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ABSTRACT For the design of ship equipment and crew training, it would be useful to develop software
for the three-dimensional simulation of a totally enclosed lifeboat. To improve the simulation accuracy
and immersion of the software, we present a multibody dynamics model for a lifeboat lowered from a
ship, accounting for the coupled motion among the ship, lifeboat slings, a cable-pulley system, and the
lifeboat. The equations of the whole system are formulated using Kane’s method. The model of ship
manoeuvring mathematical group is used to calculate the forces and moments acting on the hull of the
ship. The hydrodynamic and wind loads on the boat are modeled using the strip theory. The impact force
between the ship and the boat colliding is estimated using the contact theory of Hertz and an elastoplastic
model. The method of lumped mass is used to model the lifeboat slings. For the cable-pulley system,
we present an efficient model for the dynamics of the pay-out/reel-in process based on the framework of
Kane’s method. The local load of each cable segment between two pulleys is calculated by the model of
a linear spring on the basis of the amount of cable passages over pulleys and the variation of the pulley
positions, conversely, the cable segment exerts force and moment on the pulleys. The motion equations of
the whole system are solved using fourth–order Runge–Kutta. The model can simulate the lowering of the
lifeboat, and obtain the three-dimensional motion parameters of the ship, the lifeboat, slings and pulleys, and
the local tension load of the cable. The results show that the simulation curves are near the ones of the model
experiment, and their trends are coincident. Thus, it can be concluded that our model is feasible. According
to our model, the motion of the ship has a significant effect on the magnitude of the lifeboat’s oscillation
when the sea state is above level 4; it is safe when the initial clear distance is greater than 1.5 times the
width of the boat and the sea conditions are below level 5. Finally, the model is applied to the software for
three-dimensional simulation.

INDEX TERMS Lifeboat, lumped mass, Cable-pulley system, Kane’s method, Hertzian contact, simulation.

I. INTRODUCTION
A. MOTIVATION
As the main life-saving equipment of ships, a lifeboat under-
takes the important task of life-saving when a shipwreck acci-
dent occurs. The totally enclosed lifeboats are often located
on two sides of the ship. Generally, the boat is equipped
with an inverted-boom davit that has a double hanging point.
When crews release the lifeboat, at first, the arms of the davit
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are rotated to outside of the ship, at this time, the lifeboat
arrives in the embarkation position. After the crews enter the
lifeboat, the lifeboat is lowered until it reaches the surface of
the water. The process of releasing lifeboat mainly includes
two phases: the rotation of the arms and lowering the lifeboat.
During the rotation of the arms, the crews on board can
restrict the large range motion of the lifeboat by a rope to
prevent dangerous situations. The operation of lowering the
lifeboat together with embarked persons into the water is
more hazardous phase in rough seas. The lifeboat, during its
lowering from a significant height in the neighborhood of the
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rolling ship’s side, often impacts against the side. The over-
loads may lead to serious damage to the hull structure of the
lifeboat and threaten the personal safety of the crews [1]–[3].

For this reason, it is necessary to search for an exactmethod
for calculation of the motion parameters of a lifeboat lowered
from the ship to the water in rough seas conditions. When a
reliable computational software is available, this allows for
the improvement of the existing design solutions and testing
new solutions of the devices in question. It can also be used
to train crews to improve their proficiency in operation and
safety awareness. Thus, the authors study a method for that.

The schematic diagram of the lifeboat equipment system
is shown in Figure 1. The bow and stern of the lifeboat are
connected with the slings. The upper ends of the slings are
connected with the movable pulleys. The rest of the pulleys
are fixed on the davit that is omitted in the figure. For the
convenience of viewing, the number of fixed pulleys in the
figure is less than the actual situation. The drum and davit
are fixed on the deck. The position and the Euler angle of
the davit arm relative to the ship remain unchanged when
the lifeboat is being lowered. The whole system only needs
to control the speed of the drum to release the cable. The
cable is released and the pulleys rotate. The movable pulleys
and slings are lowered with the lifeboat. Therefore, we will
look for a calculation method to consider the effect of the
cable-pulley system, the lifeboat slings, and the ship on the
lifeboat.

FIGURE 1. Schematic diagram of lifeboat system.

B. RELATED WORK
Re and Veitch [4], [5], Re et al. [6], [7] Pelley [8] used a
series of model experiments in a large test facility. The perfor-
mance of a conventional twin–falls davit–launched lifeboat
system was evaluated during the evacuation process from a
bottom fixed installation. The performance was examined as
a function of the weather conditions. Based on the results,
some guidance was given concerning the rational design of
evacuation system configurations. Magluta et al. [9] used
simplified physical modeling together with analytical proce-
dures to investigate the dynamic responses of a conventional
lifeboat system, suspended from cables. They applied the

Lagrange function and Hamilton principle to obtain a system
of non-linear differential equations based on the small-scale
model. The equipment of the model experiments was much
simpler than that of the actual lifeboat and davit. The motion
of the lifeboat was in a two-dimensional plane. They mainly
obtained the tension of the cables. Raman-Nair et al. [10]
used the multi-body dynamics method to establish a motion
model for the releasing of the lifeboat from the moving
platform into the water, at the same time, the interaction
between the lifeboat and the elastic boom was also consid-
ered. They comprehensively analyzed the forces acting on the
lifeboat and gave the calculation methods of every force and
moment. The platform had a simple harmonic motion without
the effects of the environment. The cable-pulley system and
lifeboat slings were not involved. Ekman [11], [12] presented
a numerical model that simulated the lowering of a boat from
a ship in beam seas. Since the ship had no forward speed
and was exposed to beam seas, a 2-dimensional mathematical
model of the ship’s motion in waves was provided. The boat’s
mathematical model was derived based on the Lagrange
equation as a simple pendulum system. The effect of wind
on the boat was not considered. The numerical results were
in good agreement with the experimental tests. Dymarski
and Dymarski [13] established a three-dimensional motion
model for a lifeboat. This was introduced as a complex model
that accounted for sea conditions as well as elasticity and
damping properties of davit’s elements andmechanisms, rope
and lifeboat hull; however, they did not give the specific
details of the algorithm. Dymarski et al. [14] simplified the
model of the ship motion to find the values of the ship motion
parameters, which appeared to be the most dangerous for
people in the lifeboat due to the generated accelerations. The
computational model was derived from the literature [13].
Kniat [15] presented a description of a computer program for
the motion visualization of a lifeboat lowered along a ship’s
side. The program was a post-processor that read the results
of numerical calculations of simulated objects’ motions. The
data was used to create a scene composed of 3D surfaces to
visualize the mutual spatial positions of a lifeboat, the ship’s
sides, and water waving surface. This is only a computer
program for 3D visualization without the detailed algorithm.

In summary, the current research regarding the motion
model of a lifeboat lowered from a ship in rough seas is
limited. The current studies do not involve effective algo-
rithms regarding the actual structure of the davit, such as
the cable-pulley system and lifeboat slings that will be of
great help in studying the cable overload or breakage in
rough seas. Only Ekman’s algorithm was compared with the
experimental data; however, this was only the boat’s motion
in a two-dimensional plane.

There is also research on three-dimensional coupled
motion derived from the Lagrange equation [16]. However,
if we use this method to deduce the coupled motion equation
of lifeboat, the ship, and the above complex structure of
the davit, the equation will be complicated and difficult to
solve.
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C. OUR CONTRIBUTIONS
Kane’s method is a practical and effective to calculate and
solve complex mechanical systems [17]–[19]. Our contribu-
tions are as follows

1) The kinematic equations of the system are formulated
using Kane’s method.

2) Based on the framework of Kane’s method, the model
of ship manoeuvring mathematical group (MMG) is used to
calculate the motion of the ship in the wave, the method of
lumped mass is used to model the lifeboat slings, and the
hydrodynamic and wind loads on the lifeboat are modeled
using the strip theory. The impact force between the ship and
the lifeboat colliding is estimated using the contact theory of
Hertz and an elastoplastic model.

3) An efficient model is proposed for the dynamics of
the pay-out/reel-in process of the cable-pulley system. The
local load of each cable segment between two pulleys is
calculated by the model of a linear spring on the basis of the
amount of cable passages over pulleys and the variation of the
pulley positions, conversely, the cable segment exerts force
and moment on the pulleys.

4) Themodel is applied to software for a three-dimensional
simulation of the totally enclosed lifeboat.

The rest of this article is organized as follows. The
multibody dynamics model for the system is in Section 2,
we describe the coordinate systems in Section 2.1, the model
for the lifeboat in Section 2.2, the model for the ship in
Section 2.3, the model for the lifeboat slings in Section 2.4,
the model for the multiple pulleys system in Section 2.5,
and the kinematic equation in Section 2.6. The results and
analysis are discussed in Section 3. The application is in
Section 4. The summary is in Section 5.

II. MULTIBODY DYNAMICS MODEL FOR THE SYSTEM
A. COORDINATE SYSTEMS
As shown in Figure 2, there are three Cartesian coordinate
systems. oxyz is an inertial coordinate system with unit vec-
tors of the three axes N1, N2, and N3. osxsyszs is a coordinate
system fixed to the ship with unit vectors of the three axes s1,
s2, and s3. os is located at the center of gravity. s1 points to
the bow. s2 points to the right of the ship. s3 points the keel.

FIGURE 2. Schematic diagram of three coordinate systems.

obxbybzb is the lifeboat coordinate system, with unit vectors
of the three axes b1, b2, and b3. ob is located at the center of
gravity for the lifeboat.

B. LIFEBOAT
When a lifeboat is lowered, it is affected by the gravity, the
wind drag and lift, the fluid drag, the buoyancy, the tension
of the slings, and the contact force with the ship.

The rotation transformation matrix of the lifeboat coordi-
nate system and inertial coordinate system is [NCb].N1

N2
N3

 = [NCb]

b1
b2
b3

 (1)

[NCb] =

c2c3 s1s2c3 − s3c1 c1s2c3 + s3s1c2s3 s1s2s3 + c1c3 c1s2s3 − c3s1
−s2 s1c2 c1c2

 (2)

where si = sin θbi , ci = cos θbi (i = 1, 2, 3), and θbi is
the angle between the lifeboat coordinate system and inertial
coordinate system.

Define the generalized coordinates as{
qbi = θ

b
i

qb3+i =
−→
OOb · bi

(i = 1, 2, 3) (3)

The generalized velocities are{
ubi = ω

b
· bi

ub3+i = vb · bi
(i = 1, 2, 3) (4)

where ωb and vb are the velocity and angular velocity of the
lifeboat, respectively.

The relationships between the generalized coordinates and
generalized velocities are [20]

q̇b1 = ub1 + s2/c2(u
b
2s1 + u

b
3c1)

q̇b2 = ub2c1 − u
b
3s1

q̇b3 = (ub2s1 + u
b
3c1)/c2

(5)


q̇b4 = ub4 − u

b
2q

b
6 + u

b
3q

b
5

q̇b5 = ub5 + u
b
1q

b
6 − u

b
3q

b
4

q̇b6 = ub6 − u
b
1q

b
5 + u

b
2q

b
4

(6)

The angular acceleration and acceleration of the lifeboat
are

αb =

3∑
i=1

u̇bi bi (7)
ab · b1 = u̇b4 + u

b
2u

b
6 − u

b
3u

b
5

ab · b2 = u̇b5 − u
b
1u

b
6 + u

b
3u

b
4

ab · b3 = u̇b6 + u
b
1u

b
5 − u

b
2u

b
4

(8)

The partial angular velocities and velocities of the lifeboat
are

ωb
r =

{
br (r = 1, 2, 3)
0 (r = 4, 5, 6)

(9)
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vbr =

{
0 (r = 1, 2, 3)
br−3 (r = 4, 5, 6)

(10)

The generalized inertial force is

F∗br =



−[u̇b1I1 − u
b
2u

b
3(I2 − I3)]

−[u̇b2I2 − u
b
3u

b
1(I3 − I1)]

−[u̇b3I3 − u
b
1u

b
2(I1 − I2)]

−mb(u̇b4 + u
b
2u

b
6 − u

b
3u

b
5)

−mb(u̇b5 − u
b
1u

b
6 + u

b
3u

b
4)

−mb(u̇b6 + u
b
1u

b
5 − u

b
2u

b
4)

(11)

where I1, I2, and I3 are the rotational moment of inertia
around axis oxb, oyb, and ozb; and mb is the lifeboat mass.
Equation (11) can be written as follows.{

F∗b
}
= −

[
V b
] {
u̇b
}
−

[
W b

] {
φb
}

(12)

where
[
V b
]
and

[
W b

]
are a 6 × 6 diagonal matrix, and its

elements are V b
11 = I1, V b

22 = I2, V b
33 = I3, V b

44 = V b
55 =

V b
66 = mb, W b

11 = I3 − I2, W b
22 = I1 − I3, W b

33 = I2 − I1
andW b

44 = W b
55 = W b

66 = mb. Vector
{
u̇b
}
is a 6× 1 column

vector, and its elements are u̇br (r = 1, . . . , 6).
{
φb
}
is a 6× 1

column vector element, φb1 = ub2u
b
3, φ

b
2 = ub3u

b
1, φ

b
3 = ub1u

b
2,

φb4 = ub2u
b
6−u

b
3u

b
5, φ

b
5 = ub3u

b
4−u

b
1u

b
6, and φ

b
6 = ub1u

b
5−u

b
2u

b
4.

The generalized force caused by the gravity of the lifeboat
is

FG/b
r = mbgN3 · vbr (13)

where g is the acceleration of gravity.
The generalized force caused by wind drag is

FW/b
r = FW

b · v
b
r (14)

FW
b = −

1
2
ρwAbwC

b
w

∣∣∣vb/w∣∣∣ vb/w (15)

where vb/w is vector difference between the lifeboat velocity
and wind velocity, vb/w = vb−vw, ρw is the density of air, Abw
is the projected area of the surface of the lifeboat in the plane
perpendicular to vb/w, and Cb

w is the wind drag coefficient.
To determine the wind lift, we modeled the lifeboat as a

cylinder with diameterDb and length lb. The length is parallel
to b1. The wind lift FL

b is [10]

FL
b = −

1
2
ρwDblbCb

L

∣∣∣vb/wn ∣∣∣2 k (16)

where Cb
L is the lift coefficient, vb/wn = (ub5 −

Bvw2 )b2 +
(ub6 −

Bvw3 )b3,
Bvwi is the component of wind velocity vw

in the direction of bi, and k = b1 × vb/wn /
∣∣b1 × vb/wn

∣∣ is the
direction vector.

FL/b
r = FL

b · v
b
r (17)

The lifeboat is divided into n cross sections of equal
thickness along the length direction b1, the coordinates of
the centre of each cross section sk (k = 1, . . . . . . , n) are
expressed in the lifeboat coordinate system as (xsk , 0, 0). The

thickness of each cross section is ts = lb/n. The generalized
force caused by fluid drag is

FD/b
r =

n∑
k=1

FD/sk
r (r = 1, · · · , 6) (18)

FD/sk
r = FD

sk · v
sk
r (19)

where FD
sk is the fluid drag acting on each section, and vskr is

partial velocity of each cross section with components vsk1 =
u4, v

sk
2 = u5 + xsku3 and v

sk
3 = u6 + xsku2 in bi.

The partial velocities of each section are

vskr =


0 (r = 1)
−xskb3 (r = 2)
xskb2 (r = 3)
br−3 (r = 4, 5, 6)

(20)

The components of the fluid resistance acting on each
section are

FD
sk =

3∑
i=1

Dsk
i bi (21)

Dsk
1 = −

1
2nρaA

sm
1 c

sm
D1

∣∣∣vsm/R1

∣∣∣ vsm/R1

Dsk
2 = −

1
2ρaA

sk
2 c

sk
D2

∣∣∣vsk /R2

∣∣∣ vsk /R2

Dsk
3 = −

1
2ρaA

sk
3 c

sk
D3

∣∣∣vsk /R3

∣∣∣ vsk /R3

(22)

where ρa is the density of seawater, Aski is the area of
the section sk perpendicular to bi below the water surface,
the section sm has maximum area Asm1 = max

(
Ask1
)
(k =

1 · · · n), cskDi is the coefficient of friction, and vsk /Ri is the
component of the velocity of the section sk relative to the
wave surface on the axis of bi.

The buoyancy of lifeboat is

FB/b
=

n∑
k=1

ρaVskgN3 (23)

where Vsk is the volume of each cross section in the water,
and the moment caused by buoyancy is TB/b with component
TB/b
i in bi. 

TB/b
1 =

n∑
k=1

ρaVskghm sin�

TB/b
2 =

n∑
k=1

ρaVskgxsk cos�

TB/b
3 =

n∑
k=1

ρaVskgxsk sin�

(24)

where hm is the metacentric height as shown in Figure 3.
The generalized force caused by buoyancy is

FB/b
r = FB/b

· vbr + TB/b
· ωb

r (25)

The hanging points attached the lifeboat in the
lifeboat coordinate system are pα0 (a

α
1 , a

α
2 , a

α
3 )(α = 1, 2).
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FIGURE 3. Buoyancy moment and metacentric height of Lifeboat’s roll.

The generalized force caused by the slings FT/b
r is

FT/b
r =



2∑
α=1

(aα2b3 − a
α
3b2)F

α
p0

(r = 1)

2∑
α=1

(aα3b1 − a
α
1b3)F

α
p0

(r = 2)

2∑
α=1

(aα1b2 − a
α
2b1)F

α
p0

(r = 3)

2∑
α=1

b1Fαp0 (r = 4)

2∑
α=1

b2Fαp0 (r = 5)

2∑
α=1

b3Fαp0 (r = 6)

(26)

where the force of the slings acting on the lifeboat is
Fαp0=(f

α
1,1 + rα1,1) · d

α
i,1bi, and the definition and calculation

of Fαp0 , f
α
1,1, r

α
1,1, d

α
i,1 is in the Section 2.4.

The lifeboat, during its lowering in the neighborhood of
rolling ship’s side, often impacts against the side of the ship.
As shown in Figure 4, there are two anti-collision devices
attached to the lifeboat’s hull. The lifeboat collides with the
ship through the anti-collision devices. The impact process
consists of a compression phase and a restitution phase. For
the compression phase, we use the well-known Hertzian con-
tact law to calculate the contact stresses [21].

The Hertzian theory assumes that the contacting surfaces
are non-conforming and for determining local deformations
each body is regarded as an elastic half space loaded over
a small elliptical region. In this way, the highly concen-
trated contact stresses are independent of the general stress

FIGURE 4. Schematic diagram of anti-collision device attached to the
lifeboat’s hull.

distribution in the bodies arising from their shape and other
external influences. Denote the Young’s modulus and Pois-
son’s ratio of the ship and lifeboat by Es, vs and Eb, vb
respectively, and the radius of curvature of the surface of the
ship and lifeboat at the point of contact by Rs, Rb. Denoting
the relative indentation or penetration between the contacting
bodies by δ, the magnitude of the contact force in the com-
pression phase is [21].

f c = Kδ3/2 (27)

where K = 4
3E
∗R1/2,E∗ =

((
1− v2s

)
/Es +

(
1− v2b/Eb

))−1
,

and R = RsRb/(Rs + Rb).
We address problems in which the energy loss due to

impact results in local permanent plastic deformation. For
the restitution phase, therefore, we use the contact force
model of Raman-Nair and Chin [22] and Lankarani and
Nikravesh [23]. They denote the local permanent plastic
deformation by δp which is related to the coefficient of resti-
tution, the impact velocity, and the material properties. The
magnitude of the contact force in this phase is

f c = f cm
((
δ − δp

)
/(δ − δm)

)3/2 (28)

where f cm = K 2/5
(
5mtδ̇

2
0/4

)3/5
, mt = mb + ms, mb and

ms are the mass of the lifeboat and ship, δ̇0 is the rela-
tive impact speed at δ=0, δm =

(
5mtδ̇

2
0/4K

)2/5
, δp =

5mtδ̇
2
0

(
1− e2r

)
/4f cm, and er is the coefficient of restitution.

The ship’s hull surface is assumed to be a plane in this
article as shown in Figure 5. The plane’s equation is Asx +
Bsy + Csz + Ds = 0. The coefficients (As,Bs,Cs,Ds) can
be obtained from any three points in the plane that are not
in a straight line. The outer normal vector of the plane is
−→n s (As,Bs,Cs). The anti-collision devices are divided into nd
points pdi (i = 1, . . . , nd) with the coordinates

(
bxdi ,

bydi ,
bzdi
)

in the lifeboat coordinate system, the
(
Nxdi ,

Nydi ,
Nzdi

)
in the

inertial coordinate system, and the
(
sxdi ,

sydi ,
szdi
)
in the ship

coordinate system. The transformations of the coordinates are
bxdi
bydi
bzdi

 = −

qb4
qb5
qb6

+ [NCb]T


Nxdi
Nydi
Nzdi

 (i = 1, . . . , nd)

(29)

FIGURE 5. Schematic diagram of calculating contact force in this article,
the anti-collision devices are divided into nd. points, the distance
between each point and the ship is Dp

i .
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
bxdi
bydi
bzdi

 = −

qb4
qb5
qb6

+ [NCb]T[NCs]


qs4 +

sxdi
qs5 +

sydi
qs6 +

szdi


(i = 1, . . . , nd) (30)

where [NCs] is the rotation transformation matrix between
the ship’s coordinate system and inertial coordinate system,
qsi are the generalized coordinates of the ship.

The distance between each point and the ship is Dp
i

Dp
i =

∣∣∣AsNxdi + BsNydi + Cs
Nzdi

∣∣∣/√A2s + B2s + C2
s (31)

For the point pdi , defining a variable σ d
i (t)

σ d
i (t) = AsNxdi + Bs

Nydi + Cs
Nzdi + Ds (32)

When σ d
i (t) · σ

d
i (0) < 0, the point pdi contacts with the ship,

δi = Dp
i , and the relative impact speed δ̇ can be calculated by

δ̇ =

vs + ωs
×


sxdi s1
sydi s2
szdi S3

− vb − ωb
×


bxdi b1
bydi b2
bzdi b3


−→n s

(33)

where vs and ωs are the velocity and angular velocity of
the ship, respectively. The contact force f ci can be calculated
using (27,28). The generalized force caused by the impact
force is

FC/b
r =



nd∑
i=1

(bydi b3 −
bzdi b2)f

c
i
−→n s (r = 1)

nd∑
i=1

(bzdi b1 −
bxdi b3)f

c
i
−→n s (r = 2)

nd∑
i=1

(bxdi b2 −
bydi b1)f

c
i
−→n s (r = 3)

nd∑
i=1

b1f ci
−→n s (r = 4)

nd∑
i=1

b2f ci
−→n s (r = 5)

nd∑
i=1

b3f ci
−→n s (r = 6)

(34)

C. SHIP
The force and moment of the ship’s body are based on the
model of the MMG. The interferential forces and moments
of the regular wave and the wind are regarded as a part of
external forces. In order to solve the system equation conve-
niently, the equations of ship motion are written as follows

Define the generalized coordinates as{
qsi = θ

s
i

qs3+i =
−→
OOs · si

(i = 1, 2, 3) (35)

The generalized velocities are{
usi = ω

s
· si

us3+i = vs · si
(i = 1, 2, 3) (36)

where θ si are the Euler angles of ship in the inertial coordinate
system.

The partial angular velocities and velocities of the ship are

ωs
r =

{
sr (r = 1, 2, 3)
0 (r = 4, 5, 6)

(37)

vsr =

{
0 (r = 1, 2, 3)
sr−3 (r = 4, 5, 6)

(38)

The relationship between the generalized coordinates and
generalized velocities, acceleration, angular acceleration and
generalized inertial force F∗sr of the ship are expressed in the
same way as with the lifeboat. The generalized inertial force
F∗sr can also be written in the form of (12). The rotation trans-
formation matrix between the ship’s coordinate system and
inertial coordinate system is [NCs]. Each element in [NCs] is
calculated by (2) replacing θbi with θ si . The generalized force
of the ship is

FS/s
r = FS/s

· vsr + TS/s
· ωs

r (39)

The calculation of the force and moment of the ship are
based on the model of the MMG [24]. The coordinate system
is shown in Figure 2. Considering the environmental forces,
the forces acting on ship are

FS/s
=


(XH + Xwind + Xwave)s1
(YH + Ywind + Ywave)s2
(ZH + Zwind + Zwave)s3

(40)

TS/s
=


(KH + Kwind + Kwave)s1
(MH +Mwind +Mwave)s2
(NH + Nwind + Nwave)s3

(41)

where the variables with subscript H are the force and
moment acting on the hull, and the variables with subscript
wind, wave are the force and moment of wind and wave.
For the wave force, it is estimated based on the assumption

of Froude–Krylov, where the hull is simplified to a box, and
the six-degree-of-freedomwave force andmoment are clearly
stated in [25] and [26].

Xwave
Ywave
Zwave
Kwave
Mwave
Nwave


= ρagζe−kd

sin(EB)



2d
E sin(Fl) sin(ωet + ε)
−

2dl
FB sin(Fl) sin(ωet + ε)
kd
Eq sin(Fl) cos(ωet + ε)
d2
FB sin(Fl) sin(ωet + ε)

d
2EF2 (sin(Fl)− Fl cos(Fl)) sin(ωet + ε)
d
kF2 (sin(FL)− FL cos(FL)) cos(ωet + ε)


(42)

where ζ is the amplitude of wave, k is the number of wave,ωe
is the encounter frequency, ε is initial phase, E = 0.5k sinχ ,
F = 0.5k cosχ , χ is the encounter angle, L is the length of
the ship’s waterline, l =

√
cL is the equivalent ship length,
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c is the block coefficient, B is the ship width, and d is the
draught.

Wave can be divided into regular wave and irregular wave.
The regular wave can be regarded as a simple harmonic curve
composed of a single frequency. However, the irregular wave
often has strong randomness [27]. Due to the randomness of
wind, the actual sea surface usually presents as short-crested
irregular wave.

η =

n∑
i=1

m∑
j=1

√
2R(ωi, γj) ωγ cos(ωit + εi,j

−ki(x cos(γj)+ y sin(γj))) (43)

where R(ω, χ) = S(ω)D is the directional wave spectral den-
sity function [28], S(ω) is the frequency spectrum function,
D is directional spreading function [29], 1γ = γj − γ0.
γ0 is main wave direction, 1γ is the difference between
wave direction γj and γ0. The frequency spectrum function
of China’s coastal areas is

S(ω) = 0.74ω−5 exp(−g2/(U2ω2)) (44)

where U is wind speed, which can be approximated by U =
6.28
√
H ,H is the height of significant wave, the interval of

ω is (0.3, 3) [30].

D =

{
22s−1s!(s−1)!
π(2s−1)! cos2s (1γ ) 1γ < π

2

0 otherwise
(45)

where the interval of γj is (γ0 − 30◦, γ0 + 30◦) [28]. The
simulation diagram of irregular wave is shown in Figure 6.

FIGURE 6. The simulation diagram of irregular waves.

The force and moment of a ship in irregular waves can be
regarded as the linear superposition of the wave force and
moment of a ship in regular waves with different frequencies
and amplitudes refers to (42).

The wind force and moment are generally reflected in the
ship’s horizontal and rolling motions. Ignoring the effect on

heave and pitch, the wind force and moment are [24]
Xwind = 1

2ρwA
s
w1

(
vw/s

)2
Cs
wx (αR)

Ywind = 1
2ρwA

s
w2

(
vw/s

)2
Cs
wy (αR)

Kwind = Ywindhz
Nwind =

1
2ρwA

s
w2Loa

(
vw/s

)2
Cs
wn (αR)

(46)

where Cs
wx (αR), C

s
wy (αR), and C

s
wn (αR) are the coefficients

of the wind pressure, αR is the relative bearing of the wind,
vw/s = vw−vs, hz is the height of the action point of the wind
force, Asw1 and A

s
w2 are the projected area in the forward and

lateral direction above the waterline of the ship, and Loa is the
overall length of the ship.

D. LIFEBOAT SLINGS
There are two slings connected with the lifeboat. The upper
end of each sling is connected to the movable pulley, and the
lower end is connected to the lifeboat. Based on the frame-
work of Kane’s method, they are modeled by the spring-mass
model [31]–[33]. As shown in Figure 7, there are n particles
pαj (j = 1, . . . ., n;α = 1, 2) at each sling with mass mpα

j
.

The motion of each particle is three degrees of freedom, and
its generalized coordinates and velocities are

qα3j−3+i =
−−→
pα0p

α
j bi (i = 1, 2, 3; j = 1, . . . , n;α = 1, 2) (47)

uα3j−3+i = vαpjbi (i = 1, 2, 3; j = 1, . . . , n;α = 1, 2) (48)

where pα0 (a
α
1 , a

α
2 , a

α
3 ) are the lower ends of the slings attached

to the lifeboat, and the vαpj is the velocity.

FIGURE 7. Schematic diagram of the slings attached the lifeboat, the
slings are modeled by the spring-mass model.

Define Lαi,0 = aαi . The coordinates of each particle in the
lifeboat coordinate system are

Lαi,j = Lαi,0 + q
α
3j−3+i (i = 1, 2, 3; j = 1, . . . , n;α = 1, 2)

(49)

shαi ,
bhαi are the position coordinates of the movable pulley

in the ship coordinate system and the lifeboat coordinate
system. Their transformation relationship refers to (30).

Thus,

Lαi,n+1 =
bhαi (i = 1, 2, 3;α = 1, 2) (50)
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The relationship between the generalized coordinates and
generalized velocities is [20]

q̇α3j−2 = uα3j−2 − (ub4 + u
b
2L
α
3,j − u

b
3L
α
2,j)

q̇α3j−1 = uα3j−1 − (ub5 + u
b
3L
α
1,j − u

b
1L
α
3,j)

q̇α3j = uα3j − (ub6 + u
b
1L
α
2,j − u

b
2L
α
1,j)

(j = 1, . . . , n;α = 1, 2) (51)

The generalized inertial force is [20]
F∗α3j−2 = −mpα

j
(u̇α3j−2 + u

b
2u
α
3j − u

b
3u
α
3j−1)

F∗α3j−1 = −mpα
j
(u̇α3j−1 − u

b
1u
α
3j + u

b
3u
α
3j−2)

F∗α3j = −mpα
j
(u̇α3j + u

b
1u
α
3j−1 − u

b
2u
α
3j−2)

(j = 1, . . . , n;α = 1, 2) (52)

The generalized inertial force can be written as follows{
F∗α

}
= −

[
V α
] {
u̇α
}
−
[
V α
] {
φα
}

(53)

where [V α] is a 3n × 3n diagonal matrix, its elements are
V α3j−2,3j−2 = V α3j−1,3j−1 = V α3j,3j = mpα

j
, vector {u̇α} is

a 3n × 1 column vector, and its elements are u̇αr , {φ
α} is

a 3n × 1 column vector, and its element φα3j−2 = ub2u
α
3j −

ub3u
α
3j−1, φ

α
3j−1 = −u

b
1u
α
3j + ub3u

α
3j−2, and φ

α
3j = ub1u

α
3j−1 −

ub2u
α
3j−2.

The generalized force caused by the gravity of each particle
is 

FG/α
3j−2 = mpα

j
g(sin−qb2)

FG/α
3j−1 = −mpα

j
g(sin qb1 cos q

b
2)

FG/α
3j = −mpα

j
g(cos qb1 cos q

b
2)

(j = 1, . . . , n;α = 1, 2) (54)

Define

dαi,j= L
α
i,j − L

α
i,j−1 (i = 1, 2, 3; j = 1, . . . , n+ 1;α = 1, 2)

(55)

Dα1,j =

√√√√ 3∑
i=1

(dαi,j)
2 (i = 1, 2, 3; j = 1, . . . , n+ 1;α = 1, 2)

(56)

Dα2,j = Dα1,j − l
a/(n+ 1) (57)

where la is the initial length of the sling α. The elastic force
of each spring is calculated based on the model of a linear
spring.

f α1,j = kaj D
α
2,j/D

α
1,j (j = 1, . . . , n+ 1;α = 1, 2) (58)

where kaj is the spring constant of the j-th segment, kaj =
AaEa(n+ 1)/la, Aa is the area of the cross-section, and Ea

is the modulus of elasticity.{
f α2,j = f α1,j+1
f α3,j = −f

α
1,j

(j = 1, . . . , n;α = 1, 2) (59)

The generalized force caused by the spring elastic force is
FS/α
3j−2 = (f α2,jd

α
1,j+1 + f

α
3,jd

α
1,j)

FS/α
3j−1 = (f α2,jd

α
2,j+1 + f

α
3,jd

α
2,j)

FS/α
3j = (f α2,jd

α
3,j+1 + f

α
3,jd

α
3,j)

(j = 1, . . . , n;α = 1, 2)

(60)

The velocity vector difference between two particles is

vαi,j = (vαpj − vαpj−1 )bi (i = 1, 2, 3; j = 1, . . . , n

+1;α = 1, 2) (61)

vαp0 =


(ub4 + u

b
2a
α
3 − u

b
3a
α
2 )b1

(ub5 + u
b
3a
α
1 − u

b
1a
α
3 )b2

(ub6 + u
b
1a
α
2 − u

b
2a
α
1 )b3

(62)

where vαpn+1 is the velocity of the movable pulley. The spring
structure damping is based on the model of a linear spring.

rα1,j = cαvαi,jsign(D
α
2,j)/D

α
1,j (j = 1, . . . , n+ 1;α = 1, 2)

(63)

where cα is the damping coefficient.{
rα2,j = rα1,j+1
rα3,j = −r

α
1,j

(j = 1, . . . , n;α = 1, 2) (64)

The generalized force caused by the spring damping force
FR/α
3j−2 = (rα2,jd

α
1,j+1 + r

α
3,jd

α
1,j)

FR/α
3j−1 = (rα2,jd

α
2,j+1 + r

α
3,jd

α
2,j)

FR/α
3j = (rα2,jd

α
3,j+1 + r

α
3,jd

α
3,j)

(j = 1, . . . , n;α = 1, 2)

(65)

E. MULTIPLE PULLEYS SYSTEM
Ju and Choo [34] presented a parametric super element model
for a cable passing through multiple pulleys. The amounts
of cable passages over pulleys were introduced as additional
degrees-of-freedoms in the finite element model and the rela-
tionship between the cable tensions at the two sides of each
pulley was imposed based on the friction law or empirical
data. The model was applied to the static analysis of struc-
tures. García–Fernández et al. [35] proposed a model for the
dynamics of a cable passing through a set of pulleys and
an oscillation model based on the classical one-dimensional
wave equation. The load of the cable segments was taken into
account; however, the load of every cable segment was the
same. Kamman and Huston [36] presented a procedure for
studying the dynamics of variable length cable systems in
deployment and retrieval (pay-out and reel-in) without pul-
leys. In this article, the variable length of the cable and local
load should be considered. There are some accurate algo-
rithms [37]–[39]. They can meet our requirements in terms
of the calculation accuracy, but they are time-consuming and
cannot guarantee the real-time performance. We presented a
model considering the forces and moments that appear on
these pulleys, and the local load of the cable segments, as well
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as the variable length of cable in real time based on Ju and
Choo [34].

As shown in Figure 8, a cable passes through multiple
pulleys. There are n nodes, n-1 segments of cable, and n-2
pulleys. One segment of cable is shown in Figure 9. Our
algorithm assumes that there is no slip between the cable and
the pulleys, and does not consider the complex situation of
cable bending under stress [40]. The elastic deformation in
each segment is caused by rotation and displacement of the
pulleys. The elastic tension of the cable has an effect on the
motion of the pulley.

FIGURE 8. Multiple pulleys system.

FIGURE 9. i -th segment of system.

The change in the length of each segment is

1l(i) =
∣∣−−−→pipi+1′

∣∣− ∣∣−−−→pipi+1
∣∣ (66)

where
∣∣−−−→pipi+1′

∣∣ = ∣∣−−−→pipi+1 +1i+1 −1i
∣∣, pi is the node posi-

tion, 1i is the node displacement, k (i) is the spring constant,
and si is the length of the cable passed through the node i.
The local load of the cable i is based on the model of a linear
spring

f (i) = k (i)
(
si+1 − si +1l(i)

)
(67){

f (i)i+1
f (i)i

}
=

{
f (i)

f (i)

}
(68)

The vector of force{
F(i)
i+1
F(i)
i

}
=

[
−λ(i) 0
0 λ(i)

]{
f (i)i+1
f (i)i

}
(69)

where λ(i)x = (xi+1 − xi)/l(i), λ
(i)
y = (yi+1 − yi)/l(i), λ

(i)
z =

(zi+1 − zi)/l(i), λ(i) =
[
λ
(i)
x λ

(i)
y λ

(i)
z

]
. xi, yi, and zi are coordi-

nates of the node.
There are five types of system nodes. A solution of the

node’s motion is shown in Figure 10.

Ji = 1/2mir2i is the rotational inertia, ri is the radius, mi is
the mass, ωi is the angular velocity, ṡi = ωi × ri, M f

i is the
frictional moment,M a

i is the active torque,Gi is the vector of
gravity, vi is the vector of velocity, and Fe

i is the vector of the
external force.

Lowering the totally enclosed lifeboat involves the node
type of movable pulley, fixed pulley, and cable drum. The
motion of the fixed pulley and the drum is one degree of
freedom, and themotion of themovable pulley is four degrees
of freedom.

The total number of pulleys and drums is m. Define the
generalized coordinates and velocities{

qpi = θ
p
i

upi = θ̇
p
i

(i = 1, 2, . . . ,m) (70)

The generalized force

F r/p
i = ((f (i)i − f

(i−1)
i+1 )× ri × c

γ
i −M

f
i +M

a
i ) (71)

where cγi is a coefficient that is related to the contact angle γi
between the cable and the pulley. This article approximates it
as cγi = γi/π . The unit of γi is radians.

The generalized inertial force is

F∗pi = −Jiu̇
p
i (72)

Equation (72) can be written as follows{
F∗p

}
= −

[
V p] {u̇p} (73)

where [V p] is an m×m diagonal matrix, V p
i,i = Ji. {u̇p} is a

m×1 column vector, and its elements are u̇pr .
In addition to the rotation of the movable pulley, it also

has translational motion of three degrees of freedom. The
two movable pulleys are pαn+1 (α = 1, 2), and the trans-
formation relationship between the two movable pulleys in
the coordinate system of lifeboat and ship refers to (30). The
generalized coordinates and generalized velocities are

qα3n+i =
−−−−→
pα0p

α
n+1bi (i = 1, 2, 3;α = 1, 2) (74)

uα3n+i = vαpn+1bi (i = 1, 2, 3;α = 1, 2) (75)

Thus,

Lαi,n+1 = Lαi,0 + q
α
3n+i (i = 1, 2, 3;α = 1, 2) (76)

q̇α3n+1 = uα3n+1 − (ub4 + u
b
2L
α
3,n+1

−ub3L
α
2,n+1)

q̇α3n+2 = uα3n+2 − (ub5 + u
b
3L
α
1,n+1

−ub1L
α
3,n+1)

q̇α3n+3 = uα3n+3 − (ub6 + u
b
1L
α
2,n+1

−ub2L
α
1,n+1)

(α = 1, 2)

(77)

The generalized force caused by the gravity
FG/α
3n+1 = mpα

n+1
g(sin−qb2)

FG/α
3n+2 = −mpα

n+1
g(sin qb1 cos q

b
2)

FG/α
3n+3 = −mpα

n+1
g(cos qb1 cos q

b
2)

(α = 1, 2) (78)

VOLUME 9, 2021 32179



S. Qiu et al.: Multibody Dynamics Model and Simulation for the Totally Enclosed Lifeboat Lowered From Ship in Rough Seas

FIGURE 10. Five types of nodes and their calculation of motion (a) Movable pulley, (b) Fixed pulley, (c) Cable drum, (d) Fixed point, (e) Heavy.

The generalized force caused by the cable on both sides of
the pulley

F t/α
3n+1 = (aF(i)

i +
aF(i−1)

i+1 )b1
F t/α
3n+2 = (aF(i)

i +
aF(i−1)

i+1 )b2
F t/α
3n+3 = (aF(i)

i +
aF(i−1)

i+1 )b3

(α = 1, 2) (79)

The generalized force caused by the spring of the slings
FS/α
3n+1
FS/α
3n+2
FS/α
3n+3

 =

−f α1,n+1d

α
1,n+1

−f α1,n+1d
α
2,n+1

−f α1,n+1d
α
3,n+1

 (80)

The generalized force caused by the damping force of the
slings 

FR/α
3n+1
FR/α
3n+2
FR/α
3n+3

 =

−rα1,n+1d

α
1,n+1

−rα1,n+1d
α
2,n+1

−rα1,n+1d
α
3,n+1

 (81)

The generalized inertial force

F∗α3n+1 = −mpαn+1 (u̇
α
3n+1 + u

b
2u
α
3n+3

−ub3u
α
3n+2)

F∗α3n+2 = −mpαn+1 (u̇
α
3n+2 − u

b
1u
α
3n+3

+ub3u
α
3n+1)

F∗α3n+3 = −mpαn+1 (u̇
α
3n+3 + u

b
1u
α
3n+2

−ub2u
α
3n+1)

(α = 1, 2) (82)

Equation (82) can also be written in the form of (53).

F. KINEMATIC EQUATION
For the entire system, the lifeboat and the ship have six
degrees of freedom respectively, the rotation of the pulley
and the drum have m degrees of freedom, and there are
6n+6 degrees of freedom for the displacement of the mass
particles and the movable pulleys. The entire system has
6n+m+18 degrees of freedom. The generalized coordinates,
generalized velocity, generalized force and generalized iner-
tial force of the system are q̄i, ūi, F i, and F

∗

i (i = 1, . . . , 6n+

m + 12), respectively. Define t = 12 + m, h = t + 3n + 3,
w = h+ 3n+ 3.

q̄i =



qbi (i = 1, . . . , 6)
qsi−1 (i = 7, . . . , 12)
qpi−12 (i = 13, . . . , t)
qα=1i−t (i = t + 1, . . . , h)
qα=2i−h (i = h+ 1, . . . ,w)

(83)

ūi =



ubi (i = 1, . . . , 6)
usi−1 (i = 7, . . . , 12)
upi−12 (i = 13, . . . , t)
uα=1i−t (i = t + 1, . . . , h)
uα=2i−h (i = h+ 1, . . . ,w)

(84)

F̄i =



Fb
i (i = 1, . . . , 6)
F s
i−1 (i = 7, . . . , 12)
Fp
i−12 (i = 13, . . . , t)
Fα=1i−t (i = t + 1, . . . , h)
Fα=2i−h (i = h+ 1, . . . ,w)

(85)

where Fb
= FG/b

+FD/b
+FW/b

+FL/b
+FB/b

+FT/b
+FC/b,

F s
= FS/s, Fp

= F r/p, Fα = FG/α
+ FS/α

+ FR/α
+ F t/α .

F
∗

i
=



F∗bi (i = 1, . . . , 6)
F∗si (i = 7, . . . , 12)
F∗pi−12 (i = 13, . . . , t)
F∗α=1i−t (i = t + 1, . . . , h)
F∗α=2i−h (i = h+ 1, . . . ,w)

(86)

The generalized inertial force is{
F
∗

i

}
= −[V ]

{
˙̄u
}
− [W ] {φ} (87)

where [V ] = diag([V b], [V s], [V p], [V α=1], [V α=2]),
[W ] = diag([W b], [W s], [W p], [V α=1], [V α=2]), {φ} ={{
φb
}′
, {φs}′ , {φp}′ ,

{
φα=1

}′
,
{
φα=2

}′}′
. The elements in

[W p] and {φp} are zero.
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The system motion equation is{
F
∗

i

}
+
{
F i
}
= {0} (88)

According to the (88){
˙̄u
}
= [V ]−1(−[W ] {φ} +

{
F
}
) (89)

Define the column vector as

{x} =
{
{q}
{u}

}
(90)

The system motion equation can be solved by

{ẋ} =
{{
˙̄q
}{
˙̄u
}} (91)

where
{
˙̄q
}

can be solved by fourth-order Runge–Kutta
according to (5,6,51,77), and the omitted ship motion for-
mula,

{
˙̄u
}
can be solved by fourth-order Runge–Kutta accord-

ing to (89).

III. RESULTS AND ANALYSIS
A. COMPARISON WITH MODLE EXPERIMENTS
The basic dimensions of the lifeboat are in accordance
with [4]. A 1:13 scale model of a generic 80 person totally
enclosed lifeboat was used in the experiments. The lifeboat
is lowered from a fixed platform with a lowering speed
1.1 m/s [7]. The lifeboat’s length, maximum width, and max-
imum height are 0.769, 0.285, and 0.277m, respectively. The
lifeboat’s mass is 5.38kg. The air drag coefficient is 0.07,
the fluid drag coefficient is 0.08, the lift coefficient 0.08, and
the initial metacentric height of the lifeboat is hm = 0.2 m.
All elastic cables have a diameter of 1 mm and an elastic
modulus of 10 GPa.

For the convenience of analysis and understanding, the data
of the lifeboat’s position of simulation in this article are
shown in the new coordinate system oxy1z1, which is obtained
by rotating the inertial coordinate system 180◦ around the ox
axis. For the convenience of comparison, the initial position
of the lifeboat is moved to (0,0,35).

Comparing the two results in Figures 11 and 12, the tra-
jectories of the lifeboat in the air are relatively close.
In Figures 11a and 11b, the maximum errors of the trajec-
tory curve in the air are 0.31m and 0.5m, respectively.

FIGURE 11. Trajectories of the lifeboat in [6] and simulation results under
the wind speed 12.2m/s with the orientation of −N1 and the wave height
4m (a) is trajectories of the ship in oxz1 plane, (b) is trajectories of the
ship in oy1z1 plane.

FIGURE 12. Trajectories of the lifeboat in [6] and simulation results under
the wind speed 18.5m/s with the orientation of −N2 and the wave height
9.6m (a) is trajectories of the ship in oxz1 plane, (b) is trajectories of the
ship in oy1z1 plane.

In Figures 12a and 12b, the maximum errors of the trajectory
curve in the air are 0.51m and 0.62m, respectively. The tra-
jectories of the lifeboat on the wave have a big gap, as it is
difficult to ensure that the position of the lifeboat landing
on the wave surface is consistent between the simulation
experiment and the model experiment.

As shown in Figures 13, the tension of one section of cable
is unstable at first, and it is stable at about 2.5 seconds. The
cable tension fluctuates slightly in the stable state. The stable
value is about one fourth of the lifeboat’s gravity, because
there are two movable pulleys in the system. It shows that
our model for the cable-pulley system is feasible.

FIGURE 13. The tension of one section of cable in the simulation
experiment 1 (a) and 2 (b), the tension of other sections is consistent
with that in the figure, only the peak value of tension at the beginning is
slightly different.

B. EXPERIMENTS AND QUALITATIVE ANALYSIS
The basic information of the ship is shown in Table 1. The
lifeboat’s length, maximum width, and maximum height are
11.5, 2.8, and 3.1m. The mass of lifeboat is 8500 kg. The
moments of inertia are 25020, 51745, and 51745 kg∗m2. The
projected areas of lifeboat normal to the three coordinate axes
are 8.5, 26.2, and 26.2m2. The air drag coefficient is 0.5,
the fluid drag coefficient is 1.2, the lift coefficient is 1.2, and
initial metacentric height of the lifeboat is hm = 2m. The
initial distance between the center of the mass of lifeboat and
the plane ofN1−N2 is 15m.All elastic cables have a diameter
of 20 mm and an elastic modulus of 200 GPa. The ship’s
initial position is (0, 0, 0) with the initial velocity (0, 0, 0).
The coefficient of restitution is 0.8, the Poisson’s ratios of
lifeboat and ship are 0.45 and 0.6, respectively. The young’s
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TABLE 1. Basic information of ship.

FIGURE 14. The initial layout of ship, davit and lifeboat, (a) is Cross
section, (b) is longitudinal section in center plane.

FIGURE 15. The trajectories of the lifeboat at the Level 4 sea state
without wind, (a) is the projection of trajectories in oxz1 plane, (b) is the
projection of trajectories in oy1z1 plane.

modulus of the lifeboat and ship are 55 GPa and 200 GPa.
Figure 14 is initial layout of the ship, davit, and lifeboat. The
initial distance between the lifeboat and the ship is half the
width of the lifeboat.

The Levels of sea state from 1 to 5 are calm-
rippled, smooth-wavelet, slight, moderate and rough.
At level 1 to 3 sea states, releasing a lifeboat is common in
the actual operation of navigation. At level 4 and 5 sea states,
releasing a lifeboat has a risk. Therefore, the environmen-
tal conditions are set as level 4 and 5 sea state, the wave
encounter angles are respectively 0, 45◦, 90◦, 135◦, and
180◦. The speed of the drum releasing cable is 0.7m/s [7].
Figures 15 and 16 show the trajectories of the lifeboat when
the wave height is 2.5m, and the velocity of wind is 8 m/s
(Level 4 sea state). Figures 17 and 18 show the trajectories
of the lifeboat when wave height is 4m, velocity of wind is
10m/s (Level 5 sea state). The direction of steady wind is the
same as the wave direction. The wave surface is known as a
Stokes second-order wave.

FIGURE 16. The trajectories of the lifeboat at the Level 4 sea state with
wind, (a) is the projection of trajectories in oxz1 plane, (b) is the
projection of trajectories in oy1z1 plane.

FIGURE 17. The trajectories of the lifeboat at the Level 5 sea state
without wind, (a) is the projection of trajectories in oxz1 plane, (b) is the
projection of trajectories in oy1z1 plane.

FIGURE 18. The trajectories of the lifeboat at the Level 5 sea state with
wind, (a) is the projection of trajectories in oxz1 plane, (b) is the
projection of trajectories in oy1z1 plane.

FIGURE 19. Acceleration curves of the lifeboat in the horizontal direction
in four experiments.

The initial position of the boundary of the ship’s side
plane is −10.5 in the oy1 axis. Oscillations can be seen to
have occurred during lowering as the lifeboat swung as a
pendulum. Some of these oscillations may be attributable to
the direct forcing by the wind; however, this is mainly due
to the motions of the floating ship by the waves according to
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FIGURE 20. The shortest distance between lifeboat and ship side at level 4 sea state with initial distance of 1 time (a), 1.5 times (b), and 2 times
(c) of lifeboat width. The horizontal ordinates respectively represent encounter angles 45◦, 90◦, 135◦, and the longitudinal coordinates is the
distance.

FIGURE 21. The shortest distance between lifeboat and ship side at level 5 sea state with initial distance of 1 time (a), 1.5 times (b), and 2 times
(c) of lifeboat width. The horizontal ordinates respectively represent encounter angles 45◦, 90◦, 135◦, and the longitudinal coordinates is the
distance.

FIGURE 22. The shortest distance between lifeboat and ship side in irregular waves of a significant wave height 2.5m with initial distance of 1 time
(a), 1.5 times (b), and 2 times (c) of lifeboat width. The horizontal ordinates respectively represent encounter angles 45◦, 90◦, and 135◦ of main
wave direction, and the longitudinal coordinates is the distance.

the comparison of the amplitudes of trajectories’ oscillations
with wind and without wind. The amplitudes of the oscilla-
tions are almost not affected by the wind. The motion of the
ship has a significant effect on the lifeboat when the sea state
is above level 4. This is consistent with the conclusion of the
model test [41].

There are four experiments occurring collision. According
to the acceleration curve in Figure 19 at the level 4 sea state,

the lifeboat collides with the ship when the wave encounter
angle is 90◦, at the level 5 sea state, the lifeboat collides with
the ship when the wave encounter angles are 45◦, 90◦, and
135◦. The extreme value of the four curves is the acceler-
ation produced by the collision in the horizontal direction.
When the wave encounter angle is 90 ◦, the acceleration
produced by the collision is greater. Thus, when the wave is
closer to the cross wave, the lifeboat is more likely to collide
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FIGURE 23. The shortest distance between lifeboat and ship side in irregular waves of a significant wave height 4m with initial distance of 1 time
(a), 1.5 times (b), and 2 times (c) of lifeboat width. The horizontal ordinates respectively represent encounter angles 45◦, 90◦, and 135◦ of main
wave direction, and the longitudinal coordinates is the distance.

with the ship, and the acceleration caused by collision is
greater.

Whether the collision occurs or not also depends on the
initial distance between the lifeboat and the ship. The initial
distance of the above experiment is half the width of the
lifeboat. 100 simulation experiments are conducted for initial
distances of 1 time, 1.5 times, and 2 times the lifeboat width
in regular waves at level 4 and 5 sea states, and the initial
phase of the wave is random. 100 simulation experiments
are conducted for same initial distances in irregular waves
with significant wave heights of 2.5m and 4m. The minimum
distance of per experiment between the lifeboat and ship in
regular waves is shown in the Figures 20 and 21, and in
irregular waves is shown in the Figures 22 and 23.

The minimum distance between the lifeboat and ship in
regular waves with 90◦ encounter angle is slightly less than
that in irregular waves with 90◦ encounter angle of main
wave direction. The minimum distance between the lifeboat
and ship in regular waves with 45◦ and 135◦ encounter
angles greater than that in irregular waves with 45◦ and 135◦

encounter angles of main wave direction. Under the condition
of 90◦ encounter angle, the collision is likely to happen. It is
safe if the initial distance is greater than 1.5 times the width
of the lifeboat when the sea condition is below level 5.

C. EXPERIMENTAL COMPARISON AT CROSS WAVES
Under the condition of cross waves, the collision between
the lifeboat and the ships is likely to happen. In this arti-
cle, the simulated experimental results of this condition are
compared with the data of model tests in [11], and the initial
conditions are consistent with those of Test 1 and 2 in [11].
The ship motion is consistent with the motion parameters,
as shown in Figures 24 and 25.

The numerical results of our algorithm are compared with
the data of model tests, as shown in Figures 26 and 27. The
data in the figures are the curves of the position of the lifeboat
with time. In Figures 26a and 26b, the maximum errors of the
trajectory curve in the air are 0.58m and 1.32m, respectively.

FIGURE 24. Ship motion parameters in test 1, (a) is heavy and sway,
(b) is roll.

FIGURE 25. Ship motion parameters in test 2, (a) is heavy and sway, (b) is
roll.

In Figures 27a and 27b, the maximum errors of the trajectory
curve in the air are 0.56m and 1.11m, respectively.

The impacts are clearly visible in the graph of the acceler-
ations in Figure 28. Both these impacts are actually a series
of collisions where the lifeboat is exposed to impacts of low
accelerations. This occurs since the ship first sways in the
direction of the lifeboat motion and then towards the lifeboat
at impact and the lifeboat is pushed on the shipside producing
a series of impacts. These impacts can be seen in Figure 28a
for both the experiments and simulations as a number of
consecutive peaks in the horizontal accelerations. The error
of the peak value is 1.6m/s2. The accelerations in the vertical
directions at these impacts are low and are not even visible
in Figure 28b.
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FIGURE 26. Comparison of lifeboat’s trajectories with test 1, (a) and
(b) are respectively the time-varying curves of the lifeboat’s coordinates
in the oy1 and oz1 axes.

FIGURE 27. Comparison of lifeboat’s trajectories with test 2, (a) and
(b) are respectively the time-varying curves of the lifeboat’s coordinates
in the oy1 and oz1 axes.

FIGURE 28. Comparison of lifeboat’s acceleration with test 1, (a) and
(b) are respectively the time-varying curves of the lifeboat’s acceleration
in the oy1 and oz1 axes.

In Test 2, the accelerations at impact against the mother
ship are larger compared to Test 1. In the graph of the horizon-
tal accelerations shown in Figure 29a, two distinct impacts
can be seen for both the simulation and experiment. The
simulated peaks occur slightly after their respective peaks
in the experiment, because the irregular side of the ship is
regarded as a plane. The error of the peak value is 1.0m/s2.
It is apparent that the same situation occurs for both the
simulation and experiment.

IV. APPLICATION
This article applies the established computational model to
the software of three-dimensional simulation of the totally
enclosed lifeboat. The software takes the container ship as
physical prototype, and uses the 3ds Max to build a 3D mod-
els of the ship, lifeboat. The system constructs a virtual scene

FIGURE 29. Comparison of lifeboat’s acceleration with test 2, (a) and
(b) are respectively the time-varying curves of the lifeboat’s acceleration
in the oy1 and oz1 axes.

FIGURE 30. Scene of initial stage of lowering lifeboat.

FIGURE 31. Scene of the lifeboat reaching the surface of sea.

of releasing the lifeboat through three-dimensional virtual
operation, as shown in the Figures 30 and 31.

V. SUMMARY
This article presents a multibody dynamics model for the
totally enclosed lifeboat lowered from a ship, accounting
for the coupled motion among the ship, lifeboat slings,
cable-pulley system, and the lifeboat. The equations of the
whole system are formulated by Kane’s method. The numeri-
cal algorithm in this article can simulate lowering a lifeboat in
different speed of the cable released by the drum, and obtain
the three-dimensional motion parameters of the ship, lifeboat,
slings, pulleys, and the local tension load of the cable in the
system. Thus, we present the following summaries:

1) Compared with the available model experimental
results, the trajectories and acceleration of the lifeboat are
close, and their trends are coincident. It can be concluded that
our model is feasible. At present, there are few experiments
available for comparison, and so we will make more efforts
to apply our algorithm to ship structure design and manufac-
ture. Even so, the computational model has been applied to
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the software of three-dimensional simulation of the totally
enclosed lifeboat. It can be used to train crews to improve
their proficiency in operation and safety awareness.

2) Oscillations can be seen to have occurred during lower-
ing as the lifeboat swung as a pendulum. This is mainly due to
the motions of the floating ship by the waves according to the
experimental result. The motion of the ship has a significant
effect on the lifeboat when the sea state is above level 4.

3) Under the conditions of cross waves, the collision
between the lifeboat and the ship is likely to happen. The
initial distance between the lifeboat and the ship is another
important factor. It is safe that the initial distance is greater
than 1.5 times the width of the lifeboat when the sea condi-
tions are below level 5.

4) Due to the irregular shape of the lifeboat, ship, pulleys,
etc., this article cannot take the collisions among all the
bodies into consideration, and so it is impossible to do simula-
tion experiments undermore severe environmental conditions
accurately. For the motion of a particular ship, the model
of MMG needs a lot of experimental data to get accurate
hydrodynamic derivatives. When there is no experimental
data for a ship, an accurate numerical algorithm is needed.
The hydrodynamic force of the lifeboat is needed to be cal-
culated accurately for the further research about the motion
of the lifeboat on the sea. Shipwrecks often occur, and the
lifeboat plays an important role in shipwrecks. Therefore,
the motion model of the sinking ship needs to be studied in
the future.
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