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ABSTRACT Six-DoF (Six-degree-of-freedom) pose localization based on 3D point clouds is a challenging
task for LBSs (localization-based services). This paper proposes a robust and efficient method that uses
multimodal information (vision and Wi-Fi signal information) to estimate the 6-DoF pose of an RGBD
camera on a robot with respect to complex 3D textured models of the indoor environment that can contain
more than 650,000,000 points. Our developed method narrows the search scope, which delimits boundaries
initially using the Wi-Fi location system and applies an environment-adaptive approach to determine the
radius of the search sphere based on the signal stability of theWi-Fi location system. In addition, we propose
an algorithm for estimating a novel correspondence between local points with a 3D submap by combining
3D points and surface normals to acquire absolute poses from noisy and outlier-contaminated matching point
sets for RGBD sensors in dynamic indoor scenes. Then, a novel two-level spatial verification strategy is used
to estimate an accurate pose, which includes the use of a RANSAC (Random Sample Consensus) algorithm
for identification and a direct least-square method to acquire the pose from the inliers. The proposed method
has been implemented and tested extensively in various indoor scenes. The experimental results demonstrate
that the Wi-Fi-aided localization system can efficiently localize a mobile robot in a variety of large-scale 3D
point cloud datasets to realize stable time consumption and similar performance to state-of-the-art methods.

INDEX TERMS Visual localization, Wi-Fi positioning, 6-DoF pose, multimodal information, computation
complexity.

I. INTRODUCTION
Autonomous navigation and localization inside a building
are essential capabilities of robotic intelligent systems [1],
[2]. The global positioning system (GPS) cannot operate
indoors, but visual localization methods can be used in
GPS-denied environments. However, human indoor environ-
ments change every day. The most challenging problem is
efficient self-localization of the robot with sufficient accu-
racy in a global map without the specification of the initial
pose [3]–[7].

Robot localization has been a hot topic for decades due
to the difficulties of self-localization in a global map. GPS
is usually used for localization in outdoor open areas, and
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Monte Carlo localization (MCL) [8]–[10] is broadly applied
to indoor localization for robots. However, MCL requires the
initial pose of the robot, which is a substantial shortcoming.
Image-based localization can provide localization for robots
anytime in both indoor and outdoor environments. In the fol-
lowing sections, previous studies on image-based localization
are reviewed.

A. IMAGE RETRIEVAL-BASED LOCALIZATION
The global localization problem is similar to the recog-
nition problem, which is often approached as an image
retrieval problem. The localization of a robot’s scene is
predicated by efficient image indexing techniques [11]–[18]
and can be further improved by spatial reranking [19],
distinctive visual information feature selection [20] or fea-
ture weighting [21]–[24]. Milford and Wyeth [25] proposed
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an approach for place recognition across large perceptual
changes that involves linear sequential filtering on image
matching. Sünderhauf et al. [26] proposed leveraging the
robustness of convolutional features with regional proposals
for accurate topological localization. Badino andKanade [27]
proposed an approach that fuses LiDAR and image data
with a particle filter framework to realize long-term place
recognition. Although these approaches have shown impres-
sive results in challenging conditions, they do not provide
metric information regarding the 6-DoF pose of the camera.
Torii et al. [28] used Google Street View images and corre-
sponding depth maps to synthesize virtual views to boost
place recognition performance. However, this method can
output only an approximate localization with a topological
approach, and it cannot determine the exact 6-DoF poses of
robots.

B. 3D MAP-BASED VISUAL LOCALIZATION
Recently, techniques for obtaining 6-DoF poses directly
have been developed with 3D maps. The maps are usually
composed of a 3D point cloud that has been constructed
via structure-from-motion (SfM) [29], and the points are
related to local image features that are used for triangulation.
These approaches establish 2D-3D or 3D-3D correspon-
dences between the query descriptors and the 3D points in
the map. The exact 6-DoF poses of robots can be obtained
by feature matching and solving a classic perspective-n-point
problem or iterative closest point (ICP) [30]–[37]. Out-
liers are always present in the process of correspondence.
The RANSAC algorithm is utilized to cope with outliers.
Pose estimation based on local features depends strongly on
the quality of the feature matches. Image feature descrip-
tors are not robust during image degradation—e.g., due
to blur or viewpoint differences. Moreover, with 3D map
extension, the number of points is large, and the time com-
plexity of searching grows rapidly. To solve these prob-
lems, McManus et al. [38] proposed an approach for learning
salient visual elements of a place using a bank of support
vector machine (SVM) classifiers. This approach is hybrid,
as it uses weak localizers to find the closest topological node
in the map and refines the pose using the bank of SVM
classifiers according to the place. It realizes submeter local-
ization accuracy and requires 10 MB of storage per place.
Kendall [39] proposed directly regressing the camera pose
from amonocular image via an end-to-end approach. Kendall
and Cipolla [40] showed that modeling the uncertainty in
camera pose estimates can lead to higher localization per-
formance. Very recently, Walch et al. [41] proposed learning
the contextual features of images using spatial LSTMs [42]
in combination with the PoseNet architecture to increase the
localization accuracy. Compared to approaches that depend
on local features, the main limitation of these DL approaches
is that the estimated pose tends to have low accuracy and
depends strongly on the spatial resolution of the training
images.

C. WI-FI FINGERPRINT-BASED LOCALIZATION
Recently, Wi-Fi fingerprint-based indoor localization has
become one of the most attractive methods due to the
wide deployment and availability of Wi-Fi infrastructure,
especially in the research area of pedestrian indoor posi-
tioning [43], [44]. Many research institutions and compa-
nies, such as Apple and Huawei, have invested in and are
exploiting related products. Such schemes depend on the
received signal strength indicator (RSSI) of the Wi-Fi sig-
nal as the observed value and employ smartphones or other
Wi-Fi receptors as clients, which renders them free of extra
infrastructure and specialized devices and feasible for indoor
scenes. Typically, fingerprint-based approaches consist of
two stages: The first stage is offline training, in which a
fingerprint database (radio map) is constructed by collecting
signals with known location notes. Then, during the online
localization stage, the position is determined by matching
fingerprint observations against those stored in the database.
The training phase is usually completed via a site survey,
which is labor intensive and time consuming and leads to a
major hurdle for real applications. Recent advances in mobile
crowdsourcing have increased the efficiency of fingerprint
database construction, thereby rendering Wi-Fi fingerprint-
based indoor location methods practical [45]–[48]. How-
ever, the established RSSI fingerprint-based location system
still suffers from several drawbacks, especially in terms of
localization accuracy. The state-of-the-art approaches that
depend on fingerprints can realize only meter-level accuracy
for 2D positioning (X- and Y-coordinates) without direction
information; hence, this system cannot be directly applied in
robot localization, which requires much more accurate pose
estimation.

D. PROBLEM STATEMENT AND SYSTEM DESCRIPTION
A precise 6-DoF pose estimate is highly important for many
multimedia applications, such as unmanned aerial vehicles
and humanoid robots. However, several challenges remain
in robot localization with RGBD cameras in a 3D point
cloud environment. First, self-localization of a robot in a
3D environment is typically a time-consuming task due to
the large quantity of point cloud data that must be pro-
cessed. This is especially critical in robotics tasks in which
small and low-cost robots (e.g., aerial robots) are frequently
used [49]. Second, in a dynamic indoor environment, visual
features, such as 2D image features or 3D point cloud fea-
tures, can become lost or emerge. For instance, the doors
and windows can be opened or closed, books on a table
can be opened, and objects can be moved out of a building
[31]. Third, indoor environments usually have similar lay-
outs, especially in public indoor scenes, which can cause
perceptual aliasing and perceptual variability with visual
localization methods [21], [50], [24].

In this paper, we propose an efficient and robust localiza-
tion system that is based uniquely on multimodal information
with a known precomputed 3D textured model and a Wi-Fi
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FIGURE 1. Problem definition: In an environment with a known textured
3D model (a) and indoor radio map on calibration points (b), given an
input RGBD image (c) and current RSSI measurements (d), the problem is
to estimate the pose of the camera that captures the visual and signal
information with respect to the environment (e). The main challenge
addressed in the paper is to identify the correspondence of points
efficiently and reliably for complex 3D models that contain many points.
In this example, the model of the CUMT has more than
650,000,000 points.

FIGURE 2. Framework of 6-DoF pose estimation with a multimodal
location system.

fingerprint map of the indoor environment, as illustrated
in Fig. 1. The developed system can efficiently estimate the
full pose (translation and rotation) of the RGBD camera on
the robot within the map from a single RGBD image and the
Wi-Fi received signal strength. No temporal information is
used about the previous poses that can constrain the process of
estimating the current pose and to where the robot is pointing.
While this method significantly increases the complexity of
our problem, its output renders the pose estimation robust to
issues such as drifting, occlusions of the 3D map, and sudden
robot motions.

More precisely, let us assume that the 3D map is com-
posed of n 3D points, and each is associated with a point
descriptor that represents its appearance in the process of
correspondence. Fig. 2 illustrates the overall scheme of the
proposed method. In our case, we must estimate the 3D-3D
correspondence between local points and the 3D submap

points from the known depth information with the RGBD
camera; then, the pose estimate can be acquired. The cur-
rent m 3D points are compared against all 3D points in the
map. However, solving this correspondence problem has a
complexity of O (m× n), which is extremely costly since
n can be very large (e.g., 650,000,000 points). Moreover,
in dynamic indoor scenes, the n 3D points of the map may
change daily—e.g., due to people walking, doors opening,
and object movement—which will render the problem more
challenging.

E. MAIN CONTRIBUTIONS
We present a novel approach for fast robot 6-DoF pose deter-
mination in large-scale indoor environments. We address the
three main challenges of robot localization.

(1) Lack of initial pose. Initial pose determination is the
first step and a key point for robot global localization in large-
scale indoor environments. Typically, researchers use place
recognition methods in which the robot attempts to match
its scene to previously built maps to identify an initial pose,
and image-based retrieval techniques are widely applied to
address the problem. However, these topological approaches
rely on visual feature landmarks that depend on the path of
image capture beforehand, and this method does not satisfy
our requirements since it relies on a metric map constructed
from 2D image features. To overcome this problem, we built
a large-scale indoor 3D map and adapted a coarse-to-fine
strategy that aided the Wi-Fi localization system in quickly
estimating the RGBD camera’s 6-DoF pose of the robot
with high accuracy. We utilize Wi-Fi signals as side-channel
information to acquire an initial 2D position and fully exploit
the Wi-Fi-based global location method, which is robust to
dynamic indoor scenes without cumulative error. The multi-
modal localization system can increase the robustness of the
robot pose estimation task in large indoor scenarios.

(2) Computing time and self-similarity in large-scale
scenes. Time complexity reduction must be considered to
realize the objective of robot self-localization in a large 3D
indoor environment more quickly. Indoor environments are
often highly self-similar due to many systemic and repetitive
elements on large and small scales (e.g., corridors, room,
tiles, windows, chairs, and doors). To overcome this problem,
we consider the use of features other than images to represent
each scene. Visual information can describe many visible
features; however, perceptual aliasing is a fatal problem in
vision-based localization. In this paper, we propose fusing
the Wi-Fi signal feature and visual features to estimate the
one-to-one relationship between scene feature expression and
geographic position. Moreover, the Wi-Fi-aided localization
system can efficiently acquire a coarse 2D position, which
can be used to narrow the search scope in global 3D maps
within 1 s; then, pose estimation can be conducted via small
map executed segmentation. TheWi-Fi signal is used as side-
channel information to guide the expensive 3D-3D corre-
spondence. In detail, robots can obtain a small submap by
using a Wi-Fi localization system to determine the space
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and radius of the submap, which can efficiently reduce the
computation time on resource-constrained platforms without
the risk of perceptual aliasing or perceptual variability in the
visual localization research domain.

(3) Dynamic indoor scenes. Indoor environments are
highly dynamic scenes compared to outdoor environments
due to the presence of many moveable objects, such as people
and furniture, which results in severe occlusion problems
in computer vision research when viewed from a close dis-
tance. This can cause an incorrect image retrieval result to be
obtained, which leads to localization failure. To overcome this
problem, we rely on multiple forms of correspondence based
on 3D points and surface normal information to realize more
accurate and robust pose estimation. Furthermore, in our
pose estimation step, a novel correspondence is established
between local 3D points and the submap’s 3D points. Then,
a novel direct least-square algorithm is used to estimate the
pose from the inliers obtained by solving RANSAC, which
can effectively restrain the influence of dynamic scene fac-
tors on the positioning process and improve the positioning
accuracy.

II. CONSTRUCTING THE 3D MODEL AND WI-FI
FINGERPRINT MAP
Our approach for robot localization assumes that a 3D tex-
turedmodel andWi-Fi fingerprint map of the indoor scene are
available. However, large-scale datasets remain challenging,
especially in an indoor environment with various types of
features. Datasets that cover larger indoor scenes [3], [4], [51]
have so far captured fairly small spaces, such as a single room,
and have been constructed from dense-captured sequences
of RGBD images. However, they are designed for object
retrieval and lack the Wi-Fi fingerprint map; hence, they are
not suitable for robot Wi-Fi-aided visual localization.

In this paper, a new large-scale indoor localization dataset
with vision and signal maps is introduced for multimodal
localization, which includes query images captured from a
wide range of viewpoints in various scenes across two floors.
To build these precise 3D models of an indoor scene, we use
RGBD Mapping [52], which is a SLAM system for continu-
ous image collections. The hardware platform of the mapping
system is shown in Fig. 3, which consists of three parts: a
motion execution unit, a data acquisition unit, and a process-
ing unit. In our experiment, AICRobo XII, which is a mobile
robot developed by ALCRobo, uses a two-wheel differential
drive chassis—namely, Kobuki—which was developed by
Yujin of Korea. An RGBD camera—namely, ASUS Xtion
PRO LIVE, which was developed by Asus—is used as a data
acquisition unit, and it is similar to Kinect, which consists
of an infrared projector, a CMOS image sensor, and an RGB
color camera. Fig. 3 shows the data acquisition unit, and the
specifications of the unit are presented in Table 1. The DELL
G7 laptop on the robot has an Intel i5-8300 dual-core 3 GHz
processor with anNVIDIAGTX1060TI graphics card, 32GB
of RAM, and an attached 802.11Wi-Fi module, which is used
as a processing and testing unit.

FIGURE 3. Testing of the hardware platform in an indoor scene with
many AP Macs mounted on the wall.

TABLE 1. Specifications of ASUS Xtion PRO LIVE.

Since the error probability increases with increasing map-
ping area, we use the system to construct only the submap.
Then, the complete 3Dmap can be constructed by using point
aligning. By starting from two submap clouds with the largest
overlap, a set of point-to-point correspondences between
them is manually selected. A rigid transformation is coarsely
initialized from the selected correspondences and refined
with a generalized ICP algorithm [53]–[55]. The complete
indoor 3D model is constructed by using the SLAMmapping
system. Then, an indoor Wi-Fi fingerprint map is constructed
via a method that we propose in this paper, which is novel
and more efficient than previous approaches [56]–[58]. The
fingerprint map construction is presented in detail in the
following.

To build the indoor fingerprint efficiently and use high-
accuracy location information in the vision localization sys-
tem, we propose a vision-based radiomap constructionmodel
that utilizes an external Wi-Fi receptor fixed on the robot and
a built-in RGBD camera to collect visual information and
Wi-Fi fingerprints, as shown in Fig. 4. The visual information
includes an RGB color image and a depth image. The Wi-Fi
fingerprint includes the media access control (MAC) number
of the APs, n, and the corresponding received signal strength
value, s. The full indoor Wi-Fi radio map consists of n sites
that describe the feature, f wifii = [s1, s2, . . . , sn], with a
known location. An overview of the proposed radio map
construction method is presented in Fig. 5.
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FIGURE 4. Vision-based radio map construction method schematic
diagram.

FIGURE 5. System overview of the proposed radio map construction
method.

The localization graph in our method is a set of nodes,
n1, n2, n3, . . . , ni, . . . , nn(each frame is considered a node)
joined by a set of directed edges li−1, l. Each edge contains
odometry data for the 6 DoFs (computed by the RGBD
mapping system), which are described by the metric relations
between the nodes. The receptor that collects Wi-Fi finger-
prints is labeled with a 2D position that is not precise due to
system drift in SLAM, and the more accurate location labels
of fingerprints can be acquired after the back-end optimiza-
tion. The trigger frequency of the Wi-Fi receptor depends on
the sampling distance, and the empirical value of the distance
is set as 0.8 m based on previous studies [59], [60].

For this paper, we select a multistory building 3D model
with a variety of indoor scenes, which include offices, cor-
ridors, halls and meeting rooms, on the CUMT campus.
To unify the map coordinates of the floors into the same
coordinate system, we establish a control surveying net that
covers these floors by using a Hi-Target ZTS-121 Total Sta-
tion (Hi-Target Surveying Instrument Co. Ltd., Guangzhou,
China) with a 2 s angle error and a 2 mm positioning error
every 1000 m. Photographs of the project site are shown
in Fig. 6. The whole 3D model is registered on the uniform
coordinate system, which belongs to the local coordinate
system in geodesy research, and its corresponding elevation
datum is on the first floor of our experimental scenes.

Our dataset is composed of 3D maps and Wi-Fi RSSI
fingerprints, and the 3D vision maps are constructed from
a database of RGBD images geometrically registered to the
floor maps. The points in the 3D map consist of the exact
location information (x,y,z) including height, while Wi-Fi
RSSI fingerprints consist only of exact plane 2D position
informationwith floor descriptions for coarse height informa-
tion. The database is augmented with a separate set of RGBD
query images captured by the same robot to render it suitable
for the task of indoor localization. The provided query images
are annotated with manually verified ground-truth 6-DoF

FIGURE 6. Hi-Target ZTS-121 Total Station is used as a building control
point to unify the maps of various floors (the red boxes in the images are
landmarks for more precise surveying).

TABLE 2. Statistics of the dataset.

FIGURE 7. Indoor 3D model and Wi-Fi signal maps of the two floors.

camera poses in the global coordinate system of the 3D map.
The basic indoor RGBD dataset consists of 96,480 RGBD
images obtained by scanning a two-floor lab building at
CUMTwith the robot. The dataset is divided into four scenes:
offices, corridors, halls and meeting rooms. The statistics of
the dataset are presented in Table 2.

As in previous visual localization research [2], [61],
the whole 3D model is merged manually for high quality,
and the fingerprint of the constructing submap overlap areas
employs the Kriging interpolation to acquire RSSI values
[62], [63]. The overhead view of the wholemodel is presented
in Fig. 7 (left), and Fig. 7 (right) shows theWi-Fi signal maps
of the two floors. In this paper, we use a relational database,
the format of which is described in Table 3, to store these data.

III. SIX-DOF POSE ESTIMATION USING THE PROPOSED
WI-FI-AIDED LOCALIZATION SYSTEM
The pipeline of the fast 6-DoF pose determination of the
robot with the Wi-Fi-aided localization system consists of
the following three steps: First, we use the Wi-Fi location
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TABLE 3. Storage format of the Wi-Fi database.

system to identify a coarse 2D position, and advance pose
identification is conducted with an adaptive radius of search
determined by the stability of the Wi-Fi signal source to
ascertain the submap segmentation. Second, we estimate a
novel correspondence between local points with a 3D submap
by combining 3D points and surface normals for abso-
lute pose acquisition from noisy and outlier-contaminated
matching point sets for RGBD sensors in dynamic indoor
scenes. Finally, a novel two-level spatial verification strat-
egy for accurate pose estimation is applied, which includes
a RANSAC algorithm to identify and a direct least-square
method to acquire the pose from the inliers. The three steps
are detailed next.

A. SUBMAP ACQUISITION USING
WI-FI-AIDED POSITIONING
Most well-known approaches for indoor pedestrian position-
ing are based on the RSSI of 802.11 transmitted packets, and
many studies have demonstrated that satisfactory accuracy
can be realized in indoor scenarios by employing fingerprint-
ing techniques [7]. However, the direction information of a
robot’s pose cannot be estimated from a Wi-Fi-based indoor
location. We now utilize theWi-Fi signal to efficiently search
for a 3D submap with no perceptual aliasing and perceptual
variability, in contrast to previous place recognition meth-
ods and fixed grid submap division. We have explored the
relation between Wi-Fi signal stability and accuracy, which
determines the size of the 3D submap. The Wi-Fi-based
position accuracy is easily influenced by dynamic indoor
environments, so a self-adaptive algorithm for determining
the size of the submap is proposed. We seek to develop a
novel method for evaluating the accuracy and robustness of
fingerprint localization. To realize this objective, we formu-
late a relationship between the received RSSI and location
quality. We also use the matching distance value obtained
during the RSSI-based Wi-Fi localization to assess the qual-
ity. The Wi-Fi data can be automatically collected when the
robots move around the scene, and the evaluation method is
described in detail as follows.

For the robot receiving Wi-Fi signal strength, we observe
the following information at a time frame t in an indoor space:

p(t)i = {RSSI1,RSSI2, . . . ,RSSIj}
(t) (1)

wherep(t)i is the position that corresponds to the time frame t ,
and RSSI is the received signal strength from AP antenna j.
The Wi-Fi fingerprint approach assumes that each position

can be uniquely defined by the RSSI signal strength values.
For convenience, we usually set the acceptable AP number to
be the same, and an infinitesimal value is assigned for the AP
RSSI when it can receive no or only a weak signal.

Assuming that the Wi-Fi database of a floor is created, it is
essential to efficiently compare the list of Wi-Fi scans to the
Wi-Fi scans stored in the databaseDWi−Fi. Via this compari-
son, the most similar fingerprint in DWi−Fi is identified, and
the corresponding position of the fingerprint is obtained.

Basic Wi-Fi fingerprint localization includes deterministic
[64] and probabilistic methods [65]. Deterministic algorithms
use a similarity metric to differentiate online signal mea-
surement and fingerprint data. Then, the target is located
at the closest fingerprint location in signal space [66]. The
major advantage of the deterministic methods is their ease
of implementation compared to probabilistic algorithms,
which usually require some probabilistic assumptions (such
as Gaussian noise or probabilistic independence [67]) and
more datasets than traditional deterministic algorithms [68].
Traditional deterministic methods can be easily implemented
based on k nearest neighbors (k-NN) and the computational
complexity is often low [69]. Some other more advanced
deterministic algorithms such as support vector machine [70]
and linear discriminant analysis [71] show better localization
accuracy with higher computational cost. The k-weighted
nearest neighbor algorithm is a version of k-NN that has
been improved by introducing a weighted distance factor.
Since the proposed method constructs a radio map, the RP
distribution is sparse or nonuniform. This disadvantage can
be overcome by using the k-WNN algorithm with better clas-
sification results. Thus, in this paper, we use a k-WNN-based
Wi-Fi fingerprint location algorithm, which provides an accu-
rate position with a relatively simple computing method,
to acquire a coarse 2D position estimate. The distance that
describes the similarity between fingerprints is the Sorensen
distance function, which can realize higher accuracy than the
Euclidean distance [72]. Therefore, in this paper, we select the
Sorensen function for the k-WNN algorithm. The Sorensen
distance function is defined as follows:

L(d,i) =

n∑
i=1

∣∣∣RSSI (i,n)MN − RSSI
(i,n)
RP

∣∣∣
n∑
i=1

∣∣∣RSSI (i,n)MN + RSSI
(i,n)
RP

∣∣∣ (2)

where i is a sequence of RPs, n denotes the number of
APs with the same MAC between the receptor node and
RPs, MNdenotes the receptor node, and RPdenotes a ref-
erence point. Then, the nodes with the k nearest distances
are selected as the nearest neighbors. Finally, the distances
that correspond to the k neighbors are used to calculate the
normalized weight:

Wi =
1/L(d,i)

K∑
i=1

(1/L(d,i))

(3)
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FIGURE 8. Point positioning error curves with various K values.

According to the normalized weight and RP coordinates,
a coarse 2D position is acquired using the k-WNN-based
Wi-Fi fingerprint via the following formula:

Pi(x, y)k−WNN = {
K∑
i=1

xi ·Wi,

K∑
i=1

yi ·Wi} (4)

We choose 100 known positions with distinct K values to
calculate the mean square error, and the results are presented
in Fig. 8. According to Fig. 8, k = 4 is the optimal choice,
so we setK to 4 in this paper, and the accuracy of the k-WNN-
based Wi-Fi location algorithm is under 6 m.

Due to the uncertainty of positioning using a Wi-Fi signal,
only the area of robots can be determined, with no exact
location. In this paper, a novel evaluation parameter that we
propose is calculated from the ratio test value, R, to indirectly
quantitatively evaluate the variability of theWi-Fi fingerprint.
The accuracy of Wi-Fi-based localization depends strongly
on the signal RSSI stability [73], [46]. The ratio test value is
defined as the significance of the fingerprint similarity, and
the value can be calculated using the following formula:

R =
Lfirst(q,i)

Lsec ond(q,i)

< µ (5)

where Lfirst(q,i) is the nearest neighbor between query fingerprint
q and reference fingerprint i, and Lsec ond(q,i) is the second nearest
neighbor between query fingerprint q and reference finger-
print i. The value µ is compared with the ratio test value,
which determines the radius of the rendered submap. In our
experiments, two radius values are selected: One radius is set
as 3 m, and the other radius is set as 6 m. The ratio value is
between 0 and 1, and µ is set as 0.7.
According to Wi-Fi localization, which can provide the

initial position and radius of the submaps, robots obtain a
coarse localization, and an accurate 6-DoF pose is estimated
by identifying a correspondence between location points and
submap points. However, previously established point-to-
point (P2P) matching approaches would be highly inefficient.
We can substantially increase the efficiency by combining 3D
points and surface normals, as we describe next.

B. INTEGRATING MULTIPLE FORMS OF
CORRESPONDENCE
In this section, two forms of correspondence are considered,
as illustrated in Fig. 9. In the 3-3 correspondence, pi ∈ R3

and qi ∈ R3 represent two sets of 3D points defined in

FIGURE 9. Pose estimation using two forms of 3-3 correspondence:
(pi ⇔ qi ) and (ni ⇔mi ).

the camera coordinate system C and the world coordinate
system W, respectively, and each pair of correspondences
can be obtained via rotation and translation—namely, pi −
R(qi − c). Simultaneously, a pair of 3-3 correspondences can
be identified by using the surface normal with surface normal
(N-N) correspondence. ni and mi are defined as a pair of N-N
correspondences in the camera andworld coordinate systems,
respectively, and are both unit vectors in R3. The surface
normal (N-N) correspondences satisfy the relationship ni =
Rmi, which is independent of the camera center between the
pair.

The relationships above with the two forms of correspon-
dence can be incorporated into a single error function of R
and c by using least-square estimates. This can be formulated
as follows:

e2(R, c) =
1
|31|

∑
i∈31 ‖pi − R(qi − c)‖

2

+
ψ

|32|

∑
i∈32 ‖ni − Rmi‖

2 (6)

In the above function, we use a weight, ψ , to balance the
relative contributions of the two forms of correspondence,
and 31,32 represent the sets of matching pairs with 3D
points and their surface normal correspondences, respec-
tively, where |31| is the number of31 in the i-th set, and 1

|31|

and ψ
|32|

are weights that depend on each importance in the
above equation. Outliers are always present and could cause
localization to fail. Thus, we propose a novel spatial verifi-
cation that combines RANSAC and least-square solution to
minimize a set of noisy matched pairs that are contaminated
with outliers to estimate the 6-DoF poses of robots. This will
be described in detail in the next section.

C. POSE ESTIMATION USING TWO-LEVEL
SPATIAL VERIFICATION
We now obtain the ultimate robot 6-DoF pose by applying
the RANSAC algorithm and least-square solution on all cor-
respondences and removing the noise in a dynamic indoor
environment. RANSAC is largely applied in image-based
location to identify outliers, and we use the algorithm to
delete noisy matched pairs. Two combinations (3-3 or 3-3
and N-N) of each pair are applied using the algorithm. First,
the candidate pose can be obtained by using a randomly
sampled minimal set of correspondences that are mixtures
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of the two forms. The two forms of correspondence provide
5 independent constraints, and there are many possibilities
for selecting the minimum set. We choose two forms with a
satisfactory mix and available solutions to address the prob-
lem. Then, we propose a direct least-square solution that min-
imizes (6) and estimates R and c for the robots with a set of
matching pairs and associated correspondences. We assume
the above correspondences are inliers obtained in RANSAC,
and a noniterative algorithm is applied, which is based on
the direct least-square optimization of 3-3 correspondences
proposed by Shinji [74]. In brief, for a specified set of N
3D point correspondences pi and qi, the algorithm has three
steps:

The translation is eliminated by subtracting the centroid
from each set of points: q′i = qi − q̄ and p′i = pi − p̄.
The optimized rotation estimate is obtained by R̂ = USV T ,

where USV T is a singular value decomposition (SVD) of the
covariance matrix Cov = 1

N

∑
p′iq
′T
i , and S is the identity

matrix.
The estimate of an optimized camera center in the world

coordinate system can be obtained using ĉ = q̄− RT p̄.
This algorithm can be extended to include N-N correspon-

dence except for 3D correspondence, and N-N correspon-
dence can be straightforwardly combined with the covariance
matrix Cov due to its independence of the camera center.
The 3-3 correspondences can be used to identify the camera
center in the direct least-square solution, and the rotational
constraints are combined with the covariance matrix in the
N-N correspondence process. Therefore, the extended covari-
ance matrix is

Cov =
1
|31|

∑
i∈31p

′
iq
′T
i +

ψ

|32|

∑
i∈32nim

T
i (7)

The two forms of correspondence (N-N and 3-3) can provide
all rotational constraints for estimating the 6-DoF pose, and
we set ψ =

1
|31|

∑∣∣p′i∣∣2 to assign them equal roles in

determining the rotation. The unit vectors for normalizing p
′

i
and q

′

i can also solve the problem. However, the lost length
of the unit vector could decrease the precision in rotation
matrix estimation. After using the SVD of Cov to obtain the
optimized R in 2 above, the optimized camera center ĉ could
be estimated. The direct least-square algorithm can obtain ĉs
by optimizing 3-3 correspondences. In the end, the camera
center is the mean of ĉ and ĉs.

IV. EXPERIMENTAL VERIFICATION
In this section, we describe the experimental setup for eval-
uating the robot 6-DoF pose estimation performance using
our dataset (Section IV.A). The proposed method—namely,
‘‘Wi-Fi-Aid’’—is compared with state-of-the-art meth-
ods and shows advantages in large-scale indoor scenes
(Section IV.B). Finally, we compare the pose estimation
accuracies among various indoor scenes and analyze the
effect factors for the method (Section IV.C).

A. IMPLEMENTATION DETAILS
Our evaluation dataset was gathered from a two-story build-
ing indoor scene. The building was selected for several rea-
sons. First, its size (1479m2) allows for a thorough evaluation
of our system and has various advantages. Second, it is repre-
sentative of a practical implementation setting that includes
many typical indoor scenarios in an office building with
a strong demand for location-based services. Furthermore,
the building interior is a complex space filled with vast open
meeting rooms, narrow corridors, offices with similar appear-
ances and ever-changing halls, which render it a challenging
environment for vision-based methods.

To adequately evaluate the Wi-Fi-aided visual-based
localization system, we gauge its performance along two
performance axes. The first is the localization time. Six-DoF
localization is the most computationally expensive compo-
nent and requires matching correspondence among abundant
points or features. In this paper, we define the localization
time as the time from when RGBD data are input into the
system to when the 6-DoF pose for the frame is deter-
mined via two-level spatial verification. The second aspect
we evaluate is the localization accuracy, which is the differ-
ence between the system’s query pose estimates of the posi-
tion and orientation and the ground-truth values. We report
the position error in meters and the orientation error in
degrees.

B. COMPARISON WITH THE STATE-OF-THE-ART METHODS
In this paper, we compare the proposed method with four
established methods in terms of both accuracy and process-
ing time. The first compared system utilizes direct 2D-3D
matching methods, which are modified versions of state-of-
the-art 3D structure-based image localization methods [30],
[33]. RootSIFT [15] computes features for whole images
in the dataset, and we associate these features with 3D
coordinates by using the known geometric information.
We extract the features from query images for matching
to the dataset 3D point descriptors. No more than five
database images are selected to receive the most matches.
Then, we obtain poses by utilizing all these matches. Finally,
P3P-LO-RANSAC [75] is applied to compute the 6-DoF
pose. State-of-the-art image retrieval-based localization is the
next compared method, which uses bag-of-visual-words with
Hamming embedding [13] to represent images, and a 200K
vocabulary is applied in the method described by RootSIFT
from our dataset and trained on affine covariant features [21].
The top 100 candidate images are reranked via spatial veri-
fication using features [19]. Lowe’s ratio test is not applied
here, as it would remove too many features that must be
retained in indoor scenes. The 6-DoF poses of query images
are computed with P3P-LO-RANSAC by using the inliers.
We use the same features in the method for fair compari-
son and P3P-LO-RANSAC for pose estimation as the direct
2D-3D matching algorithm, as described above. Our third
method for comparison is based on NetVLAD [76], which
is a variation of the above image retrieval-based localization
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FIGURE 10. Average time consumptions of the five compared methods
(right) and their runtimes with increasing map scale (left).

FIGURE 11. CDF plots of the position and orientation errors of direct
2D-3D, Bow-based image retrieval, NetVLAD, BF-ICP and Wi-Fi-Aid (ours).

method. The difference between them is a candidate shortlist,
and this method uses NetVLAD for acquisition. The last
method we compare is BF (brute-force) matching against 3D
points in the whole map and computation of the 6-DoF pose
using ICP-RANSAC [77].

1) RUNTIME EVALUATION
The average runtimes of the five visual localization
methods—namely, Direct 2D-3D, Bow-based image retrieval,
NetVLAD, Brute Force-ICP (BF-ICP) and Wi-Fi-Aid
(ours)—for the whole 3D map are presented in Fig. 10
(left). NetVLAD takes only 1.39 s on average to complete
one pose estimation, and the method is the fastest in this
experiment. The reason is that NetVLAD, by using a deep
learning algorithm, can significantly shorten runtimes during
the localization process. However, this comes at the price
of lower accuracy, as presented in Fig. 11. Our proposed
method, Wi-Fi-Aid, can realize similar time consumption
to NetVLAD, and the localization speed of the method is
more than 3, 2 and 4 times those of Direct 2D-3D, Bow-
based image retrieval and BF-ICP, respectively. However,
NetVLAD requires a higher hardware configuration and takes
a substantial amount of time to perform model training.
Fig. 10 (right) shows the relation between the map of the area
(dataset size) and localization runtime for 12 query images
that cover only a small map. When positioning with small
map size, such as room level, the proposed method needs to
increase the time consumption of Wi-Fi positioning. Mean-
while, both the proposed method and the BF-ICP method
use additional depth information for matching, which leads
to higher complexity compared with other 2D-3D matching
methods. When the size of the local map is larger than
1468 M, the radio signals in our method can speed up the
selection of matching regions and the size of the region
is relatively stable. First, global positioning is carried out
based on Wi-Fi positioning, and then fine local positioning is
carried out based on image-based localization. The runtime
of our approach is stable and varies less with increasing

TABLE 4. Evaluation of our largescale indoor dataset. The numbers
represent the median positional error (cm) and angular error (degrees).

map size, while those of the other four methods vary more
with increasing map size, and their time consumptions grow
exponentially. Our approach can realize shorter runtime due
to the use of radio location as an aid to quickly search
and extract submap information; hence, high performance is
realized, and the localization system can exhibit stable time
consumption with various 3D model sizes in large indoor
scenes. Moreover, compared to the BF-ICP method, our
method has lower time consumptionwith all map sizes, which
is beneficial to Wi-Fi-aided localization. From Fig. 10, we
find that Wi-Fi or other opportunistic radio signals can effec-
tively assist visual localization. This verifies quantitatively
that the result in real indoor scenes is the same as previous
researchers’ conjecture [61], and the adaptive submap seg-
mentation radius algorithm based on signal feature analysis is
innovatively proposed for visual localization in section III.A.

2) LOCALIZATION ACCURACY
In Table 4, we present the median position errors and angu-
lar errors of the five compared methods for four indoor
scenes: office, corridor, meeting room and hall. According
to the table, our approach realizes the best position qual-
ity in all scenes. Moreover, it is on average one order of
magnitude more accurate due to the consideration of geo-
metric information. Compared to pure image feature-based
methods, our approach, which uses an RGBD camera, real-
izes significantly higher pose estimation accuracy for both
translation and rotation. Compared to brute force 3D-3D,
a slight performance increase in terms of the translation error
is realized on the corridor scene dataset, while the gain in
terms of the rotation error on all scene datasets is readily
observed for the two forms of correspondence we performed.
Fig. 11 presents the cumulative distribution functions (CDFs)
of Direct 2D-3D, Bow-based image retrieval, NetVLAD,
BF-ICP and Wi-Fi-Aid. Our approach yields the best results
in terms of both position error and angular error, and it
realizes substantially higher accuracy than the visual local-
ization methods—namely, Direct 2D-3D, Bow-based image
retrieval and NetVLAD, which use RGB pictures to acquire
6-DoF poses. The RGB images provide only 2D features of
indoor scenes and lack depth information, which is important
for textureless scenarios. Moreover, depth information can
provide more constraint conditions for calculating the pose
of the camera. In addition, the accuracy of the method we
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FIGURE 12. System stability evaluation of five methods using fixed
rotation and translation errors (vertical ordinates 1-4 (Direct 2D-3D,
Bow-based image retrieval, NetVLAD and BF-ICP). The results of four
established algorithms are compared with those of the proposed
method—namely, method 5—which are represented by the green bands.
The horizontal ordinates represent query samples, and the red rectangular
areas represent poor results in extremely complex environments.

propose is significantly increased by 10% and 13% in terms
of the position error and angular error, respectively, which
is the result of integrating multiple forms of correspondence
using a surface normal.

3) SYSTEM STABILITY AND EFFICIENCY
In terms of overall system performance, a comparison of
the stability of the fixed position accuracy (position and
angular errors) between Wi-Fi-Aid and the four competing
approaches is reported in Fig. 12. The performance of the
positioning system is evaluated by analyzing the fixed 6-DoF
pose precision continuity of the entire set of spatially ordered
query images. In the experiment, we select angular errors of
less than 3◦ and 4◦ and position errors of less than 3 cm
and 5 cm for system continuity verification and analysis,
respectively. Vertical ordinates 1-4 in the figures are the
comparison algorithm results, and 5 represents the algorithm
we propose. The left panel presents the continuity analysis
results of the positioning algorithms under the two fixed
angular errors (3◦ and 4◦), and the right panel presents the
continuity analysis results of the algorithms under the two
fixed position errors (3 cm and 5 cm). In Fig. 12, the con-
tinuous stability of the high-quality camera pose estimation
algorithm based on 2D picture features is lower, especially in
indoor areas with few textures or less light (the area of the red
rectangle in Fig. 12), which lead to pose estimation deviation
spurts, thereby resulting in an inability to realize high location
accuracy. However, the algorithms with depth information
constraints (algorithms 4 and 5) can realize higher continuous
6-DoF pose estimation performance under the fixed errors.
Therefore, via the acquisition of RGB image information in
the process of robot positioning in a large range of indoor
scenes, the camera pose can be estimated, while the acquisi-
tion of depth information can effectively increase the posi-
tioning accuracy and system stability to ensure stable and
smooth operation in the whole scene. Compared to algorithm
4—namely, the BF-ICP algorithm—our proposed algorithm
5 can realize superior continuous high-precision positioning
performance, which is due mainly to the incorporation of
additional point cloud computing vector information into the
pose estimation method, which can effectively increase the
matching accuracy. In addition, the RANSAC least-square
algorithm can effectively eliminate the noise matching error

FIGURE 13. CDF plots of the position and orientation errors of Wi-Fi-Aid
on four scenes.

FIGURE 14. Challenging test images from all datasets. The images contain
structural ambiguities, transparent windows, and severe occlusion.

in the dynamic scene, thereby further increasing the pose
estimation precision. Regardless of the angular error or posi-
tion error, the algorithm proposed in this paper can maintain
continuous high-precision positioning and realize the robust
pose estimation of indoor large-scale dynamic scenes.

C. PERFORMANCE IN VARIOUS INDOOR SCENES
To evaluate the performance of the proposed system in
various indoor scenes, we choose four typical indoor
environments—namely, a corridor, a meeting room, a hall
and an office—to test the robustness of the methods, and
50 points with true 6-DoF poses in each scene are applied
in the experiments. As shown in Fig. 13, we also use the error
CDF to evaluate the adaptive capacity of the proposed pose
estimation system in these four indoor scenes. Our proposed
location system performs better in the hall and office than in
the corridor and meeting room in terms of both translation
errors and rotation errors.

From Fig. 14, we conclude that the two scenes have similar
structures and visual features, especially in corridor environ-
ments with textureless walls, which lead to vision deviation,
thereby resulting in incorrect matches in pose estimation.
However, according to Table 4, these four scenes have nearly
the same average errors in terms of both position and angle,
and the variances of the errors are stable. However, errors
are certainly present in the 3D maps of our experimental
scenes, and the map quality naturally influences the location
accuracy.

V. CONCLUSION
With the objective of improving the imprecise and time-
consuming camera 6-DoF pose estimation for robot loca-
tion within known indoor environments, in this paper,
we proposed a novel crowdsourcing pose acquisition algo-
rithm that utilizes a Wi-Fi signal and an RGBD camera.
Real-case experiments in large-scale indoor scenes and the
results of various state-of-the-art methods demonstrate that
the Wi-Fi-aided image-based localization system realized
higher accuracy, stability and efficiency than four previously
established algorithms (direct 2D-3D, bow-based image
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retrieval, NetVLAD, and BF-ICP). In summary, the proposed
Wi-Fi-aid image-based localization algorithm for 6-DoF pose
estimation with an RGBD camera and a wireless signal
receiver placed on a robot has four innovative aspects:

1) To the best of our knowledge, we are the first to deeply
apply a Wi-Fi location algorithm to the image-based
localization process for 6-DoF pose estimation using
an RGBD camera and a Wi-Fi receiver in a large-
scale indoor environment that includes various com-
plex scenes, which can inspire researchers in the same
field to develop an elegant solution to the image-based
localization problem. In addition, SLAM-based Wi-Fi
RSSI radio map construction was proposed to effi-
ciently complete the labor-intensive preliminary work
in Wi-Fi localization research.

2) We explored the beneficial impacts of the Wi-Fi-aided
image-based localization system and found that incor-
porating Wi-Fi signal location into 6-DoF pose
estimation reduces the computational complexity sig-
nificantly and substantially shortens the localization
time consumption in our real-case large-scale indoor
scenes. Our approach has a stable time complexity
that is independent of the database size (the number
of 3D points). Moreover, a novel method for selecting
an adaptive radius of search area according to the sta-
bility of the Wi-Fi signal source is applied to ascertain
the submap segmentation adaptively, and the method
we proposed has higher robustness to dynamic indoor
scenes without visual aliasing, which can provide a
location for each query image with limited errors.

3) We proposed a novel correspondence between local
points with a 3D submap by combining 3D points
and surface normals to acquire absolute poses from
noisy and outlier-contaminated matching point sets for
RGBD sensors in dynamic indoor scenes. Furthermore,
a novel two-level spatial verification strategy for accu-
rate pose estimation was proposed, which includes a
RANSAC algorithm for identifying and a direct least-
square method for acquiring the pose from the inliers.
The experimental results demonstrate that the accuracy
and stability of the proposed algorithm are substan-
tially higher than those of the other four algorithms
considered in this paper, and the proposed algorithm
outperforms the RGB-image-based algorithm without
depth information in terms of both translation error and
rotation.

4) We explored the system performance in four indoor
scenes (corridor, meeting room, hall and office). The
results demonstrate that our method realizes high local-
ization performance in various indoor environments,
and the influence of the indoor layout is not readily
identifiable in our location system.

For camera 6-DoF pose estimation in indoor scene research,
it is ideal to realize optimal performance on large-scale,
complex and fast-changing indoor environments; however,
there are many issues to be resolved. Our proposed algorithm

also has various shortcomings, which will be overcome in our
future studies:

First, we should consider combining higher-semantic-level
visual information to estimate the camera pose. We per-
formed our experiments under the assumption that light is
stable in indoor environments. However, visual localization
in large-scale indoor environments is challenging due to
complex and dynamic scenes. Moreover, factors that change
with time can result in loss of trust in and reliability of the
localization map. The captured visual information usually
differs with time in map construction. Similar to changes in
light intensity, light changes always occur with changes in
weather or artificial light, and the cameras are sensitive to
lighting and susceptible to degradation in the quality of visual
features, which reduce the performance of 6-DoF pose com-
putation in image-based localization. The consideration of
geometric and high-level semantic information can increase
the robustness of the visual localization system. We will
address this aspect in the future by using semantic visual
information, which is more robust to lighting changes and
has been applied in place recognition, SLAM and self-driving
technology [78], [79] to solve dynamic scenes in CV (com-
puter vision) research.

Second, we use an RGBD camera to capture the visual
information, whereas general monocular cameras are of
lower cost and are more widely used in practice. How-
ever, general cameras cannot acquire depth information, and
increasingly many smartphones have recently been equipped
with lower-cost cameras with TOF (time of flight) technol-
ogy. We should consider the use of an RGBD camera with
TOF on a handheld mobile platform and will perform pose
estimation experiments with the latest widely available TOF
camera.

Finally, in the experiment, we assume that the 3D map and
the radio map have not changed significantly, but sometimes
real environments are dynamic and affected by external fac-
tors, such as indoor redecoration or temperature variation.
Therefore, we should consider map changes and develop
an algorithm and scheme for updating significantly changed
submaps. This will be our next objective.
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