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ABSTRACT This paper presents the detection of High Impedance Fault (HIF) in solar Photovoltaic (PV)
integrated power system using recurrent neural network-based Long Short-TermMemory (LSTM) approach.
For study this, an IEEE 13-bus systemwas modeled inMATLAB/Simulink environment to integrate 300 kW
solar PV systems for analysis. Initially, the three-phase current signal during non-faulty (regular operation,
capacitor switching, load switching, transformer inrush current) and faulty (HIF, symmetrical and unsym-
metrical fault) conditions were used for extraction of features. The signal processing technique of Discrete
Wavelet Transform with db4 mother wavelet was applied to extract each phase’s energy value features for
training and testing the classifiers. The proposed LSTM classifier gives the overall classification accuracy
of 91.21% with a success rate of 92.42 % in identifying HIF in PV integrated power network. The prediction
results obtained from the proffered method are compared with other well-known classifiers of K-Nearest
neighbor’s network, Support vector machine, J48 based decision tree, and Naïve Bayes approach. Further,
the classifier’s robustness is validated by evaluating the performance indices (PI) of kappa statistic, precision,
recall, and F-measure. The results obtained reveal that the proposed LSTMnetwork significantly outperforms
all PI compared to other techniques.

INDEX TERMS Solar photovoltaic, high impedance fault, discrete wavelet transform, recurrent neural
network, long-short term memory.

ABBREVIATIONS
RE Renewable Energy
MG Microgrid
PVDG Photovoltaic Distributed Generation
HIF High Impedance Fault
PV Photovoltaic
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RNN Recurrent Neural Network
LSTM Long Short Term Memory
JDT J48 Decision Tree
WT Wavelet Transform
ANFIS Adaptive Neuro-Fuzzy Inference System
CNN Convolutional Neural Network
PMU Phasor Measurement Unit
MODWPT Maximum Overlap Discrete Wavelet Packet

Transform
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DFT Discrete Fourier Transform
KF Kalman Filter
DT Decision Tree
DWT Discrete Wavelet Transform
SVM Support Vector Machine

KNN K-Nearest Neighbors Network
Db4 Daubechies 4 mother wavelet
PIs Performance Indices
SPT Signal Processing Techniques
FFT Fast Fourier Transform
LLG Double Line to Ground fault
LLLG Three-phase fault
DC Direct Current
AC Alternating Current
VSI Voltage Source Inverter
MPPT Maximum Power Point Tracking
IGBT Insulated-gate Bipolar Transistor
PWM Pulse Width Modulation
THD Total Harmonic Distortion
NB Naïve Bayes
IEEE Institute of Electrical and Electronics Engi-

neers
I-V Current-Voltage

characteristics
P-V Power-Voltage characteristics
STC Standard Test Conditions of Solar PV with

temperature (T = 25oC) and irradiance
of 1000 W/m2

LG Single Line to Ground fault
LL Double Line Fault
CA Classification Accuracy
CWT Continuous Wavelet Transform
EV Energy Value
ANN Artificial Neural Network
RBF Radial Basis Function
LIBSVM A Library for SVM
KS Kappa Statistics
P,R Precision, Recall

I. INTRODUCTION
The ever-increasing load demand and a considerable decline
in fossil fuels over the last few decades pave the way
for adopting alternative energy sources to meet the energy
requirement. The effectiveness of distributed energy sources
involving RE or conventional synchronous generators into
distribution network for providing high-quality power led
to MG’s concept. In the present energy scenario, the solar
PVDG has been widely adopted in many countries compared
to other RE sources due to its abundance in nature, lower
weight, and economic feasibility [1]. Because of this, MG’s
secure and reliable operation is more important by designing
a proper protection scheme that can detect, classify, and locate
the system’s fault. However, the conventional protection relay
effortlessly can identify the low-impedance fault that occurs
in the network. But, the HIF was unidentified because of its

low magnitude of fault current. This induces a severe threat
to public safety.

Moreover, the escalation of HIF into a healthy part of
the grid system results in cascading failure of the power
network [2], [3]. Therefore, detection of HIF is more critical
in RE integrated distribution system. Also, most of the liter-
ature on the detection of fault was studied on a conventional
systemwithout considering RE sources. However, the present
work focuses on detecting HIF in solar PV power networks
using an RNN-based LSTM network. The detection of HIF
involves a two-stage process: feature extraction and classifier
construction [4].

Many SPT were proposed in the literature to extract fea-
tures to train and test the classifiers in the pattern recognition
stage. This process distinguishes the various disturbances by
obtaining appropriate patterns using time-frequency trans-
forms [5]. The FFT possesses spectral leakage and loss of
time information on analyzing the signal for feature extrac-
tion. The STFT was widely used for fault analysis. However,
it is also unsuitable because of its fixed window length for
analyzing the non-stationary transient signals that comprise
both time and frequency components [6].To resolve this,
WT based techniques have been widely used for analyzing
the transient signals that are non-periodic, which comprises
impulse and sinusoidal component [7]. The WT generally
exists in the continuous and discrete form; the latter was
extensively used in power system applications like power
quality and fault analysis. The DWT offers the advantages
of adaptive window size with a pre-defined filter design [8].
Therefore, DWT has been used in the pre-processing stage
of the classifier compared to other SPTs. Hence, the energy
value feature was extracted from each phase’s current signal
using DWT analysis to train and test the proposed LSTM
classifier to identify the HIF in the PV power network.

Various intelligence classifier approaches with SPTs were
adopted for identifying the HIF in the power system. The
literature studied in [9]–[15], applied a DWT analysis with
multi-layer perceptron neural network, Fuzzy approach,
ANFIS, SVM, Elman neural network to detect and clas-
sify the HIF in power distribution network. In [16], a WT
and CNN were used for identifying the HIF in distribution
network with real-time data acquisition using PMU. The
MODWPT has been employed for detection of HIF in 13-
bus distribution network with non-linear load to prove its
adaptability in [17]. However, this study gives a HIF detection
accuracy of 85.86%. On the flip-side, a combination of DFT
and KF was used to detect the HIF and other conventional
symmetrical and unsymmetrical faults in distribution net-
work. The feature extracted is used to frame the digital logic
to detect the faults in the system which gives the accuracy of
97 % [18]. However, this method is complex for large-scale
system due to the multiple logics presented to detect the HIF.
The authors in [19], presents a DWT based CNN for detection
of HIF by combining the features from various distribution
networks through the cloud-edge-collaboration framework
with the development of internet of things. In [20], a modified
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FFT based technique was used to identify the occurrence
of HIF in IEEE 13-bus distribution network considering the
non-linear loads and switching transients. A combination of
variational mode decomposition and Teager-Kaiser energy
operators were used to discriminate HIF from other transient
phenomenon (load and capacitor switching) and normal con-
ditions [21]. However, the study cannot consider the con-
ventional symmetrical and unsymmetrical faults besides HIF.
A mathematical morphology was used for identification of
HIF in low voltage DC distribution network [22]. The study
in [23], presents a Hibert-Huang Transform and machine
learning techniques for detection of HIF and conventional
faults in MG. This study reveals that the extreme learning
machine gives an accuracy of 93% and also outperforms than
SVM and NB classifier. However, superior performance was
seen using NB classifier for identification of symmetrical and
unsymmetrical faults in a series compensated transmission
system [24].The authors in [25], studied the detection of HIF
using mathematical morphology during high penetration of
solar photovoltaic (PV) in distribution network. However, the
study does not consider the impact of conventional faults and
switching events. But, this paper considers the identification
of HIF in PV integrated distribution network by considering
the switching events (capacitor and load switching), trans-
former inrush current, symmetrical and unsymmetrical faults.
Even though, many techniques were presented for identifica-
tion of HIF using various SPT andmachine learningmethods.
The DWT based SPT was widely used in the pre-processing
stage of classification model for the decomposition of signal
into high and low frequency band in both time and frequency
domain.

The evolution of the deep learning method for processing
sequential data plays a vital role in applications like solar
PV fault identification, electricity price prediction, short-term
wind power forecasting, and so on [26]–[29]. Long Short-
Term Memory is a unique recurrent neural network and
powerful deep learning technique. This method differs from
traditional neural networks because the neurons have a con-
nection in forward as well as backward either to the same or
previous layers. The LSTM can also better capture the fea-
tures and handle data with irregularities than other machine
learning techniques. This characteristic helps to detect the
intermittent, asymmetry, random behavior possessed by the
HIF current waveform, which the conventional protection
scheme cannot detect. Thus, this paper proposes a DWT
and LSTM based detection of HIF in PV integrated power
network. The main contributions of this paper are:

• A deep learning method of RNN based LSTM network
has been developed with feature extraction using DWT
analysis to detect and classify the HIF in PV integrated
power network.

• The extracted energy value features from DWT analysis
of the current signal is used to train and test the proposed
LSTM and other intelligent classifiers such as KNN,
SVM, JDT, and NB. Then, the results obtained from

TABLE 1. Specification of PV panel.

various classifiers to detect HIF in PV power networks
are compared.

• To validate the proposed classification model’s per-
formance, a comprehensive evaluation of classification
accuracy, success rate, and other performance indices of
Precision, Recall, F-Measure, and Kappa statistics were
examined.

This paper is organized: Section II describes an IEEE 13-bus
system model and solar PV system, also explains the mod-
eling of HIF. Section III explains the proposed methodology
for detecting and classifying HIF, and the detailed descrip-
tion of feature extraction using DWT analysis is presented
in section IV. Section V portrays the proposed LSTM and
other intelligence classifiers such as KNN, SVM, JDT, and
NB. The results obtained from MATLAB simulation of PV
integrated power network and classification output of var-
ious classifiers are discussed in section VI with a conclu-
sion and future scope of this work presented in the last
section.

II. SYSTEM MODEL STUDIED
In this study, the proffered RNN classifier’s classification
performance was tested on an IEEE 13-bus network model
with high impedance fault, symmetrical and unsymmet-
rical faults, switching events (heavy load and capacitor
bank), and transformer current. The IEEE 13 bus network
model shown in Figure 1 has been developed in MAT-
LAB/Simulink software environment to integrate a 300 kW
solar PV unit (operating under STC) and different load
facilities. The test system is interconnected with the pri-
mary grid source (100 MVA, 25 kV, 60 Hz) through an
interconnecting transformer (200 kVA, 4.16 kV/25 kV). The
detailed modeling of transmission line parameters and the
load was given in [30]. The performance of the proposed
RNN based classifier was evaluated while identifying HIF
under normal conditions, switching events (capacitor bank
and heavy load), transformer inrush current, and abnormal
conditions (symmetrical and unsymmetrical faults: single line
ground, double line, double line to ground and three-phase
fault).

A. DESCRIPTION OF SOLAR PV SOURCE
The 300 kWp solar PV includes 3 (100 kW each) PV units.
The specification of each solar cell used in the PV array
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FIGURE 1. IEEE 13-bus system with the solar PV system.

and the PV array’s configuration detail is listed in Table 1.
The current and power level of a single solar cell (concern-
ing the voltage) at different solar irradiance (W/m2) con-
ditions is portrayed in Figures 2(a) and 2(b), respectively.
The PV system comprises a DC-DC boost converter and
DC-AC VSI. The boost converter steps up the PV unit’s
output voltage (280 V DC at maximum power point) to
500 V. An incremental conductance method of the MPPT
controller was used to adapt the DC-DC boost’s duty cycle
converter concerning solar irradiance for tracking the max-
imum power from the panel. A 3 level IGBT bridge circuit
with PWM control (switching frequency of 1980 Hz) of PV

inverter (VSI) system was considered. The inverter has two
control loops (outer voltage and inner current control loop to
regulate the output AC voltage) based on synchronous ref-
erence frame theory. The conventional proportional-integral
controller was used in both the control loops of the inverter
with the proportional (Kp) and integral (Ki) gain values
of the outer controller: Kp = 7 and Ki = 800 and
inner controller: Kp = 0.3 and Ki = 20, respec-
tively. Inverter’s output voltage is 260 V AC, stepped up
using a step-up transformer (200 KVA, 4.16 kV/260 V) to
4.16 kV for interconnecting into IEEE-13 bus power system
network.
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FIGURE 2. (a) I-V characteristics of PV array (b) P-V characteristics of PV array.

FIGURE 3. HIF model.

FIGURE 4. V-I characteristics of HIF model for varying Vp, Vn, Rp, and Rn.

B. HIGH IMPEDANCE FAULT MODEL
The HIF occurs when a broken live overhead conductor has
contact with a high resistive surface such as sand, asphalt,
and tree, exhibiting non-linearity, randomness, asymmetry,
shoulder, buildup, and intermittence [31]. HIF current wave-
form properties are modeled using an anti-parallel diode
model depicting the HIF model’s natural form based on
the Emanuel model [3], [32] as given in Figure3. Using
this model, the V-I characteristics of HIF are obtained by
varying Vp, Vn, Rp, and Rn of HIF model between 500

FIGURE 5. (a) Current at HIF location (b) Voltage at HIF location.

to 8000 V, 1000 to 10000V, 120 to 5000 �, and 120 to
5000 �, respectively as depicted in Figure 4. The current
and voltage waveform of HIF recorded with Vp = 500V,
Vn = 1000 V, Rp = Rn = 120� is shown in Figure 5.
It is observed that the current waveform shows non-linearity,
asymmetry, and harmonic content for the HIF model con-
sidered. Further, the current waveform at the HIF location
was analyzed using FFT analysis and found that second and
third-order harmonic contents of 3.94% and 11.7%, respec-
tively, with the overall THD range of 14.6 % represented in
Figure 6.

III. PROPOSED METHODOLOGY
This section presents the detection and identification of HIF
using intelligent classifiers in solar PV integrated power net-
work. The detailed steps of the process of classification are
portrayed in Figure 7 and also explained:

Step-1: Data Acquisition – In this case, the IEEE 13-bus
system with solar PV network was simulated in MAT-
LAB/Simulink and various fault conditions such as LG, LL,
LLG, LLLG, and HIF. Then, each phase’s current features
during these conditions are recorded for feature extraction
using DWT analysis. Further, the Non-fault event of capacitor
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FIGURE 6. HIF current spectrum.

FIGURE 7. Schematic view of fault classification using intelligent
classifiers.

switching, load switching, transformer inrush current, and
change of irradiance of solar PV were considered normal
operating conditions of the system as the protective relay is
insensitive to changes.

Step-2: Feature Extraction –During this phase, DWT
is used to transform the time domain current signal (dur-
ing faulty and non-faulty conditions) into a time-frequency
domain signal by decomposition. Different characteristics
have been observed from the decomposed current signal with
large coefficients in different frequency bands during the dis-
turbances. The extraction of features (energy value) from all
these frequency bands is applied to give good discrimination
results from the classifiers.

Step-3: Training Phase –The extracted energy values
under different system operating conditions are used to train
the intelligent classifiers. A total data set of 970 data samples
were obtained by varying the fault resistances from 20 � to

150 � in step 10 � during LG, LL, LLG, and LLLG type
of fault. Further, the perturbation of Rp, Rn, Vp, and Vn in
the HIF model whose information are detailed in Section 2.2
and for the case of normal operating conditions: capacitor
switching from 300 kVar to 500 kVar in the step of 50kVar,
load switching of 0.5 MW to 2 MW in the step of 0.25 MW,
transformer inrush current by switching the transformer of
4.16 kV/480 V at various buses, and change in irradiations of
the solar PV system from 750 to 1000W/m2 were considered
for collecting the data samples to train the classifier.

Step-4: Prediction Phase –In this condition, 20% of the
data sample was used to test the intelligent classifiers such as
LSTM, KNN, DT, SVM, and NB to identify different events
that occur in the developed power network.

IV. FEATURE EXTRACTION USING DWT ANALYSIS
Wavelet transform is one of the most widely used signal
processing tools for detecting the low amplitude, short dura-
tion, fast decaying and oscillating type of signals or tran-
sients encountered in the power system during a fault or
any other abnormal conditions [12]. The main feature of
the wavelet function is localization in both the time and
frequency domain. Hence, it applies to wideband signals that
are non-periodic and comprises both sinusoidal and impulse
components, as seen in fast power system transients [3].
In general, the WT exists in two forms: continuous and dis-
creteWT. The CWThas limitations of low redundancy during
the signal’s reconstruction, and hence DWT was used for
practical application. Thus, the DWT can be mathematically
defined for signal x(n) as:

DWT (m, k) =
1
√
am0

∑
n
x(n) ∗ h

(
k − nam0
am0

)
(1)

where am0 and nam0 are the scaling and translation parameters,
n and m are the integer variables, and h is the mother wavelet,
k is an integer value that defines the particular sample number
in an input signal. The sampling frequency of 20 kHz and
mother wavelet of db4 was chosen for extracting the energy
value features to train the classifier. The detailed explanation
of mother wavelet choice, selection of sampling frequency,
number of levels, and bandwidth for each level are reported
in the previous work of authors in [3], [12].

A. ENERGY VALUES
The feature extraction was carried out to reduce the raw sig-
nal’s voluminous data to be analyzed. In this work, an energy
value (EV) was calculated from the detail coefficients and
approximations level of wavelet coefficients defined as [3]:

EV =
∑k

i=1

[
|Di|

2
]
+|Ak|2 (2)

k depicts the number of levels and is chosen as 5,
d1, d2, d3, d4, and d5 represents the detailed coeffi-
cient level and ak is approximations of the signal’s final
level.
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V. MATERIALS AND METHODS OF CLASSIFICATION
This fragment describes the various classifier approaches
such as KNN, DT, SVM, NB, and the proposed LSTM recur-
rent network used to detect and classify the HIF and other
symmetrical and unsymmetrical faults that occur in the PV
integrated power network developed in MATLAB/Simulink
software environment. In a classification of different fault
events using disparate classifiers with an assumption of
system condition as several classes labeled: C1-Non-faulty
event, C2-HIF, C3- Single line to ground fault (LG),
C4- Double line fault (LL), C5-Double line to ground fault
(LLG) and C6- Three-phase fault (LLLG).

A. LONG SHORT-TERM MEMORY (LSTM) RNN
In recent years, the development of deep learning methods
has laid down the RNN as one of the most state-of-art models
for classification problems applied to sequential data. The
RNN is a particular form of standard artificial neural net-
work (ANN) with feedback loops to store the recent input
events as activation. Further, capable of creating a correla-
tion between the current and preceding information in the
network. However, the RNN can also learn any length but
suffer from limitations of gradient exploding and vanish-
ing [26]–[28]. This can be overcome by the particular form
of RNN proposed by Hochreiter and Schmidhuber (1997),
in which RNN cell is replaced by a gated cell called Long
Short-Term Memory network. The basic architecture of a
single LSTM network is portrayed in Figure 8.

FIGURE 8. Single LSTM cell architecture with gates [26].

An LSTM network comprises a memory cell illustrated by
Ct with self-loops, storing the temporal information encoded
on the cell state. Three gates, namely control the flow of
information in the network: forget gate ftε[0, 1], Input gate
itε[0, 1], and output gate Otε[0, 1]. During training, the
network learns what needs to be memorized and when to
allow reading/writing to minimize the misclassification rate.
In particular, the Forget gate determines what information
from the last memory cell state is expired and should be
removed. The input gate updates the cell state by selecting
appropriate information from candidatememory cell state C∗t .
The output gate filters the information from the memory cell
so that the model considers only the critical information for
the prediction task. The value of each gate is determined as

follows [26]–[29],
it = sigmoid(Wi[y(t−1),Xt ]+ bi)
ft = sigmoid(Wf [y(t−1),Xt ]+ bf )
C∗t = sigmoid(WC [y(t−1),Xt ]+ bC )
Ot = sigmoid(WO[y(t−1),Xt ]+ bO)

 (3)

W[i,f,C,O] are the weight matrices and b[i,f,C,O] are the net-
work’s bias vectors. The memory cell value (Ct ) and output
(yt ) of the network is obtained using the equations as follows,{

Ct = C(t−1).ft + C∗t .it
yt = Ot ∗ tanh(Ct )

}
(4)

The proposed LSTM network was trained with 970 samples
of EV data extracted using DWT analysis of current signal
under different operating conditions such as standard, LG,
LL, LLG, LLLG, and HIF. The training data is obtained by
changing fault resistances during LG, LL, LLG, and LLLG
type of fault. Also, the perturbation of Rp, Rn,Vp, and Vn
in the HIF model and for the case of non-faulty conditions:
capacitor switching, load switching, transformer inrush cur-
rent, and change of irradiations were considered.

B. K-NEAREST NEIGHBOR ALGORITHM (KNN)
KNN is a well-known non-parametric classification tech-
nique that gives high classification accuracy for a problem
with non-nominal and unknown distributions. It exhibits lazy
learning by imparting less effort during training and full
effort during the prediction phase. The classification task
is performed based on similarity index by considering the
distance measure in which ‘k’ refers to the integer value lies
between 3 to 10 [33].Generally, it is preferable to select the
odd value of ‘k,’ and the classifier’s output is predicted based
on majority votes cast by the neighbor class. In this work, the
value of k is chosen as 3, and the output for any test case X, the
probability of X belonging to class Ci should be maximum,
which can be defined as:

KNN (X ) = maxP(Ci,X ) (5)

where P(Ci, X) is the probability of X in class Ci. The nearest
neighbors’ weights are assigned based on Euclidean distance
and are defined in [34].

C. J48 DECISION TREE
The J48 decision tree algorithm follows the rule of C4.5.It
is a widely used algorithm since it has the features of high
reliability, easy implementation, canmanage easily with large
data quantities, and data set with missing values [35]. In gen-
eral, the JDT has the following elements: branches, nodes,
leaves, and roots. The decision tree is used to classify the
input feature vectors with a process that starts from tree root to
identification of leaf node, and it works based on the highest
entropy reduction. At each node of the tree, training instances
are passed into the branch and the value of test attributes.
Also, the subset of training instances is used recursively to
generate the new type of nodes. During the case of no change
in the output value, that output attribute is assigned for the
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FIGURE 9. Decision Tree based on energy value feature.

same class value, and a leaf is generated to end the nodes’
recursion. When there are no instances pass through, a leaf
node is generated with a typical class value for the output
attributes [36]. Finally, creating nodes continues recursively
until all the instances are exhausted. During the classification
process with JDT, the following factors are considered [37],
Confidence factor: The parameter of minimum value (0.25)
has been assigned for confidence factor to perform pruning
in DT, in such a way to remove any branch which does not
meet the ratio between the correctly and incorrectly classified
instances.
• The minimum number of leaf-level: Assigned level 2 for
the instances of DT and the value of fold parameter of 3
(determines the amount of data used for reducing the
pruning error)

• For the pruned tree, 7 numbers trees and 4 leaves have
been considered.

Thus, the DT for detecting HIF and other fault events of the
PV integrated power network is shown in Figure 9.

D. SUPPORT VECTOR MACHINE
The SVM is a well-known data-driven technique framed
using statistical learning theory. It was introduced by
Vapnik et al. as a binary classifier for the classification
of linear and non-linear data. The SVM finds an optimal
hyperplane to separate the data set into two distinct classes
{-1, +1}. This is done by mapping the linearly inseparable
input data set to a high dimensional feature space through a
kernel function K(ui,uj). Thus, it increases data dimensional-
ity by feature mapping, which helps construct the hyperplane
separating the classes [8], [12]. The misclassification of clas-
sifiers can be avoided by maximizing the margin between the
two data sets through the hyperplane, as depicted in Figure

10. The hyperplane that separate different classes of data can
be defined as,

f (x) = W T x + b (6)

where,

x ∈
{
ClassI , if f (x) = +1
ClassII , if f (x) = −1

}
f (x) is a linear hyperplane function with bias b, data points
x, and weight vector w, obtained via training [13]. The
most commonly used kernel functions are linear, polyno-
mial, radial basis function (RBF), and sigmoid. In this work,
an RBF reduces the search space of parameter sets and gives
a better accuracy rate than other functions [12], [13].The var-
ious procedures used to classify data using multi-class SVM
are one-against-all, one-against-one, and a directed acyclic
graph method. It was proved that the one-against-one method
is the best choice for practical applications with maximum
accuracy. Therefore, this work also adopts a one-against-
one method to classify faults and is implemented using the
LIBSVM toolbox in MATLAB.

E. NAÏVE BAYES
NB is an extensively used statistics classifier for classifying
the linear and non-linear data because of its simplicity and
no parameter adjustment. NB is based on Bayes’ theorem
with an assumption of class conditional independence among
the features. The NB classifier will modify the marginal
probability of an event according to some extra information,
given that the attributes have independent properties and
are of equal importance. Initially, the classifier calculates
the probabilities of unclassified data corresponding to each
class and then classifies this data into the class having the
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FIGURE 10. Support vector machine.

highest probability. For classification, a prior distribution is
provided for each attribute in the class during the training
stage. In the testing phase, the classifier gives probabilities
of all the classes to which one testing instance belongs, and
then the class having the maximum probability of testing data
was set. The posterior probability of C at any instance of X
can be defined using Bayes’ theorem as [38], [39]:

P(C|X ) =
P(C).P(X |C)

P(X )
(7)

where P(C) is the prior probability, P(X|C) is the likelihood
of C = [C1, C2, . . .Cj] concerning X = {x1, x2, . . . xk}, j is
the number of fault classes (Normal, HIF, LG, LL, LLG, and
LLLG) and k is the attributes of data (Energy values). The
prediction is made for the class with the highest posterior
probability as [24], [35]:

CNB = argmaxP(C)
∏k

i=1
P(Xi|C) (8)

F. PERFORMANCE INDICES
The performance of intelligence classifiers has been evalu-
ated using various indices:

Kappa Statistics (KS): It is an alternative measure of
classifiers’ accuracy, which signifies an agreement between
the observed and expected type of fault in the system. The
performance of classifier can vary based onKS value: KS = 1
(excellent); KS = 0.4 to 0.75 (good); KS = less than 0.4
(poor). The KS index is defined as [12], [27].:

KS =
Observed Fault− Expected Fault

1− Expected fault
(9)

Precision (P): It is the division of correctly predicted positive
observations between the total predicted positive observa-
tions and is given as follows [27]:

Precision =
TP

TP + FP
(10)

where TP is the true positive and FP is the false positive

FIGURE 11. Non-faulty event (a) Normal condition (b) Load switching.

Recall (R): The division of correctly predicted positive
observations among the class’s entire observations. It is
expressed as [27],

Recall =
TP

TP + FN
(11)

F-measure: It is a weighted average of precision and recall,
which is defined as [27],

F−measure =
(2× P× R)
P+ R

(12)

where P is the Precision and R is the recall

VI. RESULTS AND DISCUSSION
This section describes the simulation results of the PV inte-
grated IEEE 13-bus power network presented in section 2.
For analysis, the fault is applied at different buses of the
13-bus system, and the data was collected for training and
testing the classifiers. In this work, 80% of data was used
for training, and 20% of data was used to test the classifiers.
Initially, the network was simulated in MATLAB/Simulink,
and the results were obtained during regular operation, a tran-
sient operation like load and capacitor switching, transformer
inrush current, conventional faults such as LG, LL, LLG, and
LLLG, and HIF occurrence. Figure 11(a) depicts the system’s
regular operation, and it is inferred that the current waveform
is unbalanced for unbalanced loading of the power network.

For analysis of the non-faulty event, capacitor and load
switching and transformer inrush current events were applied
to the system during 0.066 s to 0.15 s. A capacitor switching
of 300 kVar to 500 kVar in a step of 50kVar and load switching
of 0.5 MW to 2 MW in the step of 0.25 MW were used for
analysis. For instance, 1 MW of load and 300 kVar switching
of capacitor switching during 0.066s to 0.15 s are shown in
Figure 11(b) and 12(a), respectively. It is seen that the initial
transients are high during CS, and the magnitude of current
increases during these switching transients. On the other side,
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FIGURE 12. Non-faulty event (a) Capacitor switching (b) Transformer
In-rush current.

FIGURE 13. Fault condition (a) HIF (b) LG fault.

the switching of the 4.16 kV/480 V transformer results in a
high inrush current, as shown in Figure 12 (b).

The transformer’s switching has been done at various loca-
tions of the 13-bus system, and then the current signal is
recorded for further analysis. For analyzing low and high
impedance fault events, different faults were applied with
the fault inception angle of 0◦ and 45◦, for illustration the
occurrence of HIF and LG fault in Phase A of the three-phase
system (with an inception angle θf = 0◦) are shown in
Figure 13(a) and 13(b), respectively. It is observed that the
magnitude of fault current is high during the occurrence of LG
fault. On the flip-side, the magnitude of HIF current varies for
different fault resistance considered in the two diode models
assumed as given in Figure 3. The current magnitude is higher
or lower than the load current based on HIF parameters’
assumed value. In the proposed study, the model considers
the worst-case scenario of HIF, whose magnitude of fault

FIGURE 14. V-I characteristics of HIF model (Vp = 500V, Vn = 1000 V,
Rp = Rn = 120 �).

current is limited to be less than 10% of actual load current.
Figure 13(a) represents the fault current waveform due to HIF
(with following parameters: Rp = 120 �, Rn = 120 �,
Vp = 3000 V, and Vn = 2500 V). The magnitude of fault
current is less than the load current depicting the worst-case
scenario of HIF. The HIF model’s V-I characteristic recorded
during this case shows the non-linear relationship between
the voltage and current, as shown in Figure 14.

Further, irregularities in the HIF current (Figure 13 (a))
is masked substantially at the substation (i.e., IEEE 13-bus
system). However, the low amplitude of HIF current with
irregularities is a significant challenge to power engineers for
designing the protection scheme to detect the HIF. Therefore,
signal processing techniques were highly employed to extract
the features from these signals, which have small changes in
magnitude and help identify the events appropriately.

Therefore, DWT based SPT techniques were used to
extract features to train and test the intelligent classifiers. This
tool’s strength lies in the fact that the DWT can detect and
distinguish between infinitesimal wave-shape changes. The
current waveform at the substation (13-bus system) during
normal and HIF conditions looks similar. The current wave-
form at the substation during HIF may have slight distur-
bance, but extend of such distortion may change for several
pre-fault conditions. On processing such signals using DWT
analysis results in a more consistent signature.

For illustration, the DWT analysis of Phase A during
regular operation, capacitor switching, LG fault, and HIF
were shown in Figures 15 to 18. The result shows that the
wavelet coefficients (d1 to d5, and a5) have shown appropri-
ate changes corresponding to system operation. No spikes or
peaks are detected in the DWT analysis wavelet coefficients
in regular operation, as represented in Figure 15. In contrast,
during CS, the magnitude of wavelet coefficients (d1 to d5)
increases, as shown in Figure 16. Similarly, spikes have been
detected in wavelet coefficients (d1 to d5) during LG and
HIF occurrence, as given in Figures 17 and 18, respectively.
However, the amplitude of peak is high during CS and less
in HIF, but this value is greater than the system’s regular
operation. The low-impedance fault like LG has peaked in
wavelet coefficients during the start and end period of fault

VOLUME 9, 2021 32681



V. Veerasamy et al.: LSTM Recurrent Neural Network Classifier for High Impedance Fault Detection

FIGURE 15. DWT analysis of Phase A during normal condition.

FIGURE 16. DWT analysis of Phase A during capacitor switching.

FIGURE 17. DWT analysis of Phase A during LG fault.

occurrence. Based on the value of spikes during different
disturbances, an EV feature has been extracted for each phase
of the three-phase system of the power network considered.
Then, the obtained feature was used to train and test the
classifiers to identify the disturbances appropriately.

FIGURE 18. DWT analysis of Phase A during HIF.

TABLE 2. Confusion matrix during the training of LSTM network.

A. CLASSIFICATION USING INTELLIGENT CLASSIFIERS
Here, the different system condition was analyzed by assum-
ing different classes: C1-Non-faulty event, C2-HIF, C3- Sin-
gle line to ground fault (LG), C4- Double line fault (LL),
C5-Double line to ground fault (LLG) and C6- Three-phase
fault (LLLG). An RNN based LSTM network was proposed
to detect and classify the HIF from other low-impedance
fault disturbances (symmetrical and unsymmetrical fault) and
switching transients in PV integrated IEEE 13-bus power
network. The input data of 970 data samples were used
for training the LSTM classifier, and the details of pre-
dictions during training are given in Table 2. For test-
ing the classifiers, a 20% data set (194 data samples)
was used, and the predictions obtained during this case
are illustrated using a confusion matrix given in Table 3.
The classification accuracy (CA) during testing and train-
ing is shown in Figure 19 and is calculated using (13).It
is seen that the proposed LSTM network obtain 91.23 %
and 91.75 % accuracy during testing and training of classi-
fier depicting its significant performance in classifying the
events.

CA =
Number of fault events correctly identified

Total number of events
× 100%

(13)

Further, the study was extended to compare the proposed
RNN based LSTM classifier’s performance with other intel-
ligent classifiers such as KNN, DT, SVM, and NB to
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FIGURE 19. Performance Accuracy during training and testing of LSTM
network.

TABLE 3. Confusion matrix during testing of proposed LSTM network.

FIGURE 20. Accuracy and Success rate of classifiers.

detect HIF in PV integrated IEEE 13-bus power network.
The training and testing of different classifiers were done as
like LSTM network. For instance, the prediction of the KNN
classifier during testing is shown in Table 4. The results of CA
obtained by different classifiers are shown in Figure 20. The
result shows that the proposed LSTM possesses higher accu-
racy of 91.21%, and the KNN performs to give 90.72%. The
classifiers such as SVM, JDT, and NB have CA of 81.44%,
78.35 %, and 77.83 %, respectively. Figure 21 depicts the
number of instances (53) misclassified by the NB classifier
and a smaller number of instances (17) by the proposed
classifier. The performances of other classifiers are not signif-
icantly appreciable except the KNN classifier. This inference

TABLE 4. Confusion matrix of KNN during testing.

FIGURE 21. Misclassification instances and the error rate of classifiers.

was also interpreted as error rate defined as:

Error Rate

=
Number of fault events incorrectly identified

Total number of events
× 100%

(14)

The proposed LSTM network has a minimum error rate of
8.79%, and NB has a maximum of 22.17 %, as portrayed in
Figure 21. SVM and JDT have a moderate performance on
the flip side, and KNN has 9.28% showing better response.
In particular, the analysis was carried out to detect the number
of HIF event correctly identified using the index:

Success Rate=
Number ofHIF events detected
Total number ofHIF events

×100%

(15)

The result obtained in Figure 20 reveals that the proffered
LSTM gives a maximum success rate of 92.42 % by iden-
tifying the HIF events in the 13-bus PV integrated power
network. The performance was worst in the JDT classifier
case and was comparatively good for other classifiers such as
KNN, SVM, and NB.

B. PERFORMANCE ANALYSIS OF CLASSIFIERS
The classifier’s robustness was further examined by evalu-
ating the PI of Kappa Statistic (KS), Precision, Recall, and
F-measure. Figure 22 portrays the KS index for all the intel-
ligent classifiers used for fault classification. The proposed
LSTM performs to give a maximum value of 0.891, and com-
parative performance was also observed in KNN of 0.882.
On the flip-side, SVM, JDT, and NB give a moderate perfor-
mance with the index value of 0.7637, 0.7205, and 0.7208,
respectively. Thus, it is inferred that the classifier with a
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TABLE 5. PI of different classifiers-precision index.

TABLE 6. PI of different classifiers-recall index.

TABLE 7. PI of different classifiers- F-measure index.

FIGURE 22. Kappa statistic performance of classifiers.

maximum value of KS index depicts excellent performance in
classification, which is observed in the proposed RNN based
LSTM network.

Further, the precision index depicted in Table 5 presents the
CA obtained by the classifier for each event. It is seen that the
proffered technique identifies several HIF events compared to
other classifiers presented. Similarly, the other indices such as

Recall and F-measure were measured, and the performance
was observed to be superior for the proposed classifier than
other classification approaches as presented in Table 6 and 7.
Further, to validate the proposed classifier’s performance,
the fault detection time was compared for each classifier
(LSTM, KNN, DT, SVM, and NB: 76 ms, 81.5 ms, 110 ms,
80 ms, and 82 ms, respectively). The time includes the SPT of
DWT analysis and fault detection by the classifier. The results
reveal that the proposed deep learning method of recurrent
LSTM classifier detects quickly compared to other intelligent
classifiers. The results of detection time were taken in a
personal computer with the following specifications: 32-bit
OS with x64-based processor (Intel (R) core (TM) i5-2410M
CPU @2.30 GHz) and has memory capacity of 8 GB.

VII. CONCLUSION
The HIF procedure’s detection relies on various conditions,
some of which are network-specific and present exclusive
characteristics. In this work, a more realistic PV-integrated
IEEE 13-bus system was considered for the HIF study using
the proposed RNN based LSTMnetwork. Initially, the 13-bus
distribution network was developed inMATLAB/Simulink to
introduce various events (Non-faulty events: Normal opera-
tion, transformer inrush current, load switching, and capacitor
switching, faulty-events: HIF, LG, LL, LLG, and LLLG).
The three-phase current signal under these conditions was
analyzed using DWT analysis with the mother wavelet of
db4. The wavelet coefficients (d1, d2, d3, d4, d5, and a5)
obtained was used to extract the energy value features for
various phases to train and test the classifiers. The classifiers’
result shows that the proposed RNN based LSTM performs
better to give the classification accuracy of 91.21% than other
classifiers such as KNN, SVM, JDT, and NB.

Further, the success rate on detecting specific HIF events
was 92.42 % for the proffered technique, and the rate was
reasonably good for other classifiers presented. The PI of
KS, precision, recall, and F-measure were also examined to
validate different classifiers’ robustness. The result shows
that the propounded LSTM classifier outperforms signifi-
cantly in terms of all PI and also detects the fault quickly
compared to other classification approaches. The detection
of HIF using advanced signal processing techniques and the
hybrid classifier method is the future scope of the presented
work.
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