection in automatic control,’’
ISA Trans., vol. 53, no. 4, pp. 850–857, Jul. 2014.

[60] W.-H. Chen, K. Ohnishi, and L. Guo, ‘‘Advances in distur-
bance/uncertainty estimation and attenuation,’’ IEEE Trans. Ind. Electron.,
vol. 62, no. 9, pp. 5758–5762, Sep. 2015.

[61] H. Liu, L. Guo, and Y. Zhang, ‘‘An anti-disturbance PD control scheme for
attitude control and stabilization of flexible spacecrafts,’’ Nonlinear Dyn.,
vol. 67, no. 3, pp. 2081–2088, Feb. 2012.

[62] Y.-S. Lu, ‘‘Sliding-mode disturbance observer with switching-gain adapta-
tion and its application to optical disk drives,’’ IEEE Trans. Ind. Electron.,
vol. 56, no. 9, pp. 3743–3750, Sep. 2009.

[63] Y. Pan, ‘‘Stochastic disturbance observer-based adaptive anti-disturbance
control for non-linear systems with stochastic non-harmonic multiple dis-
turbances,’’ Trans. Inst. Meas. Control, vol. 40, no. 10, pp. 3222–3231,
Jun. 2018.

[64] L. Guo and S. Cao, ‘‘Anti-disturbance control theory for systems with
multiple disturbances: A survey,’’ ISA Trans., vol. 53, no. 4, pp. 846–849,
Jul. 2014.

[65] X. Wei, N. Chen, and W. Li, ‘‘Composite adaptive disturbance observer-
based control for a class of nonlinear systems with multisource distur-
bance,’’ Int. J. Adapt. Control Signal Process., vol. 27, no. 3, pp. 199–208,
Mar. 2013.

[66] X. Yao and L. Guo, ‘‘Composite anti-disturbance control for Markovian
jump nonlinear systems via disturbance observer,’’ Automatica, vol. 49,
no. 8, pp. 2538–2545, Aug. 2013.

[67] X. Wei and N. Chen, ‘‘Composite hierarchical anti-disturbance control for
nonlinear systems with DOBC and fuzzy control,’’ Int. J. Robust Nonlinear
Control, vol. 24, no. 2, pp. 362–373, Jan. 2014.

[68] H. Sun and L. Guo, ‘‘Composite adaptive disturbance observer based
control and back-stepping method for nonlinear system with multiple mis-
matched disturbances,’’ J. Franklin Inst., vol. 351, no. 2, pp. 1027–1041,
Feb. 2014.

[69] M. Wang, B. Chen, and P. Shi, ‘‘Adaptive neural control for a class
of perturbed strict-feedback nonlinear time-delay systems,’’ IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 38, no. 3, pp. 721–730, Jun. 2008.

[70] X. Ning, Y. Zhang, and Z. Wang, ‘‘Robust adaptive control for a class
of T-S fuzzy nonlinear systems with discontinuous multiple uncertainties
and abruptly changing actuator faults,’’ Complexity, vol. 2020, pp. 1–16,
Dec. 2020.

[71] E. Lavretsky and K. A. Wise, Robust and Adaptive Control. London, U.K.:
Springer, 2013, doi: 10.1007/978-1-4471-4396-3.

[72] A. Astolfi, R. Ortega, and A. Venkatraman, ‘‘A globally exponentially con-
vergent immersion and invariance speed observer for mechanical systems
with non-holonomic constraints,’’ Automatica, vol. 46, no. 1, pp. 182–189,
Jan. 2010.

[73] H. A. Hashim, ‘‘Systematic convergence of nonlinear stochastic estimators
on the special orthogonal group SO(3),’’ Int. J. Robust Nonlinear Control,
vol. 30, no. 10, pp. 3848–3870, Jul. 2020.

[74] H. A. Hashim, L. J. Brown, and K. Mcisaac, ‘‘Nonlinear stochastic attitude
filters on the special orthogonal group 3: Ito and Stratonovich,’’ IEEE
Trans. Syst. Man Cybern. Syst., vol. 49, no. 9, pp. 1853–1865, Sep. 2018.

[75] H. A. Hashim and F. L. Lewis, ‘‘Nonlinear stochastic estimators on the
special Euclidean group SE(3) using uncertain IMU and vision measure-
ments,’’ IEEE Trans. Syst., Man, Cybern. Syst., early access,Mar. 23, 2020,
10.1109/TSMC.2020.2980184.

JUNLONG NIU received the B.E. degree in
machine design, manufacturing and automation
and the M.E. degree in machine manufacturing
and automation from the Shaanxi University of
Science and Technology, Xi’an, China, in 2009
and 2012, respectively. He is currently pursuing
the Ph.D. degree in mechanical manufacturing
and automation with Northwestern Polytechni-
cal University, Xi’an. His current research inter-
ests include medical image processing, 3D model

reconstruction, and robot bionic joint.

XIANSHENG QIN received the B.E., M.E., and
Ph.D. degrees from Northwestern Polytechnical
University, Xi’an, China, in 1983, 1986, and
1991, respectively. He is currently a Full Pro-
fessor and a Ph.D. Supervisor with the School
of Mechanical Engineering, Northwestern Poly-
technical University. His research interests include
computer numerical control systems, bionic and
industrial robots, brain computer interface, com-
puter vision, and product development and quality
management.

ZHENG WANG received the B.E., M.E., and
Ph.D. degrees from Northwestern Polytechnical
University, Xi’an, China, in 2013, 2016, and 2020,
respectively. He is currently an Associate Profes-
sor and a Master Supervisor with the Research
Center for Unmanned System Strategy Develop-
ment, Northwestern Polytechnical University. His
current research interests include flight dynamics
and control, intelligent decision, and autonomous
control of the unmanned systems.

32160 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-1-4471-4396-3
http://dx.doi.org/10.1109/TSMC.2020.2980184

