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ABSTRACT Both passenger demand and service supply are among themost important factors that determine
the performance of urban rail transit system. It is not easy to find out optimal solution for the match
between the passenger demand and service supply with traditional methods, due to the complexity of the
combinatorial intelligent supply — demand matching problem. In order to get the comprehensively optimal
matching degree, this paper transforms the multi-criteria problem into the distributed artificial intelligence
optimization by using multi-agent dynamic interaction technique. On the demand side, the dynamic
passenger traffic demand with agents is modelled from perspective of boundedly rational travel decision.
On the supply side, the dynamic service supply of train traffic with agent is modelled. The headway time
is designated as the main decision variable, for the key link between the passenger demand and service
supply is the headway time in different time-of-day intervals. To make the passenger demand more closely
matched with service supply in urban rail transit network system at the reasonable travel cost and operational
cost, the calculation formula for matching degree is proposed, along with the distributed system architecture
for agent-based matching mechanism, and the negotiation-based iterative mechanisms for balancing. The
proposed methods are validated on the simulation platform NetLogo. The simulation results emphasize
the importance of representing the supply side and the demand side jointly/interactively. These findings
are meaningful for policies on both development of efficient capacity usage strategies of urban rail transit
network and provision of high level of service for passengers.

INDEX TERMS Agent, dynamic passenger traffic demand, dynamic service supply of train traffic,
intelligent supply — demand matching, NetLogo, urban rail transit.

I. INTRODUCTION
Urban Rail Transit (abbreviated as URT) system is a particu-
lar kind of homogeneous railway system. Punctuality, robust-
ness, regularity (i.e. gaps between two successive departures)
and comfort are critical performance measures for URT sys-
tems in terms of deviations, randomness, uncertainties and
overcrowdings. Nowadays, four of the top ten busiest metro
systems globally are in China [1], resulting in that many trav-
elers have to experience the significant recurrent congestion
during peak hours on a daily basis. Thus, the encourage-
ment of ‘‘reasonable supply, controlled demand and better
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utilization of resources’’ has been attracting more and more
attentions among URT researchers and practitioners [2]. The
global problem faced by the public transport (e.g. urban
rail transit) agencies consists of determining how to offer
a good-quality service to the passengers while maintain-
ing reasonable asset and operating costs. URT network per-
formance measurement generally depend on the matching
degree between the passenger demand and service supply.
Both supply variations and demand variations are two sources
of uncertainty for all modes of transport [3], whichmakeURT
operators difficult even impossible to match them totally.

The match or balance between the passenger demand
and service supply is a key issue that the rail infrastruc-
ture managers and railway undertakings have to face. In the
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conditions of networked operations, the entire URT system
shares both the service and the ridership. Before the transport
service resources are configured for the trip makers, how
they utilize a given transit system should be clarified, e.g.,
the route choice behaviour. A transit assignment model is
useful in estimating or predicting such a travel behaviour [4].
As well known, usually transport supply should and could
be moreover optimized based on the corresponding demand
and capacity [5]. The interrelationship between passenger
demand and service supply in the process of transit line plan-
ning is a chicken-egg problem [6], i.e., they interact mutually.

The traffic assignment to route-choice modelling can be
regarded as the prediction towards the group behavior of indi-
viduals. On the demand side, the transit assignment problem
is defined as the mapping of passenger demand on a given
transit network. The transit system performance depends on
the interaction between travel demand and transit network
supply. The network flow algorithm cannot be applied to
a system optimal dynamic traffic assignment problem with
multiple OD pairs [7]. Due to the operational costs and capac-
ity constraints, the reasonable rail managers generally incline
to offer a limited number of daily vehicle services. While
statistics show that about a quarter of stations in Beijing
URT network adopt the passenger flow control measures
during peak hours. Based on the analysis of 72 mass rapid
transit (MRT) stations in Wuhan, China, Guo and Huang [8]
obtained four principal components to explain the poten-
tial linkage to MRT ridership, one of which includes the
station attributes in the network. Xu et al. [9] proposed
a method to evaluate and improve the service quality of
crowded metros from the point of service components, com-
bining Bayesian network, structural equation modeling, and
importance-performance analyses. From a market point of
view, service supply or capacity should be oriented to satisfy
peak demands, while from an operation plan or timetable
standpoint, its considerations are necessary to define the train
frequency and train paths trying to fulfil travel demand on
a given infrastructure, by maintaining the desired level of
service to passengers.

The order parameter is the decisive factor of the sys-
tem’s structure and function. For the matching problem
between passenger demand and service supply, the headway
time is the order parameter of the URT system. The prob-
lem of headway optimization is also referred to as transit
network frequencies setting problem. Designating the cost
reduction and service level improvement as the objectives,
Schmaranzer et al. [10] presented a simulation-based head-
way optimization for urban mass rapid transit networks, for
which the population-based evolutionary algorithms and dif-
ferent solution encoding variants are applied. From the transit
planning branches of the transportation science, the items
of route design and frequency setting compose the transit
network design problem [11], which both determines to a
large extent the service for the passengers and the operational
costs for the operator of the system, and is regarded as one of
the most intractable problems in the field of transportation

due to its high degree of complexity. As the allocation of
resources in a multi-route URT system, the optimal headways
are affected by the passenger demands at stations [12], [13].
The main tasks on the supply side include the computation of
the transport offer, e.g., the determination of the optimal train
frequency/headways per line and the capacity of the trains.
The settings of service frequencies determine supply capacity
and have significant consequences for level of service and
operational costs. One reason of success for the URT system
is that the headways between the trains are chosen in such a
way that the trains are equally high occupied [14].

The methods to determine dispatching headways for set-
ting the frequencies of the transit services can be classified
into two categories [15], i.e., (i) passenger load profile rule-
based techniques, (ii) minimizing passenger and operator
costs. The planning process for transit network spans every
decision that should be taken before the operation of the
URT system, which involves the subproblems as transit net-
work design, frequency setting, transit network timetabling.
Roughly speaking, its essence lies in the match between the
passenger demand and the service supply.

As discussed above, a limited number of studies have been
devoted to study the match between passenger demand and
supply in theURT network systems. In the current operational
practice, the experiences on the matching between passenger
demand and service supply mainly regarding the loading
factor as the single indicator, while focusing only on the
single URT track line. The load factor in URT system can
be quantified as the passenger load-to-train capacity ratio in
a certain period (e.g. the peak period), the value of which usu-
ally varies within a threshold. When the load factor reaches
or gets greater than the threshold, an overload phenomenon
can be declared, and the congestion inclines to occur. The
optimum state of a good match between service supply and
passenger demand occurs in URT system when the observed
passenger demand is accommodated meanwhile the number
of vehicles in use is minimized [16].

Both resilience (i.e., the ability to return to a previous
state after a disruption) and robustness (i.e., the amount of
stress that can be absorbed before failure) have gathered
much interest in the scientific community in recent years. For
URT system, resilience and robustness associate greatly with
travel time reliability and variability. A single delay could
have network-wide effects if the mismatch occurs between
the passenger demand and service supply, for these delays
will propagate from one train to some of its connectors. The
service supply determines whether the infrastructure network
has sufficient capacity to meet the passenger demand. There-
fore, it is important to simultaneously optimize the transit
route structure and the frequency setting. Few works focus on
passenger demand together with train service supply by also
considering passenger control strategy in the URT network.
By using the heuristic procedure, Ceder et al. [17] created
the even-load and even-headway transit timetables through
matching demand and supply. Huang et al. [1] focused on
load balancing solutions with effective alternative routes in
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FIGURE 1. System architecture for agent-based matching mechanism.

the URT network for alleviating the congestion on the over-
loaded segments from the supply side. However, the method
proposed cannot be applied to the case that there are no effec-
tive alternative routes. Goerigk and Schmidt [18] proposed a
bilevel optimization problem with a line planning problem on
the upper level and a passenger’s route choice problem on the
lower level.

The objective of our study is to provide a passenger
demand—service supply matching method with the consid-
eration of both the essential interactions between the train
flow and passenger flow, and the infrastructure dimension of
URT lines or stations. The contributions of this paper are as
follows.

1. On the demand side, the dynamic passenger traffic
demand with agents is modelled from perspective of pas-
senger boundedly rational travel decision. For agent-based
modelling passenger behavior, by considering both the
train/vehicle congestion and infrastructure/track network
capacity in URT system, the improved flow-dependent cal-
culation method for general travel time is put forward i.e.,
formula (1) — formula (7), which introduced the addi-
tional waiting time (i.e. network congestion degree) on route
due to URT network capacity problem (i.e. the trains traf-
fic of URT passenger demand surpasses the infrastructure

capacity supply) analogous to Bureau of Public Roads (BPR)
function.

2. On the supply side, the dynamic service supply of train
traffic with agent is modelled. The headway time is desig-
nated as the main decision variable, for the key link between
the passenger demand and service supply is the headway time
in different time-of-day intervals. Adopting the supply chain
principles, the calculation method for operation cost of train
agents are put forward, i.e. formula (10) — formula (13).

3. The methods for calculating the intelligent passen-
ger demand — service supply matching degree are put
forward, i.e. formula (14) — formula (17). By employ-
ing the agent technique, user utility theory (i.e., bound-
edly rational user equilibria), supply chain principle, and
NetLogo simulation comprehensively, a system architec-
ture for agent-based matching mechanism (Fig.1) and
negotiations-based iterative/adjusting mechanisms for intelli-
gent passenger demand—service supplymatching (Fig. 2) are
put forward to generate optimum matching degree, through
the multi-agent dynamic interactions and equal connections
between the passenger flow and the train flow, and coping
with the dynamic law of match between passenger demand
and service supply. The proposed methods are validated
on the simulation platform NetLogo. The simulation results

32066 VOLUME 9, 2021



J. Zhang: Agent-Based Optimizing Match Between Passenger Demand and Service Supply for URT Network

FIGURE 2. Negotiations-based iterative/adjusting mechanisms for matching passenger demand and service supply.

emphasize the importance of representing the supply side
and the demand side jointly/interactively. These findings are
meaningful for policies on both development of efficient
capacity usage strategies of urban rail transit network and
provision of high level of service for passengers.

4.The passenger assignment and train operation plan are
optimized simultaneously, by modelling the dynamic pas-
senger traffic demand with agent and the dynamic service

supply of train traffic with agent, rather than cutting them
separately. This study focuses on joint decisions of passenger
traffic assignment and train service plan. This work is not
only significant but also challenging, for it involves lots of
complexities from both URT system attributes and human
decision-making processes.

The remainder of this paper is organized as follows.
Section II reviews and synthesizes the literature on agent
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technique, traffic assignment, and URT network. The prob-
lem is described in Section III. Both the dynamic passenger
traffic demand and the dynamic service supply of train traffic
are modelled with agent in Section IV and Section V respec-
tively. Section VI proposes the intelligent matching method
between passenger demand and service supply, including
calculation of the matching degree, distributed system archi-
tecture for agent-based passenger demand and service supply
matchingmechanism, negotiation-basedmechanisms for bal-
ancing match between passenger demand and service supply.
Section VII demonstrates the numerical example through the
NetLogo simulation platform. The last section draws conclu-
sions and discusses some further research topics.

II. LITERATURE REVIEW
A. LITERATURE REVIEW ON AGENT TECHNIQUE
Agent-based method, in particular, allows to model complex
systems that involve numerous autonomous and responsive
elements, e.g., URT system. Multi agent systems (MAS) are
a subfield of distributed artificial intelligence (DAI) technol-
ogy. MAS aggregates a variety of agents, which are intel-
ligent autonomous entities capable of observing the system
environment, communicating with each other and making
decisions. By capturing supply uncertainties and adaptive
user decisions, Cats [19] presented a simulation framework
for a multi-agent transit operations and assignment model
to incorporate the interactive process between transit sup-
ply and demand, involving the integration of several com-
ponents, e.g., transit operations, traffic dynamics processes,
population generator, traffic and transit assignment models,
real-time information processor and adaptive operations plan-
ning. BusMezzo is used as the platform for implementation,
which is a stochastic event-based simulation programmed in
C++ using an object-oriented programming approach.

The methods for supply and demand evolution require
the further integration of operations research techniques and
behavioral science models. Using an agent-based simulation
method, Zhang et al. [20] built the artificial urban transport
system to describe the passengers decision-making process
of traveling route and departure time. To minimize the travel
impedance, Narayan et al. [21] developed for the first time
an integrated multimodal route choice and assignment model
that allows users to combine fixed (line and schedule based)
and flexible (on-demand service) public transport in a single
trip or use them as exclusive modes. Considering the dynamic
demand–supply interaction using an iterative learning frame-
work, they implemented the model in an agent-based simula-
tion framework for Amsterdam.

Due to the main sources of complexity that generally
preclude finding a unique optimal solution for the transit
network planning problem, e.g., non-linearity, the multi-
objectives nature (e.g. minimize passenger travel times and
company operating costs), and the combinatorial explosion
arising from the discrete nature of the problem, generally
the past approaches inclined to three categories: optimization
formulations of idealized situations, OR heuristic algorithms,

and practical guidelines and ad hoc procedures.
An AI-based solution approach can incorporate the knowl-
edge and expertise of transit network planners and imple-
ment efficient search techniques using AI tools. Because
URT systems are generally geographically distributed in
dynamically changing environments, it is well suitable for the
application of an agent-based modelling (ABM) approach in
the domain of traffic and transportation system [22], inspired
by a learning-based approach. One key value of ABM lies
in its ability to represent human behavior more realistically
by incorporating the bounded rationality, agent-agent and
agent-environment interactions, heterogeneity, evolutionary
learning and adaptation.

B. LITERATURE REVIEW ON TRANSIT ASSIGNMENT AND
URT NETWORK
Transit assignment is a process of interactions between indi-
vidual passengers and transit services, which is commonly
applied to estimate passenger ridership and travel times for
different line and frequency plans; therefore, it plays a key
role in public transport planning [23]. Traffic assignment
models can forecast passengers’ behavior in response to a
potential supply setting, e.g., practically estimate and pre-
dict how passengers utilize transit system and choose paths,
as well as explicitly model passenger flow distribution. At its
core, any transit assignment models include a route choice
model that describes the behavior of transit riders regard-
ing their choices of routes to travel between trip origins
and destinations. To relax the traditional ‘perfect rationality’
(PR) route choice paradigm assumption in the static traffic
assignment problem, Di et al. [24] used boundedly rational
user equilibria (BRUE) representing traffic flow distribution
patterns, where travelers can take any route whose travel
cost is within an ‘indifference band’ of the shortest path
cost, and all the BRUE flow patterns can help predict the
variation of the link flow pattern in a traffic network under
the boundedly rational behavior assumption. Approaches to
transit assignment [25] are broadly divided into schedule
and frequency-based assignment. Schedule based models are
commonly used for simulation of detailed time-dependent
transit assignment. Frequency based models are commonly
used for planning purposes, yielding the average distribution
of passengers over time and enables the handle of large-scale
networks.

Network-based transport modelling is a challenging task.
From the perspective of physical infrastructure, URT net-
work is composed of the tracks (links), nodes(stations)
and the relationship among the above facilities, which is a
static many-origin-to-many-destination network supporting
the trains operation. Usually the transit network is devel-
oped with a particular shape, e.g., radial, rectangular, grid
and triangular. The grid and radial are the most common
and basic geometrical shape of the URT network structure,
based on which can form the shape of circle + grid and
circle + radial by adding the circle line. The formulations
of transit networks for dynamic models can be classified into
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two groups, i.e., frequency/headway based formulation and
schedule/timetable based formulation. The frequency-based
(also termed headway-based or line-based) approach consid-
ers services in terms of runs (lines) with the line headway
(or its inverse) and the service frequency, regardless of the
explicit run schedule times. This approach could be adaptable
for services with high frequency, very low punctuality and not
much user/passenger information, e.g., the public transport
or the urban rail transit in early times without advanced
intelligent transport techniques. In contrast, the schedule-
based (also termed timetable-based or run-based) approach
(also called dynamic approach) focuses on services in terms
of runs explicitly considering vehicle arrival/departure time,
which allows us to take into account the evolution in time
both of supply and demand, as well as run loads and level of
service attributes [26]. The schedule-based models are often
adopted for low frequencies. A static frequency-based transit
network is represented within space domain only (i.e. without
time dimension), which does not reveal the peaked nature of
capacity (i.e. crowdedness) problem. While the central idea
of this approach for dealing with the capacity constraints
lies in the introduction of a ‘‘fail-to-board’’ probability as
passengers cannot board the first service arriving due to
overcrowding [27]. Studies on transit users’ route choice in
the context of transit assignment can be categorised into three
groups: static transit assignment; within-day dynamic transit
assignment; and emerging approaches.

The physics-based statistic features of transport network
include node-centrality property, small-world property, scale-
free property, distribution of weight of intensity, network
community structure, and static/dynamic robustness. In the
frequency—based models, usually the topological directed
graph (e.g., L-Space or P-Space) or the connection matrix is
adopted to construct the physical network of URT system.
The node degree distributions of the URT network obey the
power law distribution, which has typical characteristics of
small-world properties and scale-free degree distributions.
Because of the difficulties in collecting traffic data, most of
the previous studies have focused on the physical topology
of subway systems, whereas few of them have considered the
characteristics of traffic flows through the network. In view
of the schedule-based model, representation of the transit
network is a run-based spatio-temporal graph that can show
individually serial runs as scheduled in timetables. Moreover,
every move of the entities (i.e. transit vehicles and passen-
gers) is marked with a timestamp, such that those entities
can be located, described, and differentiated from each other
in both temporal and spatial dimension, e.g., the stochastic
time-dependent network, also called time–variation network,
i.e., the travel times on the arcs are functions of time, and the
travel time is represented by probability distributions rather
than simple scalars. A time-expanded network is built on
a two-dimension graph with one time axis and one space
axis. While a diachronic network is built in a three-dimension
graph with two space axes and one time axis. To simu-
late high-frequency services (e.g. URT), frequency-based

(FB) models are usually preferred, because of the facts that
most of these passengers do not choose a particular run
and do not time their arrival at the stop to coincide with
train arrivals [28]. Schmöcker et al. [27] proposed the first
frequency-based dynamic transit assignment model for over-
crowded high-frequency transit networks, where passengers
might not be able to board vehicle and hence remain on
platform. On the other hand. Some early studies focused on
the transit network structure for system design in simplified
radial, however, since the 1980s most approaches were either
applied to realistic, irregular grid networks or the network
structure was of no importance for the proposed model and
therefore not specified at all [29].

In URT network, passenger load on the nodes/links is
usually viewed as stochastic time-dependent, i.e. the pas-
senger volume depends on the arrival rate at a node.
Nuzzolo et al. [26] presented a schedule-based path choice
model for high-frequency transit networks, considering the
evolution in time of transit services, both within-day and day-
to-day, as well as the day-to-day learning process of attributes
by which users choose. However, in reality, the actual
arrival/departure time of a run may not be consistent with
the schedule but vary from time to time, especially for
the high-frequency transit system. It is then considered
as random with the published scheduling time being the
mean.

The method presented in this paper is a dynamic
frequency-based or semi schedule-based, which considers
the dynamic effects by determination of the effective fre-
quency/headway from both the demand side and supply side.
The physical features of URT network include accessibility,
extensibility, reliability, convenience, and advancement. The
advancement is represented as the digital construction, infor-
malization/automatic operation and maintenance, intelligent
service towards passengers in the dimension of business
operations. While in the perspective of technique equipment
(e.g., the sensors and video monitors, the communication-
based train control system) and the management level
(e.g., Automatic vehicle location (AVL), automatic
passenger counting (APC)), a typical feature of the URT
system lies in the modern cyber-physics system, i.e., it is
a kind of informed system, which lays the foundation for
the intelligent operation. For simplification, in this study,
an intermediate level of network representation for URT
routes is used, i.e., section of routes where no train routes
start, end or divert are represented as one link. In nature,
the URT network belongs to the kind of time-spatial-state
dependent cyber-physics system,with information systems
offered to users at stops, e.g., tracking technology that pro-
vides accurate data on travel times, stopping times, and
passenger counts, by which the passengers/operators can
discern the operation status (e.g., the volume of on-board
passengers). The optimization methods for network can be
defined [30] within two classes, i.e., structural optimization
and flow related optimization. Nevertheless, these two classes
always mix together.
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III. PROBLEM DESCRIPTION
According to the procedures of networked operation, it can be
divided into the primary phase and the large passenger flow
phase. In the primary phase, the total passenger volume is not
very large, and the passenger intensity is not very high, with
less transfer, but keeps increasing trend. In the large passenger
flow phase, both the total passenger volume and the passenger
intensity are very high, with more transfers. Fully considering
the time-variation–dynamic interactions among the passenger
demand, URT network infrastructure, and the passenger/train
flow, we mainly target at the second phase to intelligently
match the service supply with the passenger demand at the
network level.

This study aims at the co-evolution process iteratively
between passenger flow assignment (route choice) and train
operation plan (transit service network design), within certain
period over the URT network with information systems to
users at stops, by considering both user equilibrium (bound-
edly rational user equilibria) and system optimal simultane-
ously. In details, the research goal is to optimize the operation
of train services through adjustment of the headway times
in accordance with the dynamic passenger demand, so as
to achieve the maximum total satisfied passenger demand,
to use the URT capacity efficiently, and to tune the travel
reliability perception of passengers to reality. The nature of
intelligent demand-supply matching lies in the dynamic syn-
ergy and coordination. The operation plan strategy includes:
(i) maximize train load of passenger flow at rush hour, (ii)
minimize waste of service capacity at off-peak hour, (iii) meet
the system requirements of the timing, economy and capacity
constraints as well as comfort.

The passenger route choice (traffic assignment) problem
determines the flow pattern of the URT network. The non-
trivial process that maps strategic passenger traffic flows to
priority-complient train traffic flows is introduced. Here what
the term ‘priority-complient’ [31] means is that in the context
of URT vehicles with rigid capacities, the passengers sort the
train lines in decreasing order of preference at each boarding
node, and they board the first vehicle in the preference list
whose residual capacity is nonzero. Few works focus on pas-
senger demand together with train service supply along with
passenger control strategy and train capacity. To formulate
the model for intelligent passenger demand— service supply
matching and develop an effective mechanism/framework,
the following assumptions are made throughout this
study.
Assumption 1: The passengers are frequent users, i.e.,

they know from previous experience how the URT sys-
tem operates. The time-slice based transit demand OD
matrix is generated in the many-origin-to-many-destination
capacitated URT networks. It is assumed that passen-
gers arrive at stations randomly according to a Pois-
son distribution. The passenger OD demand matrix is
assumed symmetric, and only the unidirectional track line
(e.g., upstream or downstream) is considered in the URT
network.

Assumption 2: Passengers are boundedly rational in their
decision-making process, i.e., they would only switch routes
when the improved general travel cost exceeded some indif-
ference bands. Passengers travel along the routes of the
underlying network, where path cannot be modified en route
(path and route are used interchangeably in this paper) once
they get on the train.
Assumption 3: The formation of train fleet is homogeneous

and fixed. The available fleet size is sufficient. The full-length
train service is adopted, instead of the different types of lines
such as short-turning, dead-heading and limited-stop lines.
No stop skipping is allowed. The routes and frequency of
the train lines are predetermined and adjusted accordingly
and iteratively. The train running time on the rail track is
deterministic. The operation patterns of the trains adopt the
same headway time in the same network, i.e., the headway
times among all of the trains within certain study period in
the same URT network keep invariant.
Assumption 4: Following the system optimal perspective,

it is assumed that agents are aware of other agents’ decisions
and collaborate to obtain the intelligent passenger demand—
service supply matching. The learning and decision-making
processes of agents are assumed to follow reinforcement
learning principles for experience updating and choice
techniques.
Assumption 5: Routes are created to serve desired des-

tinations in the shortest possible time, meanwhile meeting
maximum demand and minimizing passengers travel cost &
train operation cost. The passenger’s choice of an attractive
line is made at a transit stop (station), whereby the passenger
flows split among the attractive line.

What Assumption 3 means is that once the passengers
get on the train, they could not change their travel path en
route, which is determined by the feature of urban rail transit.
This assumption is set from perspective of passengers. While
Assumption 4 is set from the perspective of urban rail transit
operators. Both the passenger agents and the train agents have
their individual behaviors. Exactly, the seeming conflicts
between Assumption 3 and Assumption 4 are the expressions
of autonomous agent behavior, and they have been settled
by the technique of distributed multi-agent system during
simulation with NetLogo.

IV. MODELING DYNAMIC PASSENGER TRAFFIC
DEMAND WITH AGENTS
A. ANALYSIS ON SPATIAL-TEMPORAL FEATURES OF
PASSENER FLOW IN URT NETWORK
1) SPATIAL AND TEMPORAL PATTERN OF PASSENGER
DISTRIBUTION
The spatial features of the passenger distribution can be
seen as the function of urban structures and usage of urban
land, which can be described from the spatial information
(e.g. points of interests) to a certain extent. The passenger
flow patterns are spatially heterogeneous due to the poly
centricity of urban structures.
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TABLE 1. Temporal pattern of URT passenger flow distribution and detailed characteristics.

Withmore public transport agencies facing crowding prob-
lems, there is an increasing need to develop more struc-
tured conceptual and methodological approaches for public
transport travel demand management, e.g. URT. Public travel
demand is time-dependent and varies according to time of the
day, day of the week, as well as time of the year. According
to the number of passenger departures within a period and the
temporal information (e.g. duration, time of day), the tempo-
ral pattern of URT passenger distribution can be segmented
into four state scenarios within a day as shown in Table 1.
Thus, the daily operation time of URT can be divided into
such several large time intervals as early morning, am peak,
midday, pm peak, evening and late evening. In uncongested
passenger conditions at the off-peak hours it is unnecessary
to consider transit capacity and passenger volume control.
Otherwise, in the congested passenger conditions the transit
capacity restrictions cannot be neglected at the peak hours.

2) PROPERTY OF SELF-ORGANIZATION
Public transport users tend to have less varied trip purposes
than drivers, which are constrained by service schedules.
The main technique feature of URT system is its dedicated
and exclusive rail-based infrastructures, while its service
form belongs to urban public passenger transport, in nature
which is the subfield of public transportation. The trip of
URT passenger possesses a property of self-organization and
stochastics. However, its operation mode approximates to the
national railroad, which means that the operators can make
the train operation plan according to the principle of sys-
tem optimum, so as to predecide the passenger route choice
alternatives to a greater extent, i.e., URT passengers are con-
strained by service schedules. On the other hand, according
to the various characteristics of traffic flow, it can be divided
into the kinds of weak-controllable-autonomous traffic and
strong-controllable-organized traffic. The technique feature
of the URT passenger flow belongs to something in between.

3) GENERATION OF OD MATRIX
URT is a closed system, requiring users to tap their cards
on entry and exit, so complete trip records are available.

Passenger demand is represented as an Origin-Destination
matrix. There are two kinds of methods for passenger
OD reconstruction [32], one is the trip-based OD recon-
struction by CDR data (Call Detail Records from mobile
phone), the other is stay location-based OD reconstruction,
including temporal-based clustering, distance-based cluster-
ing, frequency-based clustering, and time-distance clustering.
There is considerable evidence that passenger arrivals appear
to be Poisson for higher-frequency (lower-headway) service,
with headways up to 10-15 minutes [25]. Thus, in the URT
case, it is common to assume the Poisson passenger arrivals
for generation of OD demand matrix.

B. AGENT-BASED MODELING PASSENGER BEHAVIOR
IN URT NETWORK
1) ROUTE CHOICE BEHAVIOR
A complete journey in URT can be segmented into such suc-
cessive parts as access to a stop (and buy a ticket if necessary),
walking to a platform, waiting to board, travelling on-board,
alighting (and/or interchange to another line if necessary) and
egress. The behavioral assumption has a decisive impact on
the problem formulation, expected waiting times and esti-
mated distribution of passengers in the network [23]. There
may be more than one route between the OD pairs in the tran-
sit network, which means users normally face common lines
to reach their destination. The passenger agents are treated
as the entities with different attributes and behavior, allowing
passengers to choose their own boarding rules as they travel
from origin to destination. Each passenger agent plans his
transit trip by selecting one transit option. The main behavior
of the passenger agent is the route choice with boundedly
rational travel decision, so as to achieve the boundedly ratio-
nal user equilibria [33]. The passenger route choice (traffic
assignment) problem determines the flow pattern of the URT
network. An O–D route is defined strictly as a sequence of
track segments (or links) in the URT network. Each candidate
route is a travel strategy. The route selection criteria for
the passenger agents include (i) minimize general cost with
boundedly rational travel decision according to following for-
mula (1); (ii) the maximal number of transfer times is nomore
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than 2. In the case of one or two transfer path, a passenger
agent may choose the URT routes twice or three times: at the
origin node and at the transfer node. Or else, the route choice
is a pretrip behavior, i.e., the passengers maybe determine
the whole route only once before they depart from the origin
node. In this study the latter one is considered. Given the
URT network, for each OD pair, the set of effective URT
routes which can be used by the passengers is determined
by calculating the general travel cost for each of the transfer
path. In the public transit system, the common line problem
deals with the choice of a line among a set of lines which
share either all or part of the path of an O-D demand pair.
A route section is the link between two consecutive transfer
nodes [20]. Here the common tracks are defined in the URT
network as follows: they are the tracks that more than one
passenger paths share during the passenger travel.

The routes that the demand of each OD pair takes in the
URT network compose of the path set. The path may be
formed by either a segment of a single route (direct travel)
or more than one single route (i.e. transfer is necessary.). Not
all of the available lines at a platform would be considered
by a wait-to-board passenger, but only a portion of (usually
no more than 5 of) all lines that are available would be
perceived as rational. Predicting the choice behavior within
a passenger/train traffic assignment analysis is an essential
part in determining the frequency/headway. The route choice
in URT network is typically pre-trip, while particular train
line choices are adaptive. Usually the passengers waiting on
the platform board a vehicle on the First-Come-First-Serve
(FCFS) basis. The mostly accepted assumption for board-
ing is that, in uncongested situations, all passengers would
board the firstly arriving line out of attractive ones. Under
crowding situations, passengers may fail to board, but keep
waiting on the platform instead. Generally, the fail-to-board
passengers can be classified into two groups of those (i) who
fail to board due to limited standing space; and (ii) who
are not willing to board because of unavailability of seats.
For assumptions of the process that a passenger determines
individually his/her perceived route choice set, we distinguish
those wait-to-board, intend-to-board, decline-to-board and
seat-sensitive passengers, to accommodate the fact of first
refusal concerning, e.g., unwilling-to-stand and unwilling-to-
sit cases. For the unsatisfied passenger demand, it is generally
modeled by introducing a penalization weight in the objective
function [15]. Given the limited size and its simple structure
of a URT network, a brute-force-search algorithm could be
more advantageous than other methods (e.g., link elimina-
tion, labelling and k-shortest-path) in generating route sets
in shorter time [34]. In the literature there are multiple route
choice models (mainlyMulti Normal Logit (MNL) models or
extensions of it) based on users’ socioeconomic characteris-
tics and route attributes. This study presents a more complete
route choice analysis on URT networks, incorporating factors
related to the different times involved (travel, waiting and
walking times), trains and stations usage, transfer environ-
ment, level of service and the travelers’ perceptions. One of

the limitations of the MNL model is that it does not consider
correlation between alternative routes due to overlapping.
To address this issue, C-logit model is recommended [35].

2) CALCULATION OF PASSENGER TRAVEL COST
In most urban transit systems the trip fare is constant for
any given OD pair, no matter which travel path is chosen.
In other words, the trip fare cannot bias the results of the path
choice process undermost circumstances. Thus, themonetary
cost can be neglected for route choice in URT network. The
heterogeneity of passenger preference is taken into account.
The calculation for general travel cost of route choice by
passenger agent p is as formula (1), which is a flow-dependent
cost function.

Cp
r ≤ π (r)+ ε(p) (1)

where p denotes index of passenger agent p, p ∈ P, defined
based on each OD pair. Cp

r denotes the travel cost of route r
choice of passenger p, which departs fromOD pair w,w ∈ W .
W denotes set of URT network origin-destination (OD) pairs.
w denotes an element of W. Rw denotes set of feasible routes
associated with OD pair w, and r denotes an element of
Rw, r ∈ Rw. π (r) denotes the minimal route travel cost of
OD pair w of passenger p on route r, which is calculated by
formula (2). ε(p) denotes the indifference band or tolerance
value of passenger agent p.

Train/vehicle congestion and infrastructure/track network
capacity in public transport assignment are not the same
problems [36]. Considering both of them, the flow-dependent
formula for calculation of minimum route travel time π (r) for
OD pair w of passenger agent p on route r is set as formula (2).

π (r) = min
r∈Rw

(
N∑
i=1

tri−1,i · (1+ Y
r
i−1,i)+

K∑
k=1

trk +
hr
2

+

M∑
m=1

(α · trm)+ β · ϕr (v)) (2)

The first term on the right side of formula (2) denotes
the in-vehicle travel time on route r which departs from
OD pair w considering on-board congestion; the second term
denotes the dwell time for boarding/alighting on route r; the
third term denotes the normal waiting time on route r; the
fourth term denotes the walking time at transfer stations on
route r; the fifth term denotes the additional waiting time
(i.e., network congestion degree) on route r due to the URT
network capacity problem (i.e. the trains traffic of URT pas-
senger demand surpasses the infrastructure capacity supply),
for which the passenger volume control strategy is necessary
to be enforced.

In formula (2) Where tri−1,i denotes the in-vehicle running
time from station i-1 to i on route r which departs from
OD pair w. Y ri−1,i denotes the in-vehicle congestion degree
or discomfort, which calculates the additional time cost coef-
ficient induced by congestion within the in-vehicle running
time. trk denotes the dwell time at stop station k. hr denotes
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the planned dispatching headway time of consecutive trains
on route r over the study period, i.e., the key decision vari-
able or order parameter. M denotes the number of transfers
on route r of OD pair w. trm denotes the average walking
time of passenger agent at transfer station m on route r. α
(α > 1) and β (0 or 1) are the parameters. ϕr (v) denotes
the additional waiting time due to URT network congestion,
which also can be regarded as the network congestion degree.
According to Bureau of Public Roads (BPR) function and De
Cea [37], the calculation formula for ϕr (v) can be defined as
formula (3).

ϕr (v) =
vr + ṽr
Kr

(3)

where vr denotes theURTpassenger flow that can be assigned
to route r; ṽr represents the flows that compete with vr for the
same common capacity on the common track; Kr denotes the
ideal capacity allocated to route r, and Kr =

λTCapa
hr

, where
T is the study period, Capa is the maximal loading capacity of
single train, usually Capa = 1400 or 1000, and 0 < λ < 1.
The calculation formula for Y ri−1,i is defined as formula (4).

Y ri−1,i

=



Dri−1,i −
Z ·T
hr

Z ·T
hr

A if
Z · T
hr

< Dri−1,i

<
T · Capa
hr

Capa − Z
Z

A+
Dri−1,i −

T ·Capa
hr

T ·Capa
hr

B if Dri−1,i >
T ·Capa

hr

(4)

where Dri−1,i denotes the onboard passenger volume between
station i-1 and i (i.e. the track edge connecting the station
i-1 and i) on route r, which is the context discernment of
passenger agents in the CPS environment of URT network.
Z the number of train seats. A denotes the cost for over seat
capacity of the train. B the additional cost for over congestion.

According to Mahmassani [38], the formula for the term
ε(p) in formula (1) is defined as follows.

ε(p) = max(ηp, τp) (5)

where ηp is a relative indifference threshold for passenger p.
Results of laboratory experiments indicated that ηp is
about 0.2 for typical urban commuters [39]. The quantity ηp
governs passenger agents’ response to the supplied informa-
tion and their propensity to switch. τp is an absolute minimal
travel time improvement needed for switching. Results of
laboratory experiments indicate that τp is on average equal to
one minute [39].We set τp as a float random value in-between
(0,1) in the URT network system.

For each OD pair w ∈W on the capacity constrained URT
network, most of the trip demand qw would be split into all
effective routes as formula (6).

qw ≥
∑
r∈R

vwr (6)

where vwr is the passenger flows assigned to the route r of OD
pair w.

On the passenger demand side, the total travel costCr
demand

incurred by the passenger demand on route agent r is as
formula (7).

Cr
demand = Cp

r ·
∑
w∈W

vwr (7)

V. MODELING DYNAMIC SERVICE SUPPLY OF TRAIN
TRAFFIC WITH AGENTS
A. DEFINITION AND ANALYSIS OF SERVICE SUPPLY
OF TRAIN TRAFFIC
A run-based representation of services is employed in this
study, which means the passenger choice behavior pertains
not only to the route, but also to the specific train run of each
line on the route. A URT network consists of a set of lines
and stops/stations where passengers board and alight. A train
service line/route is defined by its origin and destination
terminals, as well as the sequence of stops that it serves in
between, i.e., it corresponds to one scheduled service of the
route. Each route has three attributes: travel time, frequency,
and capacity. Its capacity is the frequency of that route line
multiplied by the train capacity. The inverse of the frequency
over a determined period is called the headway time, which
corresponds to the time elapsing between consecutive line
run departures or arrivals. The line frequencies for each time
period (i.e., hour of the day) from the supply side should
match the travel demand at best so as to avoid overcrowding
and excessively large headways, and thereby reduce waiting
time [40].

Usually the route options on the supply side are hyperpaths
– a hyperpath being an oriented, acyclic sub-graph connecting
the origin and destination nodes. For each route, the opera-
tional characteristics, e.g. frequencies or headways are typi-
cally determined on the supply side, through the calculations
based on expected passenger volumes or by applying transit
assignment techniques, considering the desired load factors,
fleet size. The current advent of the research inMobility-as-a-
Service (MaaS) and big data analytics provides a rich oppor-
tunity to consider stochasticity in the supply side decision
making [41], e.g., the statistic travel time. However, consid-
ering the high reliability of URT operation, the travel time
of URT can be regarded as deterministic, especially at the
off-peak hours. For the situations at peak hours, we introduce
the network congestion degree ϕr (v) as used in formula (3)
for calculation the additional time cost due to train traffic
congestion.

In this study, for service supply in the URT network sys-
tem, what is mainly concerned is the service headway time
between consecutive trains, which is taken as the key decision
variable or order parameter. In general, it is believed that an
even schedule with a constant headway between consecutive
vehicles can reduce passenger total waiting time. The typical
operation modes of URT network include: (i) Each line oper-
ates independently. This mode is adopted most commonly in
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China, which is relatively simple and with less interferences
among the lines, but not beneficial to the improvement of
the service level. (ii) All lines adopt the same headway time
within the whole URT network. This means that the trains run
on all of the lines with the identical headway time in certain
period, e.g., the operation mode of New York metro system.
(iii) Periodic operation mode in the URT network. This is
unnecessary to adopt the even headway time in the whole
day, but on certain period (e.g., the off-peak period), it is
helpful to build the regular timetable. From the perspective of
statistics [42], the operational reliability can be assessed by
the variation coefficient, i.e., standard deviation divides the
mean value. Accordingly, in this study, the second operation
mode is adopted, i.e., all lines adopt the same headway time
within the entire URT network, in order to ensure the service
reliability. In details, firstly the representative key OD pairs
are selected, which are usually the ones with the longest travel
distance, the most intermediate nodes and transfer possibili-
ties. And then the alternative route sets can be determined.
Thirdly, the headway time within certain value domains can
be generated randomly and adjusted accordingly/iteratively
in the URT network until the desired headway time is found.
The concrete negotiation-based iterative mechanisms can be
described in Section VI.

B. TRAIN TRAFFIC DYNAMICS FOR SETTING
HEADWAY TIME
Frequency designates the number of trains that could run
over a route between an OD pair, during a specific time
interval. For simplicity, the model uses headways instead of
frequencies, thus for a frequency fr (vehicles per time range
of T minutes), the equivalent headway hr (minutes between
consecutive departures) is hr = T

fr
and hr ∈ [hmin, hmax].

hmin denotes the minimum headway time between consecu-
tive trains, hmaxdenotes the maximum headway time between
consecutive trains.

Since the URT system has the high level of right-of-way
that can guarantee higher reliability and the link running
times in URT network are constant to a large extent, it is
assumed that the planned dispatching headway of train trips
on a route r, i.e., the headway time between successive trips
at the departure stop, hr , will be maintained at any other
stop of route r. On the other hand, the uniform (constant)
headways not only can provide the most efficient operation
(even for vehicle loading and schedule stability), but also are
most attractive to passengers [43].

The train traffic dynamics for calculation of headway
time of consecutive trains in URT network is illustrated as
formula (8).

hr =


tln ext − tlcritical if the boarding station is the

transfer station
tl+1 − tl if the boarding station is the

non-transfer station

(8)

where tln ext denotes the arrival time of train trip Next, tlcritical
denotes the arrival time of train trip Critical, tl+1 is the arrival
time of the following train service l + 1 on route r for
OD pair w, tl is the arrival time of the proceeding train
service l on route r for OD pair w.
At the transfer station, there is a transfer connection going

from a train trip Feeder running on a feeder line lfeeder to a
Receiving line lreceive on route r of OD pair w. Let Critical
be the train trip on lreceive whose schedule time of arrival at
the transfer point with lcritical is closest to that of Feeder, and
let Next be the train trip following Critical on lreceive. On the
common track, the total service supply should sufficiently
satisfy the associated passenger demand, which is also the
decision mechanism of the track agent and expressed as
formula (9). ∑

r∈R

Dri−1,i ≤
∑

ei−1,i∈r

C · T
hr

(9)

where R denotes the set of routes in URT network, ei−1,i
denotes the common track connecting station i-1 and i,Dri−1,i
denotes the passenger volume between station i-1 and i (i.e.
the track edge connecting station i-1 and i) on route r.

C. CALCULATION OF OPERATION COST FOR TRAIN
AGENTS
Adopting the supply chain principles [44], Hadas and Shnai-
derman [45] proposed the optimal cost-based frequency set-
ting model to minimize the total cost incurred with decision
variables of either frequency or vehicle capacity, considering
twomain cost elements, i.e., (i) empty-seat driven (unproduc-
tive cost) and (ii) overload and un-served demand (increased
user cost). Here the decision mechanism of the train agent
on the supply side is: (i) to minimize the unproductive cost
(e.g., to maximize the minimum load factor at off-peak hour);
(ii) to minimize the increased user cost (e.g., to minimize the
maximum load factor at peak hour, to minimize the number
of fail-to-board passengers at the first time of boarding).
The analysis approach is analogous to Kogan and Shnaider-
man [44], and the method proposed by Hadas and Shnaider-
man [45] is adopted in this study. Let c+ be the empty seat
average cost per time unit, let c− be the un-served passenger
shortage cost per time unit, and let t li−1,i the running time
between stop i-1 and stop i for train agent l.

If the real train load is smaller than the supply capacity,
then overage cost of train agent l at station i is equal to
formula (10).

c+li = t li−1,i · c
+
·max(Capa − d li−1,i, 0) (10)

where d li−1,i is the load of train agent l between station i-1 to
station i.

On the other hand, if the load is higher than the capacity,
then the shortage cost of train agent l at station i is equal to
formula (11).

c−li = t li−1,i · c
−
·max(d li−1,i − Capa

, 0) (11)
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The total cost of train agent l at station i is therefore the sum
of c+li and c

−

li as formula (12).

cli−1,i = t li−1,i · c
+
·max(Capa − d li−1,i, 0)

+ t li−1,i · c
−
·max(d li−1,i − Capa

, 0) (12)

The objective function for all trains of route agent at all stops
on route r is as formula (13).

Cr
supply =

L∑
l=1

N∑
i=1

cli−1,i (13)

where L denotes the number of trains running on route r for
OD pair w, and L = λT

hr
.

There are four kinds of different models for route set
generation for road network, i.e., (i) all acyclic routes, (ii)k-
shortest routes, (iii) essentially least-cost routes and (iv) most
probable routes. For URT network in this research, the third
model (essentially least-cost routes) is modified for candidate
routes generation as follows, i.e., no more than 5 attractive
routes with a general travel cost within a certain threshold
from the least cost route. After the set of attractive paths is
found, the probability for their selection is computed.

VI. INTELLIGENT MATCHING DEGREE BETWEEN
PASSENGER DEMAND AND SERVICE SUPPLY
A. CALCULATIOIN OF MATCHING DEGREE
At the strategic level, frequency setting interacts with pas-
senger route choice, leading to the spatial-temporal coupling
characteristics between them in URT network system. A trip
would fail to board if there is insufficient capacity on the line.
Inmost cases passenger is sensitive to the quality of the transit
service. Service supply and travel demand are changing over
time and interplay by the force of passenger choice behaviors.
Service drives demands. The passenger load depends on the
service schedule and varies along the route. Changes in the
supply impact the demand, and the vice versa. The match
between the passenger demand and the service supply can
be classified in terms of total volume, distribution structure,
service quality, and the service supply adapting to the passen-
ger demand. The dynamics of the interaction between traveler
decisions and the URT supply are an endogenous source for
deteriorating the transit system performance [35], e.g. the
service reliability.

In accordance with the passenger load dynamics analyzed
by [46], the formula for calculating the volume of passengers
boarding train service l at station k on route r of OD pair w
in URT network can be deduced as follows.

qerl (k) = min(qf rl−1(k − 1)+ hr · brl (k)− o
r
l (k),

Capa − ρl(k) · qrl (k − 1)) (14)

where qf rl−1(k − 1) denotes the volume of passengers that
fail to board the proceeding train service l − 1 at sta-
tion k − 1 due to the capacity constraints of the train ser-
vice; brl (k) denotes the arrival rate of passengers that enter
station k , after the proceeding train leaves and before the

following train arrivals; orl (k) denotes the volume of passen-
gers that are restricted outside of station k , so as to control
the number of passengers that enter station k for train ser-
vice l; ρl(k) denotes the proportion of passengers alighting
when train service l arrives at station k; qrl (k − 1) denotes
the number of passengers on board of train service l when
it leaves from the proceeding station k − 1 on route r of
OD pair w.

And the total volume of passengers supk that can board the
train services at station k within the planning horizon T can
be calculated as formula (15).

supk =
∑
r∈Rw

T /hr∑
l=1

qerl (k) =
∑
r∈Rw

T /hr∑
l=1

min(qf rl−1(k − 1)

+hr · brl (k)− o
r
l (k),Capa − ρl(k) ·q

r
l (k − 1)) (15)

Thus, the matching degree matk between passenger demand
and service supply at station k can be calculated as
formula (16).

matk =
supk
demk

(16)

where demk denotes the total volume of travel demand
at station k . While the mean matching degree matmean
between passenger demand and service supply in the whole
URT network can be calculated as formula (17).

matmean =
1
K

K∑
k=1

matk (17)

The implications of the mean matching degree calculated
from formula (17) can be interpreted as Table 2. When
the value of the mean matching degree falls in between
0.86∼0.90, the service supply can best meet the passenger
demand. In this value domain 0.86∼0.90, the operation strate-
gies of the URT network can both provide the sound transport
service, and save the supply cost economically. Outside of the
above value areas, it indicates that either the transport service
cannot satisfy the travel demand effectively, or the service
supply surpasses the passenger demand wastefully.

B. DISTRIBUTED SYSTEM ARCHITECTURE FOR
AGENT-BASED MATCHING MECHANISM
Six types of heterogeneous distributed agents are built in
this study, i.e., passenger agent, train agent, route agent,
track agent, station agent, network agent. The environment
is the URT landscape on which agents interact and can be
geometric, network-based, or drawn from operational data.
Following the system optimal perspective, it is assumed that
agents are aware of other agents’ decisions and collaborate to
obtain the intelligent match between passenger demand and
service supply, e.g., passenger agents have all the information
they need to make decisions, e.g., they have the mental map
of the URT network. Each passenger agent plans his transit
trip by selecting one URT transit option, according to each
passenger type, exploration rate. Moreover, from the perspec-
tive of the agent cognition, the passenger agent and train
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TABLE 2. Implications of the mean matching degree.

agent can be abscribed to the kind of utility-based adaptive
agent [47], which can make different decisions if given the
same set of inputs by modifying their actions or strategies,
based on the utility or cost. Network agent supervises the
conditions in the entire network. It builds the center piece
of the agent system that holds all the single parts together
and ensures that complete simulations/optimizations with
multiple iterations can be run. To a large extent, the net-
work agent behaves as the Observer in NetLogo [47], [48].
It also means that the network agent contributes most of the
monitoring and supportive decisions (which can be replaced
by human), while the other agents take most of the action
and operational responsibilities. The route agent provides the
effective routes as alternatives for OD pairs. The route choice
mechanism for passenger agent observes formula (1). In the
station agent, the passenger’s choice of an attractive route
is made at a transit stop (station), whereby the passenger
flows split among the attractive lines. Each agent is endowed
with the interest in making decisions so that the URT system
performs well. No doubt any agent in the architecture system
is considered as an intelligent agent, which means they have
reactive, proactive and interactive properties. In these regards,
the learning activities of agents include updating their mecha-
nism formaking predictions about network conditions and the
strategies for making choices and decisions. The distributed
multi-agent system architecture is developed as Fig. 1.

C. NEGOTIATION-BASED ITERATIVE/ADJUSTING
MECHANISMS FOR BALANCING MATCH
Here the passenger demand — service supply matching
problem are treated as multi-agent negotiation in a dis-
tributed system. To simulate the supply-demand interaction
in a closed-loop manner, the iterative/adjusting negotiations
proceed based on marginal cost calculations to guide opti-
mal policies for balancing between passenger demand and
service supply. The generalized costs of the URT trip, e.g.,
the passengers’ travel cost, the trains’ unproductive cost and
increased user cost, as modelled in Section IV and Section V,
are what the agents’ learning and adaptation is about. The
condition or criteria for negotiation is the matching degree
between passenger demand and service supply, which is an
explicit representation of interactions between demand and
supply in URT network systems. In accordance with the
principle of machine learning, which uses the previous expe-
rience to improve their performance, the MAS architecture
and the negotiation-based mechanism are employed to learn

the reasonable headway time values for all agents in the
URT network system, by combining agent-based modeling
with machine learning [49]. Analogous to that work of [21],
the passenger route choice behavior in the URT network is
integrated into the multi-agent based transport assignment
framework. The negotiation-based iterative/adjusting mech-
anisms for balancing match between passenger demand and
capacity supply is designed as Fig. 2.

VII. NUMERICAL EXAMPLE FOR SIMULATION WITH
NETLOGO
A. EXPERIMENTAL DESIGN
In a complex URT network system with many station nodes
and track sections, trips between each origin-destination
(OD) pairs can be made by using two or more alternative
routes. The train lines go across each other at the transfer
stations. Passengers have to change from one track line to
another at the transfer stations. The number of OD pairs in the
real URT network is very large, which approximates square
relation with the number of stations. In order to reduce the
URT network model scale, the zonal ODs can be divided by
merging some ODs under the precondition of meeting the
application demand. Just as in the work of [50], the represen-
tation of the railway infrastructure is quite abstract, omitting
any consideration of its actual functioning details. In this
numerical simulation example, our models and frameworks
are tested on a compressed hypothetical URT network. The
transit network is assumed to be given as a 6-node URT
network with 3-track lines, including the red line, the green
line and the blue line, as illustrated in Fig. 3. The link length
of the network configuration is showed in Table 3. In the
hypothetical URT network, the node 0 (with capacity 3200
passenger/h) is a central transfer station for three lines, node
4(with capacity 3600 passenger/h) is a larger transfer station
for two lines, node 1(with capacity 3200 passenger/h) and
node 3(with capacity 3200 passenger/h) are smaller transfer
stations, node 2 (with capacity 2500 passenger/h) is an inter-
mediate station, and node 5(with capacity 2000 passenger/h)
is an end station.

Data availability is a big challenge when initiating new
scenarios. The demand distribution and variation of passenger
arrival rates over stations and periods can be estimated with
APCs (automatic passenger counters). Since collecting the
travel demand data is a very complex and expensive task. Dur-
ing the simulation, the OD passengers are generated by a trip
demand distribution following a Poisson arrival process in an
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FIGURE 3. 6-node URT network with 3-track lines.

hourly-based schedule for the URT network system. Analo-
gous to [10], the creation of passenger entities is driven by
a time-dependent Poisson process in accordance with origin-
destination matrices. Each newly generated passenger agent
would select a path in the effective routes set. Especially,
in node 0 the arrival rate is set as 3 persons per minute, while
in other nodes the arrival rate is set as 2 persons per minute.
The technically lowest possible headway is 2 minutes, and
the highest one is set as 15 minutes. Using measures of the

TABLE 3. Link length of URT network configuration unit: meter.

distances between all reasonable transfer options and the
findings of the mean walking speed (i.e., 1.34 meters per sec-
ond with a deviation of ±19% deviation), the mean transfer
times can be calculated. And it varies between 60 seconds
and 240 seconds among travelers. The dwell time at stations
is set between 30 seconds and 60 seconds. The train speed is
set as 9.72m/s. The maximal loading capacity of a single train
is set as 1000 passengers. The length of period for planning is
one hour. From the society-economy perspective, the empty
seat average cost per time unit is estimated as 10 RMB, and
the un-served passenger shortage cost per time unit 8 RMB.

B. SIMULATION RESULTS AND DISCUSSION
NetLogo [48] is a programmable modelling environment that
can simulate the phenomena of nature and human society.
It is most adaptable to model the complex system that evolves
with the time, by which the modeler can instruct thousands

FIGURE 4. Mean matching degree profile for the whole URT network and matching degree profile for
each of station nodes.

FIGURE 5. Headway time profile of train traffic in the URT network.
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FIGURE 6. Network congestion degree profile.

FIGURE 7. Passenger travel cost profile.

FIGURE 8. Train operation cost profile.

of independent agents to run. This makes it possible to
explore the connections between the individual behavior of
the micro level and the macro patterns, while the macro
patterns emerge from the interactions of the individuals.
By using the simulation platform NetLogo, the URT net-
work (Fig. 3) is setup as the simulation environment, then
the passenger OD demand matrix is generated following the
random-Poisson arrival rates and three alternative routes, i.e.,
r1:1-0(transfer)-4(transfer)-5, r2:1-2-0-4(transfer)-5, r3: 1-2-
0(transfer)-3(transfer)-4-5. After 500 ticks of simulation runs

within 20 min, the profiles of the mean matching degree
for the whole URT network and the matching degree for
each of the station nodes (Fig. 4) can be achieved, also
the headway time for trains operation in the URT network
(Fig. 5), the network congestion degree (Fig. 6), the passen-
ger travel cost(Fig. 7), the train operation cost(Fig. 8), and
passengers distribution on routes (Fig. 9), correspondingly,
where the series of alphabets c, i.e., c0, c1, c2, c3, c4, rep-
resent the station nodes of the URT network. Among these
series of simulation results, the desirable mean matching
degree for the whole URT network is achieved as 0.897433,
at the cost of 11565.28 minutes for passengers travel and
3067.92 RMB for trains over-seat & empty-seat operation
respectively. Particularly, at this desirable mean matching
degree point, the desired headway time for train traffic in
the network is 688 seconds, and the corresponding network
congestion degree is 4.339.

Among these three alternative routes, the longest route r3
attracts the most volumes of the passenger flow, which indi-
cates that it is reasonable to regard it as the critical route,
and guarantees that the transit capacity is fully exploited.
When the desirable mean matching degree from 500 ticks
of simulation runs are obtained, the corresponding matching
degree of the nodes from c0 to c4 is 0.0.595539, 0.97807,
0.9856, 0.927956,1, respectively. According to Table 2, all
of the matching degrees for nodes fall within the domains
of average class, which shows that the nodes, especially
the central transfer node, incline to be the bottleneck in
the network. In the URT network system, congestion occurs
and propagates when the train service supply capacity can-
not satisfy the passenger flow demand. From the perspec-
tive of the whole URT network, the value of the desirable
mean matching degree (i.e., 0.897433) falls in the best value
domains (i.e.,0.86∼0.90), which emphasizes the importance
of representing the supply side and the demand side simulta-
neously, and justifies both the distributed architecture system
and negotiation-based iterative/adjusting mechanisms pro-
posed in this study. As the maximum mean matching degree
results from 500 simulation runs is less than 1, accord-
ing to formula (16) and (17), it can also judge that the
URT network supply capacity is fully exploited in this way.

FIGURE 9. Passenger distribution on routes.
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The study period in this paper is only one hour. However,
dividing and then combining all the working hours in a day
together, the within-day dynamic profile of service supply—
passenger demandmatching degree can be achieved, by using
the methodology proposed in this paper in a divide-and-
conquer way.

VIII. CONCLUSION
This research built a system to optimize the matching
degree between passenger demand and service supply in
the URT network. Agent was used as a tool to model the
dynamic features of the passenger traffic and train traffic. The
intelligent passenger demand — service supply matching
methodology was proposed, including calculation of the
matching degree, distributed multi-agent system architec-
ture, and negotiation-based iterative/adjusting mechanisms
for balancing match. The numerical example has demon-
strated the effectiveness of the models and mechanisms
through the distributed simulations on the NetLogo plat-
form, and the optimum mean matching degree for the whole
URT network can be obtained from 500 simulation ticks,
i.e., 0.897433. The results show that it is reasonable to set
the headway time as the key decision variable or the order
parameter for optimization of passenger demand — service
supply matching degree in the URT network. With the help
of NetLogo, some feasible suggestions to optimize passenger
demand— service supply matching degree are provided for
URT network. These findings are meaningful for polices on
both development of efficient URT network capacity usage
strategies and provision of high level of service for passen-
gers. Compared with the conventional methods, the proposed
method has the following advantages:

1.Our models incorporate key factors jointly in urban
rail transit network systems from both an operation-oriented
and a passenger-oriented perspective. By adopting the
multi-agent distributed simulation philosophy, all related
goals/constraints from both the demand side and the supply
side have been accounted for directly or indirectly, without
the increment of the complexity for settling the problem.

2.By distinguishing between the train/vehicle congestion
and the infrastructure/track network congestion, the formula
for calculating the passenger general travel cost was updated
systematically.

3.By using the NetLogo platform as the distributed simu-
lations tool, as many as possible service supply options, i.e.,
the headway times, can be considered to provide a required
service policy on the given URT infrastructure network.

4.Optimum headway times can be recommended accord-
ing to the intelligent passenger demand — service supply
matching degree in the URT network.

5. The efficiency of the proposed method is desir-
able, which can complete 500 ticks of simulation runs
within 20 min on PC.

Further studies could consider the robust line planning
through the elasticity of frequencies/headway time, and to
take the passenger route choice behavior into account for the

train traffic organization process. It is supposed to be applied
in more URT networks to expand the application area of
the method. In reality, the passenger OD flow demand may
be asymmetric, but not absolutely. In certain ideal situation,
it may be symmetric, i.e., the total passenger volume is
symmetric within certain period. For simulation simplifica-
tion, it is assumed to be symmetric. In theory, whether it is
symmetric or not does not affect the matching mechanism in
nature. In future research for real application, we will set free
assumption 2 and apply the proposed matching methods to
the asymmetric passenger OD flow demand (e.g., big data
of passenger flow) situation for being closer to the reality.
Due to limitation by available data to certain extent, this
study only focused on the passenger route choice behavior in
general traffic condition (of course, the congested condition
is not excluded), by using the general travel cost function,
i.e., formula (1) — formula (7). However, analogous to
BPR function, the network congestion degree (i.e. the URT
trains traffic of passenger demand surpasses the infrastruc-
ture capacity supply) was introduced besides in-vehicle train
congestion and station congestion, which is more precise
and practical compared with the prior general travel cost
calculation. Exactly, the passenger behavior is more com-
plex, e.g., traveling backward (TB) behavior [51]. The more
complex behavior of passenger agents for the real case study
with big data and artificial intelligence (AI) technique will
be conducted in the future study. The difference between
the numerical example for simulation with NetLogo and the
real-world case study lies in the passenger flow data and URT
network scale. The questions about the passenger flow data
have been explained just then. Exactly, the principles for the
application of the proposed models and frameworks to the
real-word case study have been demonstrated in Section VII
as far as the network scale is concerned.
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